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ABSTRACT. - This work is concerned with travelling front solutions of
semilinear parabolic equations in an infinite cylindrical domain X = R x o
where 0) c is a bounded domain. We write for x in L, x = (xl, y),
with y E co. The problems we consider are of the following type

where the unknowns are the parameter ceR and the function u. The
function and the nonlinear term f : [0, 1] ~ R are given. (More
general coefficients than c + a ( y), f3 ( y, c) are also treated.)
We obtain a fairly general resolution of this problem. The results depend

on the type of nonlinearity considered. When f is of the bistable type, or
of the "ignition temperature" type in combustion, we show the existence
and uniqueness of c and of the profile u. In the case that f &#x3E; 0 in (0, 1), we
show the existence of c* e R such that a solution exists if and only if

c &#x3E;_ c*. These results extend to higher dimensions various classical results.
In particular they extend the result of Kolmogorov, Petrovsky and
Piskounov.

RÉSUMÉ. 2014 Cet article a pour objet les solutions de type front progressif
pour des equations paraboliques semi-lineaires dans un domaine cylin-
drique infini L = R x o ou co c est un domaine borne. Pour x dans E,
nous noterons : x = (xi, y), avec Les problemes que nous envisageons
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sont de la forme

ou l’on cherche a determiner le parametre c~R et la fonction u. Le

coefficient ainsi que le terme non linéaire f: [0, 1] ] ~ R sont
donnes. (Des coefficients plus generaux que du type B (y, c) sont
egalement traites.)
Nous obtenons une resolution essentiellement complete de ce probleme.

Les resultats varient avec le type de nonlinearite f. Lorsque f est du type
« bistable » ou bien du type avec temperature d’ignition dans les modeles
de combustion, nous montrons l’existence et 1’unicite de c et du profil u.
Dans le cas ou , f &#x3E; 0 sur (0, 1), nous montrons l’existence de c*eR tel
qu’une solution existe si et seulement si c &#x3E;_ c*. Ces resultats etendent aux
dimensions superieures divers travaux classiques en dimension un. En
particulier, ils generalisent le resultat de Kolmogorov, Petrovsky et Piskou-
nov.

1. INTRODUCTION

This paper is devoted to the study of travelling front solutions of
semilinear parabolic equations in several space dimensions.

These equations have the form

They are set for t E R, and spatial variables in an infinite cylinder L = R x o,
is a bounded smooth domain. We will systematically

represent x~03A3 as y) with x 1 eR and We denote au by ~1 u
lxi

or ul. The outward unit normal to ac~ or to OL is denoted by v.

Here, is a given (predetennined) transport term, or a driving
axl 1

flow, in the xl-direction, along the direction of the cylinder. In some
sense, the flow is driven by some exogeneously given flow represented by
a (y) which is independent of xi. We will always assume that C’l E C° (co)
and a &#x3E; o. The term feu) represents a source term and we always assume
/(0) ==/(!) =0.
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499TRAVELLING FRONTS IN CYLINDERS

Travelling front solutions are defined as solutions of the form

with and c a real parameter (the speed of the
front), which is to be determined. We require that u ~ 0 or 1 as xi

approaches - 00 or + oo respectively, and impose Neumann boundary
conditions on oL. One is thus led to the following semilinear elliptic
problem in L

The limits in ( 1. 3) are understood to be uniform in y E ro.
The boundary condition ( 1 . 2) means that there is no flux of u across

the boundary We remark that the methods in this paper are quite
general. They apply to more general boundary conditions than ( 1 . 2) - such
as Dirichlet conditions or conditions of mixed type. In addition, most of
the results extend to a nonlinearity fey, u) in place of feu) - with suitable
modifications of the assumptions. These extensions are briefly discussed
at theend of the Introduction.
The results depend very critically on the behaviour of feu) near 0 and 1.

Throughout the paper we assume

and,

The last condition in (1 . 5) is satisfied in case f E C 1 near s = 0 and s =1,
and f’ is Holder continuous at s = 0 and s = 1. For some results, further
conditions will be imp,osed on f
We will distinguish between three classes of nonlinearities. These will

be called types A, B or C and are represented in the diagram below.

Vol. 9, n° 5-1992.
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More precisely, we say that f is of the type A if

f is of type B if, for some 8 E {o, 1 )

Last, f is of type C if, for some 8 E (o,1 ),

As we know from the one-dimensional problems (and as we will see more
generally) it is indeed necessary to distinguish between the various types
of nonlinearities.

Before stating our results we decribe some of the history of problems
of the form ( 1 . 1 )-( 1 . 3). They arise in various applications - including the
three types of nonlinearities. For instance, cases A and C arise in some
problems of biology (population dynamics, gene developments, epidemi-
ology...). A general reference here is the book of P. Fife [Fi]. See also

[FM], [AWl, 2] and the references therein. For instance 
(case A) and a -_-1, (1.1) is known as the Fisher equation. This one-

dimensional situation has been studied in the well known 1937 paper of

Kolmogorov, Petrovsky and Piskounov [KPP]. Case C is usually referred
to as the "bistable nonlinearity" - since s = 0 and s =1 are then two stable
rest points.

Cases A and B also arise in combustion: in the study of flame propaga-
tion in a tube. In this model, after normalization of the variables, u

represents the temperature and 1- u the concentration of (premixed)
reactant. A flame is defined as a travelling front solution of ( 1.1 )-( 1. 3).
The term feu) is then the reaction rate at which the reaction takes place
and is given by the Arrhenius law (involving an exponential factor in u)
and the law of mass action ( f (s) is proportional to 1- s). The boundary
condition (1.2) means that the wall of the tube is adiabatic. Both cases A
and B occur in this model. In fact, case B is perhaps the most natural
choice. It corresponds to an ignition temperature assumption. The reaction
does not occur until the temperature passes the threshold 8. A detailed

description of this model, and derivation of equations ( 1 . 1 )-( 1 . 3), can be
found in [BL2, Chapter 1].
. 

In the combustion model, f(s) is flat, almost zero, except for values of
s  1 very close to 1. It is customary to consider the limit as f(s) converges
to a Dirac mass concentrated at s = 1. The mathematical analysis of this
singular limit, as well as the study of the resulting free boundary problem,
are carried out in the joint paper with L. Caffarelli [BCN]. Also, in this
context, the stability of the travelling front has recently been established
in [BLR] (linearized stability), [Rl] ] (nonlinear stability) and [R2] (global
stability).
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Case C also arises in the context of combustion for some reversible

reactions or two step, not purely exothermic reaction systems.
For one space dimension there is much literature on problems of this

kind. This corresponds to a - 0 and The problem ( 1. 1 )-( 1. 3)
then reduces to the following problem for a nonlinear ODE:

When considering (1.11), the paper by Kolmogorov, Petrovsky and
Piskounov [KPP], treats essentially a particular class in case A, and under
the additional condition’

This is referred to as the KPP case. In particular, KP and P have shown
that ( 1.11 ) has a solution if and only if

They further analyzed the stability of these travelling fronts and derived
several important properties of the evolution problem. In particular, they
showed that the travelling front corresponding to the speed c = 2 f’ (0)
is stable and that in some sense, 2 f’ (0) is the "preferred" or natural,
speed at which solutions travel.
Problem ( 1.11 ) was also studied in case A, for f close to a Dirac mass

at s =1, in the work by Zeldovich and Frank-Kamenetskii [ZFK]. Their
work was motivated by the combustion model and focussed on the singular
limit when f approaches the Dirac mass at s =1. In this direction, see also
Kanel jKl, 2], Johnson and Nachbar [JN] and Berestycki, Nicolaenko and
Scheurer [BNS].
The most general study of the ordinary differential equation ( 1. 11 ) was

then carried out by Fife and McLeod [FM]. For case C they established
stability properties of the unique travelling front solution. We also refer
to [BL2, chapter 2] for a complete study of equation ( 1 . 11 ). Solutions
of ( 1.11 ) also yield "planar front" solutions u (t, x) = u (x ~ ~ + ct) of the
equation

for some unit vector ç e R". The stability of solutions of ( 1 . 11 ) with respect
to ( 1.14) is studied in the work of Aronson and Weinberger [AW 1 which
also treats models in population genetics leading to (1 . 14).
The preceding list is by no means complete. There is a vast literature

devoted to this subject, including generalizations and applications - see
the surveys of A. J. Volpert [Vo 1, 2] and the bibliographies there and
[Wl-3].

Vol. 9, n° 5-1992.
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In higher dimensions there are not many studies of nonplanar travelling
fronts. In an interesting paper, R. Gardner [G] studied problems of type
(1.1) in a cylinder in R2, with Dirichlet boundary conditions, for a

particular nonlinearity of type C. He used the Conley index. Another
interesting related work in this context is that of S. Heinze [H]; for a - 0,
and Dirichlet boundary condition, he presented a variational characteriza-
tion of c. Probabilistic methods have been used in such problems. See
H. P. McKean [McK] and recent work of M. Freidlin [Fr1, 2]; other
references may be found there.

In this work, we present a complete investigation of problem (1.1)-
( 1. 3) in higher dimensions. In particular, we will present some higher
dimensional versions of the KPP theory.

In recent interesting papers, J. M. Vega [Vel], [Ve2], treats equation
( 1 . 1 ) in the cylinder X, with f= fey, u), and for Dirichlet boundary condi-
tions u=O in a~ - but only for the case In place of ( 1 . 3) he
considers the problem u (xl, y) --~ v + ( y) as where are

solutions of

with v- ( y)  v + In [Vel] he obtains rather precise information
on the asymptotic behaviour of u as His method is different
from ours of [BNI], or of this paper (we use results of [AN] and [P]). It

appears to us that his method cannot work in case oc ~ constant. Using
the sliding method of [BN1], he proves monotonicity and uniqueness. In
[Ve2], under various conditions he then proves several existence theorems,
and uniqueness of u, modulo translation. In addition he makes use of sub
and supersolutions to solve the corresponding problems in finite cylinders.

