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ABSTRACT. 2014 We prove a theorem on abstract nonlinear evolution

equations otu = F(t, u) in a Banach space, which aims at estimating certain
families of Liapunov functions for the solutions. The theorem is useful
in proving global analyticity (in space variables) of solutions of various
partial differential equations, such as the equations of Korteweg de-Vries,
Benjamin-Ono, Euler, Navier-Stokes, nonlinear Schrodinger, etc. In this
paper it is shown that if the initial state of the KdV or the BO equation
has an analytic continuation that is analytic and L2 in a strip containing
the real axis, then the solution (which is unique in has the same

property for all time, though the width of the strip might decrease with
time.

Key-words: Evolution equation, Liapunov function (family), Equations of (generalized)
Korteweg de-Vries, Benjamin-Ono, Euler, Navier-Stokes. Sobolev space, Sobolev norm,
Taylor series, Radius of convergence.

RESUME. - On demontre un theoreme sur des equations d’evolution
non-lineaires abstraites dans un espace de Banach, visant a estimer cer-
taines fonctions de Liapounov pour les solutions. Ce theoreme sert a
demontrer l’analyticité globale (en espace) des solutions de diverses equa-
tions aux derivees partielles. On montre en particulier que si la condition
initiale de 1’equation de Korteweg de-Vries ou de Benjamin-Ono a

un prolongement analytique L~ dans une bande autour de l’axe reel,
alors la solution (unique dans H2) a la meme propriete a tout instant,
bien que la largeur de la bande puisse decroitre avec le temps.
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456 T. KATO AND K. MASUDA

1. LIAPUNOV FAMILIES

In what follows we consider nonlinear evolution equations of the form

We shall prove a theorem which is useful in deducing the analyticity (in
space variables) of solutions of some nonlinear partial differential equations.
The main problem here is to estimate the solutions that are already known
to exist and have regularity sufficient to justify various formal operations.

Actually it will be possible to construct a theory in which existence and
regularity (including analyticity) can be established simultaneously, but it
seems that such an attempt leads to undesirable complications.

In this section we prove the main theorem, which uses a class of Liapunov
functions involving a parameter. In subsequent sections we apply the
theorem to prove the analyticity of solutions of the (generalized) KdV equa-
tion and the BO (Benjamin-Ono) equation. Other typical nonlinear equa-
tions, such as the Euler equation, the Navier-Stokes equation, nonlinear
Schrodinger equation, etc. will be dealt with in subsequent publications.
It should be noted that our results do not prove analyticity in t; this is
in general impossible. On the other hand, we do not assume that F(t, u)
is analytic in t; only continuity in t suffices. In this respect our results
resemble a theorem of Nagumo [7], but differ from the latter in being
nonlocal.
We start with preliminary definitions and lemmas. All Banach spaces

X, Z, ... considered below are assumed to be real. X* denotes the dual

space of X.
Let Z be a Banach space. We say a real-valued function 03A6 on an open

subset O c Z is weak* C~ if the Gateaux derivative DO exists with values
in Z* and is demi * continuous from Z to Z* (i. e. continuous from strong Z
to weak * Z*). We recall that the mean value theorem holds for c~ :

provided the segment L~v c O.

Next suppose that we have another Banach space X =3 Z with the inclu-
sion continuous and dense. Suppose further that DC considered above
is demi * continuous (not only from Z to Z* but also) from Z to X*. (This
statement makes sense since X* c Z* by canonical identification.) Then
we say C is (Z, X)-weak* C1.

Finally suppose we have a x ~- of real-
valued functions on O such that ~.( . ) is (Z, on O, where
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457ANALITICITY IN EVOLUTION EQUATIONS

Z = R x Z, X = R x X, and Õ = (- o-) x O. We denote by 
the partial derivative in Z-variable only.