We now describe our main results.

In some applications, the dependence on c in (1.1) may be slightly
different. For instance, in some combustion models, ( 1. 1 ) is replaced by

here a is positive continuous function in co.
Since no additional work is required, we shall treat an equation with a

more general dependence on c, in which of ( I . 1 ) or of

(1 . 15) are replaced by a function of the form

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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We always assume that

We now describe our main results, beginning with case B (see ( 1. 7)).
THEOREM 1 . 1. - Assume that f is of type B then, there exists a solution

(c, u) of problem (1 . 1 f ), ( 1 . 2), ( 1 . 3) with ul &#x3E; 0 in ~.

THEOREM 1 .1’.. - Assume that f is of type B and satisfies - in addition
to conditions ( 1. 4), (1 . 5) - the condition

Then the solution (c, u) is unique, i. e., f (c’, u’) is also a solution; then c = c’
and u’ = u (x + i, y) for some real i.

Conditions (1.5) and (1.19) are satisfied in case f~C1 near s=O and
s =1 and f’ is Holder continuous at s = 0 and s =1.
For [3 = c a (y), Theorem 1 . 1 was already proved in [BL], and

for in [BLL]. For both cases, Theorem 1 . 1’ was proved in
[BN1]. For completeness, we include here the proofs of Theorems 1.1 and
1. F for general j3 (y, c) satisfying (1.17) and (1.18).
We turn next to case C: f satisfies ( 1. 8). It is similar to case B but new

difficulties occur. Indeed, in case C, there may exist nonconstant solutions
of the "stationary problem" in co:

(dy is taken only with respect to the n - 1 variables y).
For a solution B)/ of ( 1 . 20), let denote the principal (or least)

eigenvalue of the in (D, with Neumann conditions.

That is, ~1 (B)/) is characterized by the existence of ~ &#x3E; 0 in co such that

THEOREM 1. 2. - Assume that f is of type C. Then there exists a solution
(c, u) of ( 1 . 1 )-( 1 . 2) which satisfies

Vol. 9, n° 5-1992.
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for some nonconstant solution ~r = ~ ( y) of ( 1 . 20), with ~ --_ 1, or 0  ~r  l;
also u 1 &#x3E; 0 in E .
Here the function 03C8 is unknown. The corresponding uniqueness result

is

THEOREM 1 . 2’- - Assume that f satisfies condition ( 1 . 19). Suppose that
~r is stable in the sense that (this includes the case ~r -1 ). Then
the solution (c, u) of ( 1.16), ( 1. 2) and ( 1 . 22) is unique (modulo translation)
in each of the following cases:

Jo
Remark. - One can also reverse the roles of the conditions at + 00

and - oo. Indeed, one can prove that there exists a solution (c, u) of
(1.16), (1.2), (1.3) such that

with 03C8~ 0 or 03C8 some nonconstant solution of ( 1. 20), 0  1.

Theorem 1 . 2 does not yield a solution of problem ( 1 16), ( 1. 2), (1 . 3),
since the function ~ cannot be prescribed a priori, and thus (1 .3) is not
necessarily verified. With an extra assumption, though, we can obtain the
desired solution.

THEOREM 1.3. - Assume the conditions in Theorem 1.2, and suppose
that c~ is convex, and that f E C 1 ~ s on [0,1], 0  b  1. Then, there exists a
solution (c, u) of ( 1 . 16), (1 . 2), (1 . 3).
The corresponding statement for a nonconvex domain w remains open.
Last, we turn to case A which is quite different from the two others.

THEOREM 1 . 4. - (i ) Suppose f is of type A. Then there exists c* E R such
that there exists a solution u of ( 1 . 16), ( 1. 2), ( 1. 3) f and only if c ? c*.
For every c &#x3E;__ c*, there is a solution with ul &#x3E; 0.

(ii) Furthermore, iff’ (0) &#x3E; 0, then the solution u is unique (modulo transla-
tion).
Our last result is a higher dimensional extension of KPP theory.

THEOREM 1. 5. - In case A, suppose further that

Then, c* is "explicitly" determined from ~, a (y), and the value of f’ (0).
The "explicit" construction of c* is described in detail in Section 10. It

agrees of course with the value c* = J2 f’ (0) in case a = 0.
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The results described above may appear rather simple but some of the
proofs are truly intricate. In addition, we were not able to prove mono-
tonicity and uniqueness in all cases. Open problems remain: 

’

Problem 1. - Does Theorem 1 . 2’ hold in general, i. e., if condition (b)
is replaced by the simpler condition f’(0) = 0?

Problem 2. - In case f’ (0) = 0 in Theorem 1. 4, does every solution
satisfy ul &#x3E; o? Is there uniqueness?
The methods we develop in the paper allow one to consider somewhat

more general problems of the type

Here, is as before (in particular it satisfies ( 1 . 17)-( 1 . 18)). The
function f is a C 1 ° s, b &#x3E; 0, function f : ~ x [a, b] ~ R where a = min 

The functions j_ and are stationary solutions of

satisfying B(/_ B(/+, and we are looking for solutions (c, u) of (1 .25) with
~ - (.v)  u Cx m .v)  ~ + (.v) -

Instead of formulating our assumptions on the nonlinearity f(y, u)
explicitly, we state them as conditions on the stationary problem ( 1. 28).
Indeed in the paper, the stated conditions on f are only used to derive
such properties.
For a stationary solution we denote by III the principal eigenvalue

of the linearized problem:

In the following, we say that B)/ is a stable solution of (1. 28) if III (~) &#x3E; 0,
and unstable if ~.1  o.

We can now state our results for the more general situation (analogues
of Theorems 1 . 1-1 . 2’ respectively).

THEOREM 1. 6. - S’uppose ~ _ are two stable solutions of ( 1. 28).
There exists a connection (c, u), i. e. a solution of ( 1 . 25)-( 1 . 26), such that

where ~r is some stationary solution of (1. 28), with ~ _  ~+ .

THEOREM 1 . 7. - Under the assumption above, if the solution (c, u) of
(1.25)-(1 .27) exists, then it is unique (up to translation for u).

Vol. 9, n° 5-1992.
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These two statements corresponds to Case C above (Theorems 1 . 2 and

1.2’). The more general statement corresponding to Theorem 1 .3 is the

following.

THEOREM 1.8. - Suppose furthemore that the two stable solutions of
1 . 28), ~ _ and Bf1 + have the property that every stationary solution t~ of
{ 1 . 28) satisfying ~ _  ~  ~ + is unstable. Then, there exists a connection

to 0/ +, that is, a solution (c, u) of { 1. 25)-( 1. 26), such that

u(- ~~y)=~- ~Y) u(~ ~~.Y)=~+ ~Y)
The next statement is the analogue of case A (Theorem 1. 4). (Note

however that since, here, The conditions are not exactly the
same as above.)

THEOREM 1. 9. - Suppose 0/- are stationary solutions of (1 . 28)
such that ~ _ is unstable and ~+ is stable. Assume, furthermore, that there
is no stationary solution ~ of (1 . 28) with  t~  ~ + . Then, there exists
c* E R such that (1 . 25)-(1 . 27) admits a solution if and only if c &#x3E;-- c*.

From our assertions, when fey, u)= f ’(u), =0, and = I, it is
clear that the case ~.1 (~r _ ) = 0 is more difficult to handle. Indeed, there,
the cases f (s) &#x3E; 0 or f (s)  0 in a right neighbourhood of s = 0 differ

radically. Therefore, this case is omitted in our more general statement.
In this paper we only discuss in detail the problem (1.16), ( 1 . 2)-( 1. 3).

The proofs readily extend to the more general problem (1.25)-(1.27).
Furthermore, many of the results and methods presented here extend to
other situations, in particular to different boundary conditions. But such
extensions are not explored here.
We now describe the structure of the paper. An essential step in proving

uniqueness and monotonicity (as already in [BN1]) is to establish rather

precise exponential behaviour of solutions u as xl ~ - oo and of 1- u as
For instance we will show that cp (y) + o (e’~xl) as

where is a constant and ~, &#x3E; 0 is some eigenvalue with
eigenfunction The next three sections are devoted to this

question.
In Section 2 we analyze in detail the linear "eigenvalue" problems that

arise in this context. Then, in Section 3, we show, under certain conditions,
that solutions which tend to 0 as j~i -~ 2014 oo necessarily decay exponentially.
In addition, we prove a result of independent interest, Theorem 3.2, for
positive solutions u of a general linear second order elliptic equation in
~ - _ ~ (~ ~ xl  0 ~, with Uv = 0 on the curved side of the cylinder. Without
imposing any condition on u as xl -~ - oo we show that u can grow
at most exponentially there. This result should prove useful in other

problems.
Incidentally, in connection with problem 2 above, at the beginning of

Section 3 we describe a simple example in which the solution decays

Annales de l’Institut Henri Poincare - Analyse non linéaire
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precisely like a negative power of -x1 as x1 ~ - oo. In addition, in

Lemma 7 . 2, we show that if there is a solution u satisfying I -k
for xi  - 1, with c, k positive constants, then there cannot exist a solution
of the problem which decays exponentially at - 00. This shows that the
conditions of Section 3 for exponential decay are sharp. For f of type A,
and satisfying f’ (0) = 0, we do not know what further conditions to impose
on f in order to ensure exponential decay of solutions at -~, or to
ensure uniqueness, or monotonicity in xl.

In Section 4, we finally derive the exact asymptotic behaviour of
solutions u as xl --~ - oo .

The existence Theorems 1 . 1 and 1 . 2 are proved in Section 5 - and
Theorem 1. 3, in Section 6. Theorems 1. 1’, 1. 2’ are proved in Section 7
where uniqueness and monotonicity properties are studied. Last, case A is
treated in Sections 8 and 9. Section 10 contains the proof of Theorem 1. 5.
Most of the results of this paper have been announced and described

in [BN2]. Our earlier paper [BNl] on this subject, treated only case B.
There, we established the uniqueness of the solution (c, u), and proved
that We also derived precise exponential asymptotic behaviour of
u at - oo and + oo . This involved the "eigenvalue problems" for solutions
of the linearized equation near, say, - oo, of the form e"’Xl cp (y). However
our results in this paper include, and are more general than, those of
[BN 1 ].

2. LINEARIZATION AT INFINITY AND SOME ASSOCIATED
LINEAR EIGENVALUE PROBLEMS

As we will see in the next section, the behaviour at infinity of solutions
of semi-linear elliptic equations of the kind ( 1. 1 ) in infinite cylindrical
domains is governed by some special solutions, the exponential solutions,
of the linearized equation at infinity. The latter is an equation in a half
cylinder, say [ - oo, 0] x co, of the form

Here ~3 (y) and a (y) are given functions on o. Exponential solutions are
the particular solutions of (2 . 1 ) which are of the following type

where B)/ is a polynomial in xi :

Vol. 9, n° 5-1992.
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This yields the following system of k + 1 linear elliptic problems for the
functions B)/o~ ’ ’ ’. involving the unknown parameter X

One is thus led to a kind of eigenvalue problem in À for a system of
equations. In particular, when k = o, i. e. for solutions of the type

cp (y), the system reduces to one equation

Note that in the general case, i. e. for arbitrary k, the leading order term
of Bj/ in (2 . 3), i. e. cp = ~k ( y) is also determined by the same problem (2 . 5).
As we will see, this problem determines the "eigenvalue" À.

In this section we derive some spectral properties for this class of

problems. We first investigate the generalized eigenvalue problem (2. 5).
Afterwards, we will completely describe the set of positive exponential
solutions of (2 .1 ). We will state all our results in the case of the half

cylinder
’ 

Obviously, analogous properties hold in the right half cylinder as well.
Since our solutions are positive and tend to zero, we will only be concerned
here with solutions with positive ~, and for which the leading order term
Wk (y) does not change sign. Hence, of primary concern to us are the
existence, uniqueness and characterization of a positive (or negative) princi-
pal eigenvalue of (2.5). Such an eigenvalue is defined as a ~, for which
there exists an eigenfunction cp of the corresponding problem (2. 5) which
does not change sign.

It may be worth to emphasize the fact that although this is a linear

self-adjoint problem with respect to cp, the dependance on À does not
allow one to use the usual spectral results for these operators. Most of
our results can be readily adapted to other boundary conditions and to
more general settings.
Throughout this paper, we will use the following notation. We denote

by 1 the first (least) eigenvalue, and by a (y) the associated eigenfunction

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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of the linear eigenvalue problem with Neumann conditions

Here, ~ (y) &#x3E; 0 in ~. In our earlier work [BNI], we had studied the
eigenvalue problem (2. 5) under the additional condition that ~,1 &#x3E; o. For

the more general type of equations we study here, this condition in general
is not satisfied. Actually, as we will see, the results are somewhat different
when ~,~  o. We will consider here the general setting, so that the ones in
[BNI] will be obtained as particular cases.
The main existence and multiplicity result for (2 . 1 ) is the following.

THEOREM 2. 1. - We assume that c~ ~ R is an arbitrary continuous
function. Then (2 . 5) possesses 0, 1 or 2 principal real eigenvalues. Further-
more, we have the following characterization (recall that 1 and 03C3 ( y) are
the principal eigenvalue and associated eigenfunction defined from (2. 6)).

(a) If then (2 . 5) admits exactly one positive and one negative
principal eigenvalue.

(b) If 0, then, aside from ~, = 0, (2 . 5) admits exactly one principal

eigenvalue which is positive (resp. negative) if  j3 ( y) 6 ( y)2 dy &#x3E; 0 (resp.

 o). If then (2 . 5) admits no principal eigenvalues

aside from ~, = o.
(c) If ~,1  0, (2 . 5) may admit 0, 1 or 2 principal eigenvalues. When two

exist, they always have the same sign, namely that of ( y) 2 dy. If

( y) 6 ( y)2 dy = 0, then no principal eigenvalue exists.

(d) Furthermore, in cases (a) and (b), i. e., ~,1 &#x3E;-- o, the positive principal
eigenvalue is the smallest positive eigenvalue of (2.5) and, likewise, the

negative one is the largest negative eigenvalue. In all cases, the eigenspace
associated with a principal eigenvalue is always one-dimensional.

_

(e) Suppose ~,1 &#x3E;-- 0, and suppose (3 ~ (3. If the principal positive eigenvalue ?~
corresponding to 03B2 exists, then so does the principal positive eigenvalue 03BB,
for (3, and ~,  X. Similarly, if the principal negative eigenvalue - i corre-
sponding to 03B2 exists, so does the one - I for [i, and - i  - i.

Remark 2 . I . - Case (c) will be discussed further in Theorem 2 . 2. Also,
it should be noted that, contrary to the case ~,1 &#x3E; 0, it is not necessarily
true when ~,1  0 that the smallest positive principal eigenvalue, if it exists,

Vol. 9, n° 5-1992.
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is the smallest positive eigenvalue. This fact - and examples - will be clear
from our proof (compare Remark 2. 3 below).

Proof of Theorem 2 .1. - The proof relies on some properties of the
principal eigenvalue of a linear problem and, in particular, its dependence
on the zero order coefficient. We first recall these properties.

Consider the following eigenvalue problem

With a fixed, denote by p (q) the principal eigenvalue of (2. 7). That is,
p (q) E R is uniquely determined by the existence of an associated eigenfunc-
tion cp &#x3E; 0 in c~. We also know that p (q) is the smallest eigenvalue of (2. 7)
and it is a simple eigenvalue.

PROPOSITION 2 . 1. - The mapping q ~---~ p (q) defined on into R has
the following properties.

(i) p (q) is continuous with respect to q, in fact I-Lipschitz continuous in
the L °° (~), norm:

(11) q H P (q) is monotone : i, f’ ql _ q2 and q2 on ~, then p Cql)  P (q2)~
(iii) The mapping q H p (q) is concave : i,f ql, q2 E C° (c~), s E [0,1J, then

Proof. - These classical properties are obvious consequences of the
variational characterization of the principal eigenvalue

with

Indeed, -- ~ ~ q 1- q2 ~ ~L x cw&#x3E; for each fixed The

mapping q - J~ being affine and monotone, p (q) is concave and mono-
tone (in the sense of (ii ) and (iii)).

Remarks 2.2. - (a) These properties remain true in a more general
setting. For instance, the very same statement holds for the principal
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eigenvalue of the problem

where is an elliptic operator, not necessarily
in divergence form, with with c° &#x3E; o;

(~).
(b) Part (i ) can be improved. For instance, it is clear from the varia-

tional formulation (2 . 8) that p (q) is continuous with respect to q in the
(o) topology, where m = ~ 2014 1. N

We can now complete the proof of Theorem 2 . 1. For each fixed t E R,
we let III (t) denote the principal eigenvalue of the operator - A + a (y) + t ~3
in H2 (c~) with Neumann data on ac~.
That is, III (t) is characterized by the existence of a

unique such that cp (t) ( y) &#x3E; 0, V y E M, normalized by
such that

In other terms, n. is defined by

Likewise, we denote by Ilk (t) the k-th eigenvalue of this problem (counting
multiplicity). With this notation, we see that is an eigenvalue of
(2. 5) if and only if

for some In particular, since eigenfunctions associated with 
are only positive when k = 1, it follows that X is a principal eigenvalue of
(2. 5) if and only if

The proof of Theorem 2.1 rests on the following assertions.

PROPOSITION 2 . 2. - The function t H ~,1 (t) is continuous and concave
on R. At t = 0, ~.1 (0) = ~,1 and ~1 (t) is differentiable with
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Proof of Proposition 2.2. - Continuity and concavity of ~,1 will follow
from Proposition 2.1. That ~.1 (o) _ ~ 1 is the definition (2 . 6) of We

just need to show that 1 is differentiable at 0 and to compute ’1 (0).
First, since our eigenfunction cp = cp (0) of (2 . 10) associated with ~,1 (t)

is unique, it is an obvious consequence of the continuity of ~~ (t) that
is continuous from R into for all 1 poo. In particular,

(p (t) (j~) ~ o (y) in W2~ p (co) as t - 0, where a is the eigenfunction of (2. 6)
normalized by II 6 ~ IlL ex) = l, 6 &#x3E; 0 in co.
Decompose cp (t) along in the L2 (co) sense. That is,

write

where s (t) E R, and h (t) satisfies

From (2.10) we obtain the following equation for h (t):

Multiplying (2.14) by a and using (2. 6), which implies,

we obtain

Since s (t) -~ 1, and h (t) - 0 as t - 0, we see that ~.i (0) exists and has the
value

Conclusion of the proof of Theorem 2 . 1. - Since 1 (t) is concave, the

equation ~1 (t) = t2 admits at most two roots. The existence and signs
of these roots are then immediately determined from knowledge of
the position of 1 (o) _ 1 and of the sign of ’1 (o) which is that of

W w fl (Y) " (y)2 dY.
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Note that when (cases (a) and (b)), then since any eigenvalue ~,’

of (2. 5) must correspond to a solution of ~,k (~,’) = ~,’2 for some k &#x3E;_ l,
and since ~,k (t) &#x3E; ~.1 (t), V t &#x3E; 0, V k &#x3E; 2, we see that the positive principal
eigenvalue is the smallest positive eigenvalue of (2. 5). The last assertion
of (d) of the theorem is an obvious consequence of the fact that if À is a
principal eigenvalue of (2 . 5), then ~,1 (~,) = ~,2 is the principal eigenvalue
of (2.10) which is well known to be simple.