LEMMA 1.1 (chain rule). Let u( ~ O) n C1(I ; X) and ~( ~ ) E C1(I ; f~)
with 6(t) ~ ~, where I c R is an interval. Then ~6~_~(u( ~ )) E C1(I ; ~) with

(1.2) at ~~~~t~(u(t))~ _ ~ D~~(r~(u(t)) ~ + 

Proof : We may assume that 0 E I. We apply ( 1. 1 ) to the function ~_( - )
on ( - oc, a) x O into R, with u replaced by (r(0), u(0)) and v by (a(t), u(t)),
obtaining

where M = u(0) + i (u(t) - u(U)) and 03C3 = 6(U) + - 03C3(0)); note that
U E O and 03C3  6 if I t is sufficiently small. If we divide (1.3) by t and let
t ~ 0, then t -1 (u(t) - u(0)) -~ in X and t - i {~(t) - ~(o)) ~ 6’(0),
while D~ ~{ u) ~ (weak * convergence) in X* for each fixed h,
and similarly If [ t is sufficiently small, however,
U is arbitrarily close to u(0) in Z, uniformly in a E [o, 1 ], and similarly
for ~. Therefore and are uniformly bounded in X* by
the demi * continuity. Application of the bounded convergence theorem
thus shows that (1.2) is true for t = 0. The same is true for each t~I. Since
the right member of (1.2) is continuous in t, the lemma is proved.

REMARK 1.2. As is seen from the proof, Lemma 1.1 remains true
if we replace all the t-derivatives involved by the right (or left) derivatives.
Thus u(. )EC(I; O)n C1 +(I; X) and 03C3( . )~C1 +(I ; R) imply +(I; R),
where C 1 + indicates that the right derivative exists and is right-continuous.

REMARK 1.3. - There are some problems in which we are not able
to construct the family with the required continuity properties but in
which it is still possible to find a substitute function th6 that satisfies the
inequality obtained from (1. 2) by replacing == by x . Such a function will
serve the same purpose.
We now define a Liapunov family for (E), assuming that F is continuous

on IT x O to X, where IT = [0, T], T > 0. A Liapunov family
{03A603C3; - ~  7  03C3  ~ } for (E) on O is a family of real-valued functions
on O satisfying the following conditions. 03A6(.) is 

( - x, r) x O into !R and

whenever reO with  r, where 03B1(r), 03B2(r) are real-v alued continuous
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458 T. KATO AND K. MASUDA

functions defined for - x~  r  Y  It is assumed (for simplicity)
that a(r) ~ 0. Note that the left member of (1. 4) makes sense since F(t, L,) E X
and E X*.

Given a Liapunov family { ~~ ~ for (E) on O, we say § e O is { D~ 
sible if there is b  r such that  r. If ~ is ~ ~~ }-admissible, we can solve
the ordinary differential equation

We denote by p(t) the maximal solution of ( 1. 5) (in the sense of values,
not of the interval of existence), which exists on a certain interval ITI,
Ti > 0. Then we define another function

7 also exists on IT1 and satisfies 6(t)  6 (recall that 0 and b  r).
With these definitions, we can state the main theorem.

THEOREM 1. - Let O c Z c X be as above. Let F be continuous on
IT x O into X. Let 2 ~~ ; - :r  a  6 ~ be a Liapunov family for (E)
on 0, so that we have inequality (1.4) with certain continuous functions a, ~3
defined on (201400, r). Let u be a solution of (E) such that uEC(IT; X),
where = (~ is ~~ ; -admissible, so that we can construct the functions
p( - ), f7(-) as above. Under these conditions. Bve c

Proof - The proof is a simple application of a comparison theorem
for ordinary differential equations. Writing

for simplicity, we obtain from (E), (1.2), (1.4), and (1.6) the inequality

Subtracting ( 1. 5) from this inequality gives

where the variable t is suppressed in most places. It follows from the com-
parison theorem that p(t}, since this is true for t = 0; note that

= ~{~) = p(0). (The last argument is rather formal and sketchy.
To be more precise, one may replace p by the solution of a modified equa-
tion ètp = fJ(p) + e with p(0) = ~~{~) + e, obtain the desired inequality,
and then let E ~ 0. Moreover, since it is not known a priori that  r,
one has to work within the interval IT~ where this is true and show even-
tually that T, can be made equal to min { T, Ti }. These procedures are more
or less standard.)
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459ANALITICITY IN EVOLUTION EQUATIONS

REMARK 1.4. - a) Theorem 1 and its proof remain valid if

C1 + (IT; X) satisfies = F(t, u) ; see Remark 1. 2.
b) Suppose there are several equations = 1, ..., N, of the form (E),

where the right members F; have the properties assumed for F with I and
O c Z c X in common. If { ~6 j is a Liapunov family on O for each of the
(E~), it is easy to see that ~ ~~. ~ is also a Liapunov family for (E) with
F = Fi + ... + FN. This applies, for example, to the KdV equation and
the BO equation to be discussed in the following sections. For the KdV,
we may take Fi(t,u) = - F2(t, u) _ - and for the BO,
Fi = - with the same F2.

c) A family analogous to ~~ was used by Fritz and Dobrushin [3 ] in
the study of certain dynamical systems. The authors thank Profes-
sors Dell’Antonio and Doplicher for this information.

2. ANALYTICITY OF SOLUTIONS OF THE KdV
AND BO EQUATIONS

In this section we apply Theorem 1 to prove the analyticity (in the space
variable) in a certain global sense for solutions of the (generalized) KdV equa-
tion

(G) ~tu = F(u) = - ~3u - a(u)lu, t 0,
where c = It is assumed that is real-analytic in i E [?; no growth
rate is assumed for a(~~). A similar result can be proved for the BO equation,
for which see Remark 2.1, c), below.

First we summarize known results for the solutions of (G) (see [6]). If
with s> 2, (G) has a unique solution uEC(IT; 

with ~(0) = (~ on an interval IT = [0, T ], where T > 0 is determined by
( ~ I ~ only. (We use ( Is to denote the HS-norm.) T may be chosen arbitrarily
large if either ( § i i is sufficiently small or 3(/.) has a limited growth rate
(say, a(i ) ~ o( ~ i ~4)). It follows that = In

what follows we shall restrict § E H x to a certain class of analytic functions.
For each r > O, denote by S(r) the strip { - 30  Re x  

in the complex x-plane. Let A(r) be the set of all analytic functions f on
S(r) such that f E L2{S(r’)) for each r’  r, r’ > 0 and that f {x) E (I~ for
x E tR. We shall identify f E A(r) with its trace on the real axis if there is
no possibility of confusion.

A(r) is a Frechet space with these as the generating system
of seminorms. The analyticity for (G) can now be stated by the following
theorem.

THEOREM 2. - Let be a solution of (G). If 
for some ro > 0, there is rl > 0 such that u E C(IT; 
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REMARK 2.1. - a) In terms of the inductive limit A = ~ ~ A(r) ; r > 0 ~,
Theorem 2 says that u(0) E A implies u(t) E A, i. e. the property u(t) E A is
persistent for (G).

b) For the proper KdV equation, which corresponds to a(~.) = ~, in (G),
it is known [6 ] that Thus u(t)EA for all
t 0 if § e A. This result is consistent with a statement in Deift-Trubo-
witz [2].

c) The BO equation is obtained from the KdV equation simply by
replacing a3 with Ha2, where H is the Hilbert transform. For the BO equa-
tion, the H °°-persistence property stated above has been established recently
by Iorio [4 ]. It follows that Theorem 2 is also true for the BO equation,
with T arbitrarily large. Indeed, replacing ~3 with Ha2 has no effect at
all in the estimates given in section 3.

d) For these equations one can prove the analyticity of the time deri-
vatives but we shall not go into the proof. On the other hand, Theo-
rem 2 may be generalized to include the case in which a(u) in (G) is replaced
with a(t, u) involving t explicitly, provided a is continuous jointly in t, u
and analytic in u. A further generalization to the case a = a(t, x, u) is

possible, if a depends on x analytically in an appropriate global sense.
For the proof of Theorem 2, it is convenient to use an equivalent set

of norms in A(r) involving only f (x) for real x. Such norms are given by

Here the real parameter s is not essential, since it is easy to see that

with c depending on a, 6’, s, and s’.
The equivalence of the set of norms (2.1) to the previous ones is shown

by the following lemma, to be proved in section 4.

LEMMA 2 . 2. 2014 A(r) c HOC for each r > 0. Moreover, f E A(r) implies
that II  oo for any a, s with ecr  r. Conversely, if f E satisfies

II f for some for each ecr  r, then f (has analytic conti-
nuation) E A(r).

In view of Lemma 2 . 2, to prove Theorem 2 it suffices to apply Theorem 1
to the Liapunov family with  ro. For practical computation,
however, it is convenient to work with a finite sum in (2 .1 ). Thus we set
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461ANALITICITY IN EVOLUTION EQUATIONS

We apply Theorem 1 to estimate II u(t) with an appropriate func-
tion a(t), uniformly in m, and then let m -~ x to obtain an estimate for
II u(t) !!r(f),2- Since it is sufficient to assume u(t) E to perform various
formal computations required in the estimate, we apply Theorem 1 with

Z = X = and the Liapunov family

defined on an appropriate open set O c Z. The property of the family (2. 2)
to the Liapunov for (G) depends on the following lemma.