Part (e) is Lemma 3.2 of [BN1] and its proof is simple; we just indicate
the proof of the first assertion: recall that X is the positive number
satisfying (~,) where for t &#x3E; 0, III (t) is the first eigenvalue of (2. 10).

2014 &#x3E;

The corresponding first eigenvalue of (2.10), with in place
of P, satisfies ~.1 (t). It follows that ~, &#x3E; ~,.
The proof of Theorem 2.1 is complete.
Remark 2 . 3 . - In case (c), when ~ 1  0, and also ~.2 (0)  0, the smallest

positive eigenvalue of (2.5) is no longer a principal eigenvalue as seen
from the previous construction. Now, this circumstance only depends on
the choice of a ( y) and not on P. We will see that for any a ( y), there
exists p (y) for which (2. 5) admits positive principal eigenvalues. Thus, if
~,2 (0)  0, there is for which the principal positive eigenvalue is not
the smallest positive eigenvalue.

Next, some further discussion for case (c), when ~,1  0. The structure
of this problem is better understood if we let the term (3 depend on some
parameter 03C42014compare with Section 1. Thus, we consider the more general
family of problems

Here is a family of functions satisfying ( 1. 17) and ( 1.18).
The typical examples one should keep in mind (and which are the

relevant ones for the applications in this work) are

or

for some continuous positive function a on c~.

THEOREM 2 . 2. - Suppose that the principal eigenvalue ~ 1 of (2 . 6) is

negative. Suppose furthermore that the family j3T satisfies (1 . 17), (1 . 18).
Then, there exists a critical value of T, T*, such that if i  i*, (2 . 15) has
no principal eigenvalue ; for T = i*, (2. 15) possesses exactly one principal
eigenvalue which is positive, while for i &#x3E; i*, (2. 15) admits exactly two
distinct principal eigenvalues which are both positive. Likewise, there exists
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a critical value i*_  i* such that (2. 15) possesses respectively exactly one
principal eigenvalue which is negative, two negative principal eigenvalues, or
no negative principal eigenvalue, according as ~. = i* , ~,  i*_ or ~, &#x3E; If .

Proof. - Consider again our previous construction but with ~3 replaced
by The corresponding principal eigenvalue of (2.10) will be denoted
by ~i (t). From Proposition 2 . l, we see that ~,~ (t) depends continuously
on ’to Furthermore, if i  i’, then ~.i ‘d t &#x3E;_- 0 (with reversed

inequality if t  0). Since

it is clear that lim (~,i)’ (o) _ ~ oo . Hence, there exists io E R such that
~ -~ ± 00

(0) = o. Furthermore, by concavity, ~,i (t)  ~1 + t (~,i)’ (o), and so for
small, no principal eigenvalue exists.

Using these facts, Theorem 2. 2 now follows easily with the aid of:

which we leave to the reader..

We now consider once more the problem (2.5) or system (2.4) and
investigate some consequences of the existence of a principal eigenvalue
of (2.5).

Since the problem is not a self adjoint eigenvalue problem, there may
exist complex eigenvalues of (2. 5). For instance, a { y) --- - l ,
then a (principal) eigenvalue of (2. 5), associated with constant
eigenfunctions.

This, however, cannot happen as soon as there exists a real principal
eigenvalue.

THEOREM 2.3. - If there exists a real principal eigenvalue ~, of (2 . 5),
then all eigenvalues of (2. 5) are real.

Proof - Let ~, be a real principal eigenvalue and let cp &#x3E; 0 be an

eigenfunction associated with À, that is (2.5) holds:
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We can also read (2 . 5) as saying (since cp &#x3E; 0) that the first eigenvalue
of ~f = - A + a (y) - (~.2 - (y)) in H2 (o) with Neumann boundary condi-
tions is 0, cp being the associated eigenfunction. The variational character-
ization of the first eigenvalue of 2 therefore shows that

Now suppose that ç e C is another eigenvalue of (2. 5) associated with
an eigenfunction 03C8~0 in D. and assume by way of con-
tradiction that 
We can write

with p ( y) = 2 P ( y). Multiply this equation by W to get

The left hand side in (2 . 21 ) being real, as well as /?(y) |03C8|2, we infer
that if v = Im 03B6 ~ 0, we must z. e.,

Furthermore, the left hand side in (2.21) is zero:

From the variational characterization (2.19), with we then find

Combining with (2. 22) we obtain

Since 03C8 ~ 0, this is obviously impossible if 0. Contradiction; the theorem
is proved.
Remark 2.4. - This is an extension of our earlier Theorem 3. 1 in

[BN2]. There we had assumed that the first eigenvalue III of (2.6) is
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nonnegative and we proved that if y, &#x3E;0, there is always a positive
principal eigenvalue. In case ~1= o, then ~, = 0 is a real principal eigenvalue.
Therefore in both cases the result there follows from Theorem 2. 3 here.

Remark 2. 5. - The theorem holds under more general conditions than
( 1 . 17), ( 1. 18). It suffices, namely, to assume that ~i (y, i) is continuous
on co x R, satisfies

and that there exist nonempty open sets co" c co such that

Remark 2.6. - Does the converse to Theorem 2.3 hold? Namely, if
(2.5) does not have a real principal eigenvalue is there necessarily a
complex (non real) eigenvalue? This is the case for instance if is a
constant.

We now turn to the analysis of the system (2 . 4). Our goal is to describe
the set of bounded and positive exponential solutions on R- of (2. 1).
We will prove that they are either of the form or

w = (-x103A6 ( y) + Oo ( y)) with 03BB a principal eigenvalue and 03A6 an associ-
ated eigenfunction of (2. 5).

Recall that an exponential solution is defined as

with

If u is to be bounded, then for k &#x3E; o, we require ~, to be positive.
Furthermore, if u &#x3E; o, then necessarily inco. We recall that

~ro, ~(rl, ... , ~k satisfy the system (2 . 4).
In particular, ~rk = cp is then an eigenfunction of (2 . 5) associated with ~,

which is therefore a principal positive eigenvalue of (2. 5). Thus, we now
assume that (2. 5) possesses such a principal positive eigenvalue.

THEOREM 2 . 4. - Suppose that ~, &#x3E; 0 is a principal eigenvalue of (2. 5).
Suppose that u defined in (2. 2)-(2. 3) is an exponential solution of (2 . .1 )
with o/k = cp &#x3E; 0 being an eigenfunction of (2. 5) associated with X. Then k _ 1.
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Furthermore, k = 0 and u is of the form cp ( y) in each of the
following cases :

? 0
or

(b) ~.1  0 and (2 . 5) has two distinct positive principal eigenvalues.
This result was proved in the case ~,1 &#x3E; 0 (where k = 0) in our earlier

work [BN1] (compare Theorem 3 . 2 there). Therefore, we will only consider
here the case ~,1  0 which is somewhat more delicate.
For i E R, set

The family clearly satisfies our assumptions ( 1. 17)-( 1. 18). Let i* be
the critical value of’t for this family, given by Theorem 2 . 2. We recall
that T* is such that (2.15) (that is the problem (2. 5) with instead of p)
has a principal positive eigenvalue if and only if i &#x3E; i*. For i = i* there is
one and only one such eigenvalue while for i &#x3E; i* there are exactly two
positive principal eigenvalues.
Problem (2.5) corresponds to T=0. The assumption that there exists a

principal eigenvalue ~, &#x3E; 0 thus means that i* _ o. In this setting, the

assumption that (2.5) has two distinct positive eigenvalues is equivalent
to i*  0. Therefore we will distinguish between the case i*  0 and the
case i* = o. In the former we will prove that necessarily k = 0 while in the
latter we will show Actually, in the latter, as we will see, there is

always a bounded positive exponential solution with k= 1 and 03C81&#x3E;0
in (2. 3).
We use the same notation as before. For t E R, we denote by III (t) the

principal eigenvalue of (2.10), and by cp (t) our associated eigenfunction
normalized by cp (t) &#x3E; 0 on 00, II (p (t) IlL 00 (m) ~ 1 - They satisfy

First, a consequence of Proposition 2 . 2.

PROPOSITION 2. 3. - The function t ~ 1 (t) is C1 on R and

Proof. - (2.27) follows from Proposition 2. 2 by taking
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We now prove Theorem 2.4.

A. PROOF oF THEOREM 2 . 4 IN CASE i*  0. - We prove that k = o. As

i*  0, there are exactly two positive roots of ~.1 (t) = t2. We denote these
roots by ~, _ and ~, + such that 0  ~, _  ?~ + . Our must be one of these

roots. From the concavity of (t) it follows that ~i (~,_) &#x3E; 2 ~,_ and

(~ + )  2 ~ + . In any case,
_ ._ _...

To prove that k = o, we argue by contradiction and assume k &#x3E;__ 1. The
first two equations in system (2.4) read

Multiply the first equation by 1 and the second by cpk. Use of

Green’s formula yields

The first equation shows that up to a normalization, cpk is the eigenfunc-
tion of (2 . 5) associated with À. From (2. 27) (in Proposition 2. 3) it follows
that

Whence, by (2. 30)

This contradicts (2. 28) since ~ 0.
Therefore, one has k = o, and u is of the form cp ( y).

B. PROOF OF THEOREM 2. 4 IN CASE ’L~‘ = o. - Our goal here is to show
that k _ 1. By way of contradiction assume k &#x3E;_ 2. Hence, (2. 29)-(2. 32)
hold as well as (from (2 . 4))

Multiplying (2 . 33) by cpk and integrating we find, since k &#x3E; 1,
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so that

On the other hand, if we multiply the second equation in (2.29) by
and integrate, we obtain

since 0 is the lowest eigenvalue of - L (for cpk &#x3E; 0). With this contradiction,
Theorem 2.4 is proved.
To complete the section, we show that in case 1* = 0 there is an exponen-

tial solution of the form (2 . 2)-(2 . 3), with k = 1.
Let cp (t) be the eigenfunction of (2.10) associated with ~.1 (t) and

normalized by

As before (when the normalization involved the L °° (~) norm rather
than L2 (c~)), cp (t) is a continuous function of t in Since T*=0,
there is only one principal eigenvalue X of (2. 5). Thus X is the only root
of the equation t2 = Jl1 (t). Since t2- 1 (t) &#x3E; 0 for all t, we see that

We will require a differentiability property of cp (t):
LEMMA 2 . 1. - For t &#x3E; 0, cp (t) is differentiable at t and cp’ (t) = cp’ (t) (y)

satisfies

Postponing the proof for a moment, we get

as an exponential solution of (2 . 2) of the form (2. 3) with k = 1, Wk = cp (À)
and ~k _ 1= cp’ (~,) ( = cp~ (~,) (.Y))~

Proof of Lemma 2 . 1. - ~1 (t) and cp (t) satisfy (2 . 10). Take the ortho-
gonal decomposition

where w (t, h) is orthogonal to cp (t) in L~ (co). By continuity,
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For L = - 0 + a+ t f3 - ~,1 (t), we find, using (2.10), that

Since the right hand side is in the range of L, it is orthogonal in L2 to

cp (t). If N denotes the space of functions orthogonal in L2 (co) to (p (t),
L-1 : N -~ N is a bounded map. The right hand side converges in L2 to

(t) - ~3) (p (t). Consequently

with the function v (t) in N, satisfying

Next, using the relation

we find

as we have shown, and since the coefficient of
a (0, h) in the preceding equation is close to 0, it follows that

Consequently

Thus cpi (t) = v (t) and it satisfies (2 . 35). Clearly q/ is smooth.

3. EXPONENTIAL DECAY OF SOLUTIONS

In this section we study the decay of positive solutions u  1 in the

infinite cylinder of the problem

with u (xl, y) ~ 0, and 1, respectively, as x 1 tends to - oo and +00,

uniformly for Here f is a continuous function which is also uniformly
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Lipschitz in u, and f ( y, 0) = f ( y, 1 ) = 0 Further regularity of f will
be assumed at u=O and u =1.

In our study of u near +00, we always asume fu ( y, 1 ) ~ 0; this is the
simplest case. The corresponding assumption was made in [BN 1 and the
asymptotic behaviour of 1- u was described there in detail. It is also

described in Theorem 4. 5 in the next section.
In fact, here, we will concentrate our attention on the behaviour of u

as xl ~ - oo (we will use the expressions: at - oo, or near - oo). As will
be seen, we need to distinguish several cases.
Here we will prove, under various conditions, that the solution u, and

also O u I, decay exponentially at - oo. In the next section, arguing as in
[BN 1 ] - using the results of Section 2, and results of [AN] and [P] - we
will derive more precise asymptotic behaviour. Thus in this and the next
section, we treat (3 .1 ) in a half cylinder 03A3-= ( - ~, 0] X 03C9. Throughout,
u &#x3E; 0 in L -, and tends to zero as j~i -~ 2014 oo, uniformly in y.

Before stating our positive results we point out that solutions of (3 .1 )
need not always decay exponentially at -~. For example on R1, the
function u = -1 /x, near - oo, satisfies, for oO,

In fact this example may easily be extended to a solution of (3.1) on all
of R 1 - for large c. Namely, let u be a smooth, strictly increasing, function
of x, 0  u  1, which equals -1/x for - x large, and equals 1- e - x for x
large. Choose c so large that u - cic  0 for all x. Since u is strictly increas-
ing, for a suitable smooth function f;

and f&#x3E;O in (o, 1 ), f (o) = f ( 1 ) = o. Furthermore, as above, for u small,
f = cu2 - 2 u3 and for u close to 1 (i. e., x large), f = (1 + c) ( 1- u).
On the other hand, the function

on R 1 satisfies

This equation is almost the same as (3.2) and yet the solutions behave
very differently near - 00. In both of these cases, f (o) =f’ (o) = 0 and
f" (o) &#x3E; o. In such a situation we do not know how to tell when the
solutions decay exponentially and when not. For (3.1) on all of X, in case

on (o, 1 ), f’ ( 1 )  0 and , f ’’ (o) = 0, if there is a solution u which
decays no faster than a power of near - oo, then we do not know,
for n &#x3E; 1, if u is necessarily monotonic in xl, or if it is the unique solution
of (3 . 1 ) (tending to zero at -~ and to 1 at +00).
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The aim of this section is to establish exponential decay at - oo in a
number of cases - indeed, in most cases. In the proofs we will use the fact
that a solution u of (3 . 1) satisfies the linear equation

and

where c=c(x1,y)=f(y,u)/u; by our assumption, CELOO. We will make use
of several results which old for more general elliptic operators.
We always assume that the coefficients, P, c in (3.4) are in L~, and

In addition we always assume that our functions u are in for
some fixed p &#x3E; n.

In the conditions below, so is a fixed positive number, and the conditions
holds for all y E t~.

THEOREM 3 . 1. - For some positive constants ~, C1, our solution of (3. 1)
satisfies

in each of the following cases:

CASE 1. f(y,s) -ao(Y)s for Osso, and the first eigenvalue ~.1 of
- Dy + ao ( y), i. e., of (2 . 6), is positive;
CASE 1’. f(y,s) -ao(Y) s for 0 _ s _ so, the first eigenvalue ~,1 of

- 

ao (y) is zero, and, is the corresponding positive eigenfunction
(of (2 . 6))~

CASE 2. and the first eigenvalue ~ 1 of
- Ay + ao ( y) is negative.

Remark 3 . 1. - If fey, 0) = 0 and f ( y, s) = - a ( y) s + o (s) then the only
case which is not covered is the case: the first eigenvalue ~.~ 
in (o, is ~1= o, and assumption of case 1’ is not satisfied. The example (3 . 2)
falls into this case.

Proof of Theorem 3. 1 in Cases 1 and 1’. - These cases are proved
easily with the aid of the maximum principle and Theorem 2.1. For both
cases, according to (a) and (b) of Theorem 2.1, there is a positive principal
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eigenvalue X and also a positive principal eigenfunction in co of

Thus if

then By our hypotheses, Lo u &#x3E;_ o. For some positive
constant C, the function

is  0 for xl =0, it satisfies w~ = 0 for and the elliptic inequality

We claim that w _ 0 This is easily verified. By our hypotheses,
there is a nonnegative eigenvalue Ui, with a positive eigenfunction 6 (y)
in co of (2.6):

Set z; then z~ = 0 for y e By (3. 7),

Since we may apply the maximum principle and the Hopf lemma,
recalling that z" = 0 for y~~03C9, and conclude that z  0 consequently

in ~-.
We have proved that

Since u satisfies (3 . 4) and (3 . 4)’, we may apply local estimates, up
to the boundary: for xl _ - l,

Using (3 . 8) we obtain the desired conclusion (3 . 6).
To prove Case 2 of the theorem we will make use of the following
LEMMA 3 . 1. - Let u be a positive function which tends to zero

uniformly at - oo and which satisfies

Assume that the principal eigenvalue ~.1 ao ( y) is negative, with
a (y) as positive eigenfunction in ~:
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Then, for some positive constants E, C,

where E depends only on b, min ~, max 6, and C depends only on these
numbers and on

Proof of Lemma 3 . .1. - With positive integers N  R, let § = ~N, R, be a
C~ function on R 1, 0 _ ~ _ 1, satisfying §*0 for x 1 _ - R -1, ~ -1 for

We may choose § in such a way that

is independent of N and R.
Multiply (3.10) by and integrate over X*:

by Green’s theorem and (3 .11 ) and (3.12). Thus

Consequently

Since u ~ 0 uniformly as xl -~ - oo, the first n dimensional integral on
the right hand side tends to zero as R -~ 00. Letting, then, R ~ oo , and
setting a = - ~,, [( 1 + b) C 1 ] -1, we conclude that and

or

i. e.
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This implies that

which yields (3 . .13).

Proof of Theorem 3. 1 case 2. - Inequality (3. 6) follows from Lemma
3.1, as before, with the aid of a standard local estimate (up to the

boundary) which holds for solutions of (3 . 4) satisfying (3 . .4)’: for x,  -1

Theorem 3 .1 is proved.
Though we will not use it, we mention a sharper form of Lemma 3.1

in case

with ~io a constant:

LEMMA 3. 2. - Let u be a positive function satisfying (3. 10),
(3.11) and with ao satisfying the conditions of Lemma 3. 1. Suppose, in

addition, that (3. 15) holds. Then for some positive constant E depending
only on b, min 03C3, max 03C3 and 03B20,

Here C3 is a constant depending only on b, ..., ~3o and on

Note that nothing is assumed about the behaviour of u near - 00. In
the proof we denote by C any constant depending on b, C and max 6.