for sufficiently small a (algebraically !), where K and 3 are real-valued,
nonnegative functions with the following properties. K is continuous and
monotone nondecreasing on R+. v) is continuous and monotone

nondecreasing on a subset determined by an inequality
of the form (7 ~ 6(~u, v), with 6 monotone nonincreasing on ll~ + x 
Thus v I 2, 03A603C3;m(v)) is well-defined for any v E Hm + 2 if 03C3 is small enough,
and (2.3) makes sense (and is claimed to be true) for such a.
The proof of Lemma 2.3 will be given in next section. Here we prove

Theorem 2 using Lemma 2. 3. We start with the proof that (2.2) is indeed
a Liapunov family for (G) on a certain open set O c Z. For this we have
to exhibit the set O and the functions a, f3 that appear in the basic estimate
(1. 4). Actually 0, a, and ~3 will depend on the solution u under consideration.

(It may be noted, in passing, that the proof of Theorem 2 is greatly
simplified if is entire in ~~, as in the proper KdV equation. In this case
we may take O = Z, and the structure of the function a becomes much
simpler.)
Given a solution u E C(IT; Hx) of (G) with ~(0) == (~ E A(ro), choose ao

such that  ro and let  = 1 + max {|u(t) I2, t E IT }. Let O be the set
of all v e Z with L~ ~ ,  J1; obviously O is open in Z, and u(t) E O for t E IT.

Using the functions K, a, ~ given in Lemma ? . 3, we set

We note that x(r) is well-defined for r  r. The same is of course true of

fJ(r). In view of Lemma 2 . 3, it is now easy to see that ( 1. 4) is satisfied with
these functions 03B1, 03B2 and the constants 03C3, r. (Note that i, e O implies  .)
This proves that { ~~;m ~ is a Liapunov family for (G) on O.
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Moreover, § }-admissible, since

If we denote by pm the solution of (1. 5) with pm(o) _ ~~;m(~)  p(0), we
have obviously p(t), t ~ 0, and we obtain by Theorem 1

where

Note that (2.9) holds as long as pm(t)  r. But since p(t) as long
as it exists and since r - 1, (2 . 9) holds for all 
On letting m -~ oo, we thus obtain from (2.9)

This shows that u(t) E A(r1) if ri 1 = 
It remains to prove the continuity of u(t) in I I [ ~ 6, 2 for e~  ri. For

this we need the following lemma, the proof of which is easy and will be
omitted.

LEMMA 2 . 4. Let = 1, 2, ..., be a sequence with ~~!!cr,2
bounded, where e6  r. If ~n ~ 0 in H~ oo, then (1~~~2 ~ ~
for each r~  7.

The result obtained above shows that )) u(t) ~Ia(T),2 is bounded for t E IT.
Since u(t) is continuous in H ~°, it follows from the lemma that u(t) is conti-
nuous in ~ ~03C3,2 if 03C3  03C3(T).

3. PROOF OF LEMMA 2.3

We have to for v E Z = where F is

given by (G) and by (2 . 2). To this end we first compute ( w, 
where = (1/2) 2 2. If we write A = (1 - ~2) I /2~ then

= (1/2) ( 0 2, hence = ( - which is in
H-m+ 1 c: H - m - 2 = X* if v E Z = Hm + 5 and j  m. Therefore

(3 . 0)  w, = l = ( (W E Hn~ + ~ ) ^

where ( | )S denotes the HS-inner product on R. Since is a linear

combination of the ~I’;. we thus obtain

Annales de l’Institut Henri Poincaré - Analyse non linéaire



463ANALITICITY IN EVOLUTION EQUATIONS

We first compute

Here the contribution of a3v vanishes on integration by parts. Hence

Using a standard integration by parts, it is easily seen that the first
term in (3 . 3) is majorized by ( 1 /2)K( ~ u ( 2) ~ 2 2, where K is a certain
continuous, monotone nondecreasing function, depending on a but inde-
pendent of j. Hence _

The first term on the right of (3.5) has a form required in (2.3). Thus it
remains to show that the second term has the form of the second term in

(2.3). This requires some preparations.
First we note that the analytic function satisfies the estimates

where = and M can be chosen independent of ~, if a~ varies
over a bounded set. From this it is easy to deduce the estimates

where I 12,ul denotes the uniformly local H2-norm (see Kato [~ ]), and
where M = b) depends only on u ~ 2.