Proof. - For R large, and small (to be fixed), we multiply
(3.10) by where ç = cos (x1/R), and integrate over

(-03C0 2R, 0 ) X co. Applying Green’s theorem, and using (3 . 11 ) and (3 . 12),
we find
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(Here double integrals refer to the measure dx1 dy while single integrals
involve only dy.) Hence

Integrating by parts once more, we find

Hence

Now set

Since &#x3E;_ 0 and 03B611 =- 1 R203B6, we find

We may now let R -~ oo and conclude that

which yields (3 . 1 6) ..
Our original proof of Lemma 3 . 2 used a slightly different function ~;

the one used here was suggested by H. Brezis.

Remark 3 . 2. - In case 3 . 15 holds, with c (x) _ - ao ( y), one can

strengthen the result in Theorem 3 . 1: the constants C and E in (3 . 6) can
be chosen to depend only on b, p,  0, miner, max 0", C and co.

Turn back to the general case. Our next result shows that any positive
solution of (3 . 4) satisfying (3.4)’, cannot decay more rapidly near - 00
than some fixed exponential, nor grow more rapidly there than some
exponential. Since it may prove useful on other occasions we present it

for a general uniformly elliptic operator
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Here we assume the and satisfy, for some co&#x3E; 0

The coefficients c are in L 00 (~ - ), and

THEOREM 3 . 2. - Let u E W2,ploc (03A3-) be a positive solution of

There is a constant a &#x3E; 0 depending only on co, b and ~, such that

It will be clear from the proof that any negative number could be used
in place of - 2.
The proof is short but it makes use of a deep result; the Krylov-Safonov

Harnack inequality for positive solutions. In fact we will use a form of
this inequality which is valid up to the boundary, as presented in [BCN]
(see Theorem 2 . 1 as well as other references there). It asserts that there is
a constant Co depending only on co, b, and such that on any slice

S = [a -1, a] X with oc  -1,

Proof of Theorem 3. 2. - By standard local estimates up to the bound-
ary, the solution u of (3 . 19) satisfies: for xl _ - 2,

By (3 . 21 ), we conclude that for x 1 _ - 2,

with a = Cs Co. Hence, for xl _ - 2,

and consequently

A number of results are known concerning exponential decay near
infinity of solutions - not necessarily positive - of elliptic equations in a
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cylinder. See primarily Lax [L] and [AN]. Recent results were also obtained
by O. A. Oleinik, to appear.

For example, if Theorems 3.4 and 5.9 of [AN] are applied to our
linearized then they imply that if u (xl, y)
satisfies

with

and if u E L2 (E - ) then

for some s &#x3E; 0. In case f satisfies: for some s, 8, M &#x3E; 0

then we could apply the result above to obtain exponential decay for our
solution of (3.1) provided we could show that

for k &#x3E; 3 . .
8+1

4. ASYMPTOTIC EXPONENTIAL BEHAVIOUR

In this section we improve Theorem 3 . 1 by obtaining precise exponential
asymptotic behaviour near - 00, of solutions of (3.1) in cases

analogous to 1, 1’ and 2 of the theorem. These will be obtained using the
preceding section, and applying the general theory of Agmon and Niren-
berg [AN] about exponential behaviour of solutions of linear PDE’s, as
well as the extension of Pazy [P]. In [BN4] we carried out a direct approach
to the exponential behaviour for the problems we study here - semilinear
second order elliptic equations in an infinite cylinder. There, we gave a
direct proof relying essentially on versions of the Harnack inequality and
its extensions - as well as various generalizations of these results.
Here we will assume that f (y, s) is differentiable in s at s=O, uniformly

in y, and that
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is in L °° . Set

We assume that for some constants so, ~ &#x3E; o, 

This assumption is satisfied, for instance, if f is of class C 1 ~ s in a neighbour-
hood of s = 0.

In various cases we will show that as xl -~ - oo,

Here is an exponential solution, with ~, &#x3E; o, of the linear problem
(2 .1):

That is, as in (2. 3),

We will show, furthermore, that

This means, as in Section 2, that 03C8k is a principal eigenfunction, and 03BB is
a positive principal eigenvalue: ~, and ~rk = : cp satisfy (2. 5).
Our results will be derived with the aid of the following

THEOREM 4. 1. - Let u be a positive function which is a solution

of (3 . .1 ). Assume that f satisfies (4. 1 ) and (4. 3). Assume also that for some
and co, c 1 &#x3E; o,

Then there is a positive principal eigenvalue X, E -- ~, _ a and a corresponding
exponential solution of (4 . 5) so that (4 . 4) holds. Furthermore, t~
is given by (4. 6), and ~k is a positive principal eigenfunction, i. e. ~~ = cp
satisfies (2. 5).
The proof of Theorem 4. 1 is based on results in [AN] (see Theorem

5.6 and the remark on the next page there) and in [P] (Lemma 5. 2 there).
In Theorems 2 . 1 and 2 . 2 of [BNI] ] we have described these results for
general elliptic operators of any orders. We now present special cases of
these results - and for second order operators only - which will suffice for
our purposes. First the result from [AN]:

THEOREM 4 . 2. - Let u° be a solution of (4. 5) satisfying (4. 8).
Then there is an exponential solution w = with ~  ~, _ a, such that

(4 . 4) holds for u°.
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The result in [P] refers to the inhomogeneous form of (4. 5) (see (2.16)
in [BN1]):

with r satisfying, for some positive a, C,

Then u = u° + u* where u° is a solution of (4. 5) and u* is a solution of
(4 . 9). Furthermore, V ~’ &#x3E; 0, ~ such that

Using the last two theorems we now give the

Proof of Theorem 4. l. - Let

Clearly E __ a.

Now u satisfies

It follows from (4. 3) that for any T  To,

Applying Theorem 4. 3 to (4. 10) we find that u = UO + u* where u° is a
solution of (4. 5) ; furthermore, for any i  i°, there is a constant D~ such
that

For T close to To, we have i ( 1 + ~) &#x3E; Io. Thus u° satisfies V i  ’to

with E, = C, + D1:.
If we now apply Theorem 4.2 to u° we see that (4.4) holds for a

suitable exponential solution B)/. Necessarily, then, and, since
u &#x3E; o, we must have, in (4 . 6), in co. !t

We now apply Theorem 4 . 1 to treat our positive solutions of (3 . 1 ) - u
tending to zero at - 00 -under various assumptions onf We always
assume here that f satisfies (4 . 1 ) and (4. 3) ; ~,1 will always represent the
first eigenvalue of ( - ~y + a ( y)) with Neumann conditions. That is, ~.1 i is

the principal eigenvalue, of (2.6) and 6 is the corresponding positive
eigenfunction.
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THEOREM 4. 4. - The conclusion (4 . 4) of Theorem 4. 1 holds in each of
the following cases:

Case I. ~.1 &#x3E; 0.

Case I’. h ( y, s) _ 0, foY 0  s _ so and

Case II. ~,1  o.

Furthermore, in each of these cases we have k=O in (4 . 6), with one

possible exception, where k may equal 1: namely, Case II and when, in

addition, there is exactly one positive principal eigenvalue ~, of (2. 5).

Proo~f: - In every case, u satisfies (3.4)’ and an equation of the form
(3 . 4). By Theorem 3 . 2, it follows that for some co, a &#x3E; 0,

To complete the proof of Theorem 4.4 we have only to establish the
other inequality in (4. 8) :

for some 

Consider first case I. For ao ( y) = a ( y) - ~’, and ~’ &#x3E; 0 sufficiently small,
the first eigenvalue ’1 of -0394y+a0 is also positive. Fix such an ~’. By
(4.3), for - x large, say x 1 __ - N. There u satisfies

We are then in case 1 of Theorem 3 . 1 and we may apply the theorem in
the semi-infinite cylinder ( - 00, N] X o to conclude that (4.12) holds.
The other cases are similar. In case II, for OE’ small, the

first eigenvalue ’1 of -0394y+a0(y) is negative. Then for -x1 large,

Inequality (4. 12) then follows from Case 2 of Theorem 3 . 1.
Finally in Case I’, Case 1 

’ of Theorem 3 . 1 applies directly, and yields
(4.12).
The last assertion of Theorem 4 . 4 follows from Theorem 2 . 4..
So far, we have concentrated on the behaviour of the solution u of

(3 .1 ) near - 00. Clearly this also yields the behaviour near +00 by a
change of variables. We describe it here in the simplest case - the one we
will actually need later. This case was also done earlier in Proposition 4. 3
in [BN1]. (The reader may state the various other cases.)

Vol. 9, n° 5-1992.



532 H. BERESTYCKI AND L. NIRENBERG

We always assume that for 

and, as in (4. 3),

We also assume tends to zero, uniformly in y, as oo .

THEOREM 4.5. - Under the conditions above, there exist a principal
eigenvalue - i  0, and an eigenfunction cp~ (y) &#x3E; 0, as oo,

for some constant y &#x3E; 0. Here w = e-z xl cp’ (y) is an exponential solution of

Proof - After replacing xl by - xl the theorem follows easily from
Case I of Theorem 4.4.

Recall that - i is the principal negative eigenvalue for (2. 5).
For use in Section 9 we present here a result which was included in the

proof of Theorem 7. 1 of [BNl].

LEMMA 4. l. - Assume that f satisfies (4. 13), (4. 14), and in addition,

] for 0  s, s’ _ so. (4 .18)
Let v and v’ be positive C1 functions in the closure of the half cylinder

E + _ ~ (1 ~ xl &#x3E; 0 ~ satisfying (3 . 1 ) with v&#x3E;v’, and assume that

(4 . 15) holds for both v and v’ - with the same constant y. Then v _-- v’.
In the proof we will make use of the following result, Lemma 4. 3 of

[BN1]. Here i and cp’ are as in Lemma 4 . .1.