Second, we make frequent use of the formulas

where y is a numerical constant. (For (3 . 8’) see [5 ].)
Third, we use the following formula for higher derivatives of composed

functions (given e. g. in Bourbaki [l, Chap. I, 3, Exercise 7 ] in a slightly
different form) :

where summation is taken over all positive integers p, kl, ..., kp such that
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If we apply (3 . 8’) to (3 . 9) multiplied with 1L,, we obtain

Here we use (3 . 7) to estimate Cl~~’~~L~~ The remaining factor is estimated
by repeated application of (3.8) followed by the simple estimate

L ~ ! 2 for k > 1. Thus

where (cycl) denotes terms obtained by cyclic change of ki, ..., k p in the
preceding expression.

It is convenient at this point to introduce the following short-hand
notation.

We estimate (see (3.4)) by applying the Schwarz inequality to the
inner product ( I )2 and using the estimates obtained above. On multi-
plying with we thus obtain, after some arrangement of
the factorials,

We have to sum (3.14) over 0  j  jn. For this we need the following
technical lemma, the proof of which will be given at the end of the section.

LEMMA 3.1. For nonnegative real numbers bo, bl, ..., bm, we have

where summation is to bc taken m ur all positiBc l; l..... Iv J, and j such that
A:i + ... with ! 1 ( /11 fixed. Here 03B3’ is a numerical
constant, and
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Applying Lemma 3.1 to (3.14) and using (3.17), we finally obtain

In view of the remark following (3 . ~), this shows that (? . 3j is true with

Since the series (3.19) converges absolutely for every ,u, v > 0 provided
that 7 is sufficiently small, we have proved Lemma 2.3.

Proof of Lemma 3.1. We begin with (3.16). We first sum in j for
k m. Then + B 2 by the Schwarz inequality.
The remaining factor does not exceed a sum, taken for 1 inde-

pendently for v = 1, ..., p, which separates into the product of p single
series y’B (again by Schwarz), where y’ = (~k - 2) 1 /2  2. This

proves (3.16). To prove (3.15), we multiply the summand by ( j/k 1 ) 1 ~2,
which is not smaller than one. We sum the resulting majorizing series

again in j first, obtaining BB by Schwarz. The remaining
factor is majorized by the product of p - 1 identical series considered

above (which is smaller than y’B each), and another series y’B
(Schwarz again). The result is again smaller than y’PB2.

4. PROOF OF LEMMA 2.2

We first prove the second part of the lemma. Let f E H x with !! f ~  ~c,

and let r  eeT. We have to show that f has analytic continuation into S(r)
with L2-norm finite. For this purpose we may assume that s = 0. (This is
obvious if s  0; if s  0, note that there is y’ such that r and

~~ .~  00.)
In what follows we write I f for the L2-norm |f|0, to avoid confusion

with the pointwise values ! /(x) ~. Set
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Then we have hence

Thus the Taylor series for J about A has radius of convergence at least
equal to e~, and f has analytic continuation into S(r), which we denote
by the same letter f ~

The Taylor series f(x + iy) = gives, by the Schwarz
inequality, - o

for  e6. It follows on integration that

Integration in y shows that f e L2(S(r)), as required.
To prove the first part of the lemma, assume that f is analytic and belongs

to L2(S(r)), where r > e6. The Cauchy integral theorem gives for 0  y  r,

We apply the Schwarz inequality to (4 . 3) by factoring 
into equal parts. Using the estimate

we thus obtain (note that x - ~ - iy == ( x - ~ + 

Integrating (4.5) in x and again using (4.4), and then multiplying with
jy2’, we obtain for j  1, 0  y  r,

Integration in y E (0, r) gives

Annales de l’Institut Henri Poincaré - Analyse non linéaire



467ANALITICITY IN EVOLUTION EQUATIONS

So far we have assumed that j  1. Actually (4. 7) is true for j = 0 too.
To see this we note that, by the mean value theorem, f (x) ~ 2 does not exceed

(~cr2)-1 j I f(x + ~ + where Dr denotes the disk ~ ~ ~ + ir~ I  
Dr

If we replace Dr with the square ( ~ ~ ~  r, ~ r~ ~ I  r) and integrate the result
in x e [R, we see easily that (4. 7) also holds for j = 0.

It follows that

If s > 0, we have ((  x by choosing ~’ such that
e6  e6~  r. This proves the lemma.
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