LEMMA 4. 2. - In E + consider a nonnegative solution z E C (E + ) of a
linear problem

with z and d tending to zero uniformly as + ~. Here we assume that

the first eigenvalue ~,1 of ( - oy + a), under the usual Neumann boundary
condition, is positive. Then for any E &#x3E; 0, 3 constants A, B &#x3E; 0 such that

For the convenience of the reader we include here proofs of both
lemmas. The proof of Lemma 4 . 2 differs slightly from that in [BN 1 J.
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Proof of Lemma 4. 2. - It suffices to prove the lemma for E small. For
003B4 small, let -03C403B4 be the principal negative eigenvalue of (2 . 5) with a ( y)
replaced by a ( y) - 8. Let cps be the associated positive eigenfunction. Recall
that - Tg is obtained via the following diagram (see Section 2)

Thus - is &#x3E; - i, and we now fix 03B4 so that i - is  E. We have

Set

then

for R large.
Choose B1 &#x3E; 0 so that

is positive when The function § tends to zero at +00, L ~  0 in
ER, and 03B6v=0 if y~~03C9. We claim that 03B6~0 in LR for R large. To see this
we write

where o is the positive eigenfunction of - Ay + a with eigenvalue Jl1. Then
in ER
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Since d - 0 as xl -~ oo, for R large, d- ~,1  0. We may therefore apply
the maximum principle and the Hopf lemma, and conclude that § &#x3E; 0 in
LR. Hence ~ &#x3E;_ 0 in ER.
Thus in E + for a suitable constant B2. we

obtain the right hand inequality of (4. 20).
To derive the left inequality of (4.20) we consider cps, the positive

solution of (4 . 21 ), but with b  0. The rest of the argument proceeds as
before. Lemma 4. 2 is proved.

Proof of Lemma 4 . .1. - the function

satisfies z,, = 0 for y E a~ and the equation

By (4.22), (4.15) and (4.14),

Arguing as in the proof of Theorem 4.4, using Theorems 4.2 and 4.3,
we see that for some constant p,

for some K &#x3E; i.
On the other hand, since v and at + oo, it follows from (4. 18)

and (4.22) that z satisfies a linear equation of the form (4.19), with d
tending uniformly to zero at +00. By the maximum principle, if z 1= 0,
then z &#x3E; 0. By Lemma 4. 2, (4. 20) holds - in which we may 
This implies that p &#x3E; 0 in (4. 23). But (4. 23) then contradicts our original
assumption on v and v’, according to which as oo.

Consequently we must have 

5. PROOFS OF THEOREMS 1.1 AND 1.2

In this section we are concerned with both cases B and C described in
the Introduction. Therefore we assume that for some 8, 0  8  l, the
function f satisfies

Theorems 1 . 1 and 1 . 2 will be proved by solving corresponding problems
in finite cylinders La = ( - a, a) x co and then letting 2 2014~ oo . We will make

repeated use of Theorem 5. 1 below, which is a special case of
Theorem 7.2 in [BN3], though our conditions here are slightly weaker
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than those there. Here we permit f to depend on y, f is continuous and
uniformly Lipschitz continuous in u. We set

Theorem 5.1 is concerned with the following problem in La: find a
function u such that

Here the functions Bt/2 are assumed to belong to W2° °° and to

satisfy

THEOREM 5. 1. - Let u _ u be sub and super solutions of the problem
(5 . 2)-(5 . 4), belonging to C (En) ~ (~Q), i. e. they satisfy

and

and satisfying also the conditions

Both u and u are not solutions of (5 . 3), (5 .4). (5 . 10)

Then there exists a unique solution u E (~a) n C of (5. 2)-(5 . 5).
Furthermore

The more general Theorem 7.2 in [BN3] was proved using sub and
super solutions and monotone iteration - in slightly smaller regions in
which the corners have been rounded off. Then one does a limiting
argument. In addition, the sliding method was used to prove uniqueness
and (5. 11).

Since Theorem 5. 1 here is a particular case of Theorem 7. 2 of [BN3],
we will not include its proof. A somewhat modified argument also yields
the proof of Lemma 1 of [BN2].
We will make use of the following addition to Theorem 5 . 1.
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LEMMA S . 1. - Let v and z, belonging to W2,ploc (03A3a) n C (Ea), be sub and
super solutions of (5 . .1), i. e.

and

Then v __ z in Ea.

Proof - Shift z to the left, i. e., for 0 __ r  2 a, consider

Here For and on this set, 
Now decrease r. For any r in 0  r  2 a, z’’ &#x3E; v on the lateral, i. e. left and

right, boundaries {x1=-a,y~03C9} and {x1=a- r, y E of 03A3ra ~ 03A3a, while
on the curved part, where On decreasing r suppose
there is a first value in 0  r  2 a such that z’ &#x3E;_ v in ~a n La with equality
holding somewhere. Then, since, from (5.12), zr - v satisfies a linear elliptic
inequality for some eEL 00 ,

we find by the maximum principle and the Hopf lemma that zr - v - 0,
which is impossible. Hence no such r exists; letting r ~ 0 we find therefore
that z &#x3E;_ v in 

COROLLARY 5 . 1. - The unique solution u in Theorem 5 . 1 satisfies:
(a) u is strictly decreasing in its dependence on the function (3. That is, f

(3’  ~i and (3’ ~ (3, then

where u’ is the solution of (5 . 2)-(5 . 5) for ~3’;
(b) u is strictly decreasing in its dependence on f. That is, f’ satisfies

&#x3E;

the conditions of the theorem, and f’ ~f then u’ &#x3E; u in Ea where u’ is the
solution of (5 . 2-5) for f’. 

Proof - We only prove (a). The proof of (b) is similar. Since ul &#x3E; 0
we see that

i

Also since u1&#x3E;0 we see that v = u and z = u’ satisfy the conditions of
Lemma 5.1. Thus Clearly u ~ u’. Since u’ - u satisfies an elliptic
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inequality

it follows that u’ &#x3E; u &#x3E; 0. N

Theorem 5.1 will be used to prove the following basic preliminary
result.

THEOREM 5. 2. - Assume f is Lipschitz continuous on [0, 1 ], f (o) = f( 1 ) = 0,
andfsatisfies (5 .1 ). Assume (3 ( y_, c) satisfies conditions ( 1 . 17)_, { 1. 18). Then
for a large, there is a unique c such that for ~3 (y) = (3 ( y, c), the system

(5 .2)-(5 . 5), with ~1= o, B)/2 = 1 has a solution u satisfying, in addition,

Here (5 . 5) takes the simple form

Furthermore, ~c0c1 independent of a, such that co _ c  cl.
Note that u _-- 0 and u = 1 are sub and super solutions in the sense of

Theorem 5 .1. Consequently by that theorem, for any fixed c, the problem
(5.2)-(5.4), (5.5)’, with has a unique solution; call it uC.
Theorem 5 . 2 asserts that there exists a unique c = c so that the additional
condition (5.13) holds.
We will first prove Theorem 5. 2 in the one dimensional case.

Remark 5. 1. - Note that by the uniqueness part of Theorem 5. l, if

~i (y, c) is independent of y, then the solution UC must agree with the
solution (assuming it exists) of the one dimensional problem.

The one dimensional problem (5 . 2-4), (5.5)’, for a function v (x) in
Ea = ( - a, a), reads

By Theorem 5.1, for any real k, (5. 14) has a unique solution vk and it
satisfies 1; &#x3E; 0 on Ea. We will make use of the following observations.

LEMMA 5 . 2. - (i) There is a unique k* = k* (a), such that

Furthermore, there exists a constant K such that for all a &#x3E;_ l, the following
estimate holds:
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Various constants depending only on 0, and F ( 1 ) will be
denoted by C. We will always suppose a &#x3E;_ 1.
The proof of the lemma is elementary.

Proof of Lemma 5 .2. - Since vk is unique, it follows easily that it

depends continuously on k. By Corollary 5 .1, vk (x) is strictly decreasing
in k, Part (i) of the theorem will then follow from the following
assertions. For fixed a &#x3E;_ 1

This is easily seen by direct computations on comparison functions.
It now remains to prove the estimate (5.16). We follow [BNS]. In this

part of the proof we denote k* by k = k (a).
First we will derive the upper bound K for k. We may suppose in this

step that 

Denoting vk by v we see that if Xa is the characteristic function of (0, a)
then

where M = max If I. . By the maximum principle it follows that if z is the
solution of

then Consequently 9 __ z (o) _ : T.
Direct computation yields

m

We know further that a is chosen so that z (a) =1; since z~C1, at 

This yields the identity

Hence, since a &#x3E;__ 1
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This clearly yields an upper bound 
The previous proof also yields a lower bound on k (a). Indeed, consider

the function w, solution of

This time, w -- v and consequently 6 &#x3E;_ w (o). Now ~ (x) = 1- w( - x) solves
the same equation as z does except that k is substituted by - k in (5. 17).
Using that 1- 8 - ~ {o), assuming that k _ -1, we may repeat the previous
computation and obtain as in (5.18), an upper bound for - k. Lemma
5.2 is proved.

Proof of Theorem 5 . 2. - Since for each c the solution u‘ of (5 . 2)-
(5 . 4), (5.5)’ is unique, it is easily seen that UC depends continuously on c.
Let v be the solution of (5.14) with k = k*.
Using (5.16), let co be such that j3 (y, co)  - K _ k, Then by

Corollary 5.1 and Remark 5. 1,

Similarly, if c 1 is such we find

By the continuity and strict monotonicity of UC with respect to c, it follows
that for a unique c in 

Theorem 5. 2 is proved.
An immediate consequence of Corollary 5 . .1 is

LEMMA 5. 3. - If f’ satisfies the conditions of Theorem 5 . 2, and

f’~~ f then the corresponding unique c’ satisfies c’ &#x3E; c’.

Now we will let a - oo and obtain a solution satisfying almost all the
conditions of Theorems 1. 1 and 1 . 2 - which we summarize in

PROPOSITION 5 . 1. - Under the assumptions of Theorem 5. 2, let (ua, ca) be
the solution of (S . 2)-(5 . 4), (5,5)’ satisfying (5 . 12). There exists a sequence
a = an --~ oo such that ca --~ c in Rand ua -~ u locally in ~. Furthermore,
0  u  1 is a solution in the closure of the infinite cylinder E of
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with max u (0, y) = 8. The solution u satisfies ul &#x3E;__ 0,
(0

where ~ is some solution, with 0  t(~ _ 1 of

Furthermore V uniformly as xi - oo .

Proof - For a large, let ua) be the unique solution of (5 . 2-4),
(5 .12), (5.5)’ given by Theorem 5. 2. We let through successive

integers. Since we may choose a subsequence of a’s such that
ca~some number c with It is straightforward from standard
local estimates up to the boundary, to see, taking a further subsequence,
that the functions ua tend to some function u, uniformly on compact sets.

and it satisfies (5.20). Furthermore, mx u (0, y) = 9 and
m

u~ &#x3E; 0.

It follows that as x 1 -~ - oo and +00, tends, respectively to
functions (y) uniformly in y; these functions are in {~)
and each is a solution of (5.23). Also ul tends uniformly to zero as

|x1|~~. Now 03C81~03B8 and hence f(03C81) _ 0. Integrating the corresponding

equation in (5. 23) we find 03C9f(03C81)=0, which implies ( y)) = 0. But

then = 0 and so 03C81 = constant.
Since and B)/ satisfies (5.23) we see with the aid of the

maximum principle and the Hopf lemma that * &#x3E; 0 in ~. The last assertion
in the theorem follows easily with the aid of standard elliptic estimates..
We are now in a position to give the

Proof of Theorem 1. l. - We recall that we are concerned here with
case B, namely f satisfies (5 . .1 ) and f = 0 on [0, 9]. In (5. 20), we denote
f3 (y, c) by P. By Theorem 5. 3, the only things left to prove are:

and

Recall that in this case, f = 0 on (0, 9) and f &#x3E; 0 on (o, 1). The proof
proceeds in several steps - taken from [BLL].
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STEP 1. - We show that

%’ Gr / Lr

To obtain the first inequality we integrate the equation for u over ~a.
This leads to

Letting a - oo we find

The second inequality in (5 . 26) is obtained in a similar way by multiply-
ing the equation for u by u, integrating over La, and letting a - oo . Namely

Letting a - oo we find

and (5. 26) is proved.

STEP 2. - Since Dy u (xl, y) ~ (y) as oo and ( D  oo,

necessarily 03C8 is a constant. But then 03C8 --_ o or 03C8 -1.
If 8 we claim y = o and hence u --_ 8. This is easily seen. Indeed, if

~ --_ 8, since u _ 8, f (u) = 0. If 9 &#x3E; y, then, by (5 . 27),

But then, by (5 . 28), V U 12 = 0, i. e. u is a constant. Contradiction. Thus

y = 8 and hence u --_ 8.

STEP 3. - Recall that the solution u was obtained as a limit of a

subsequence of the ua. We now show that there is a constant i &#x3E; 0 such
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that for a &#x3E; 1,

Proof - Fix a number À in (6,1). Now for some xo in

(0, a) and some yo e roo Recalling that |~ ua I _ K independent of a, we see
that

hence for some r, ?, E &#x3E; 0 independent of a,

and Consequently (5.29) holds with r = 87.

STEP 4. - We now show that

In case ~r = l, (5 . 30) follows from (5 . 27). So we need only consider the
case ~r = 8; then, according to Step 2, u --_ 8. Integrating the equation for ua
over ~a &#x3E; 0 ~, we find

With T as in Step 3, using 01 ua (a, y) &#x3E;_ 0, we get

Since y) - 9 and a 1 ua (o, y) -~ 0 uniformly on (o, we derive from
(5.31)

and this yields (5 . 30).

STEP 5. - Fix c’  c, but close to c, so that
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We may then use Theorem 2 . 1 (b), with a (y) -_- o, i. e. III = 0 there.

Indeed in this case, o == 1, and the previous sign condition is precisely that
of Theorem 2. 1 . (b). According to that result, there is an exponential
solution w = (p (y) of (2 . 1 ):

Returning to our sequence ca - c and ua -~ u, for a large, c~ &#x3E; c’ and
We will use w as a comparison function, as we

have done earlier. For some constant C, C cp (y) _&#x3E; 6 Now for xi  0
in ~a,

Using the maximum principle in the region L; = ( - a, 0) x 0), we find

Letting a - oo we infer that

But this means that y = 0 and consequently B)/ = 1.
It is easily seen that ul satisfies (u)) ul = 0, ul ~ = 0 on aLe

Using the maximum principle and the Hopf lemma one sees that 
in X.
Theorem 1 . 1 is proved.

Remark 5 . 2. - In Theorem 5 . 2, Proposition 5 . 1 and Theorem 1. 1,
the function (3 satisfies (1.17), ( 1. 18). If we were to replace  (y, c) by
- P ( y, c) the results of the theorems would still hold. One simply changes
c to - c.

From Corollary 5 .1 we immediately infer the following

LEMMA 5 . 4. - In Theorem 1. 1 i. f ’ we have two functions f’ &#x3E;_, f satisfying
the conditions of the theorem i. e. f = 0 on (0, e), f’ = 0 on (0, 9’) etc. then
we can find corresponding solutions (c’, u’) and (c, u), with c’ &#x3E;_ c.

Finally we prove Theorem 1. 2. The proof is tricky; it relies on Theorem
1.1 which we have already proved.

Proof of Theorem 1 . 2. - Let (c, u) be the solution obtained in

Proposition 5 . 3. The only thing we have to prove is that y=0. It then
follows as before that u1&#x3E;0 in 2. Since f  0 on (0, 8), the only other
possible value of y is y = 8. In that case, since max u (8, y) = 8 we find by

the maximum principle that ui - 0. Then u - 9. We have only to show
that this case is impossible.
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With the aid of Theorem 1.1 we first construct several auxiliary
functions which will be used in our argument. On [0, 1] we define

Clearly

Now fix E satisfying 0  E  8  1- ~.
By Theorem 1 . 1 there exists a solution with 8 - E  uE  l, and

a u~ &#x3E; 0 in L, of

lim lim uniformlyiny.
xi - +00

This result is obtained directly from Theorem 1.1 by considering
0 + E

i -e+ s 
. 

.

Similarly, there is a solution with 0~Q+s, and ~iM~&#x3E;0 in
I, of

lim u£ (x 1, y) = o, lim uE (x 1, y) = 8 + E uniformly in y.

This is obtained by setting

Then (5 . 34) is equivalent to
1

to which one applies Theorem 1.1 and Remark 5 .2.

LEMMA 5 . 5. - C~.

Proof. - Clearly u£  u£ for x1| large and this remains true for any xl-
translation of Mg. We may translate uE so far to the left so that it is 
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everywhere. Then start translating Ut back to the right until its graph first
touches ute Then the resulting Ut satisfies with equality holding
somewhere. Now suppose Since and

Ut would satisfy

But then the function z = u£ &#x3E;_ 0 would satisfy a linear elliptic inequality:
for some 

Since z = 0 somewhere, it follows from the maximum principle and the
Hopf lemma, that z=0, which is impossible. The lemma is proved.
We will need several similar results.

LEMMA 5. 6. - Suppose there is a solution v, 0  v  o, of

Then cE &#x3E; c.

Proof - Clearly u£ &#x3E; v if x 1= 0 and if x 1 is large, and this is true for
any translation of u. Arguing then exactly as in the previous lemma - note
that f= f on (o, 8) - we obtain the desired result.

Similarly, since f =, f on [8,1 ], we find

LEMMA 5 . 7. - If w, with 8  w  1, is a solution of

then 

Completion of the Proof of Theorem 1.2.2014 We complete our argument
by contradiction. We have assumed that the solution u of Theorem 5.3,
which was obtained as a limit as a - oo of solutions M~ of (5.2-4), (5.5)’,
is M==8. The ua tend therefore to 0 uniformly on every compact set. The
functions M~ satisfied Now shift these functions to the right

0)

so that the new functions - we still call them ~ 2014 satisfy

Each new ua is defined on with iQ  o. Now let a - o~o so

that (for a subsequence) the ua converge to a function v. There are two
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possibilities. If the La - - oo . Then v is a solution of

The other possibility then leads to a solution, after suitable xl-transla-
tion, of (5 . 36). In this second case, according to Lemma 5. 6,

We claim that (5.39) also holds in the case (5.38). This is proved in
the, by now, familiar way. Suppose to the contrary that Clearly
uf-&#x3E;v for xl large. By Theorem 4 . 4, Case C’ and Theorem 2 . 1 (e), 
also for -x1 large. These assertions also hold for any translation of uE.
Translating uf- to the left so that it is greater than v everywhere, and then
shifting back to the right until the graphs first touch, we find as before -
recall that [= f on (0, 0) - that the new uE --- v. This is impossible. Thus
(5. 39) holds.
By a similar argument we will show that

But this contradicts (5. 39) and Lemma 5 . 5, and so is impossible.
To establish (5.40) we consider our solutions ua as before, but now

translate them to the left, so that

Then let a ~ oo . Again two possibilities arise. Either we have a solution w,
8w 1~ of

or else we obtain, after translation, a function w satisfying (5 . 37).
If the second case occurs then according to Lemma 5. 7, c &#x3E; If the first
case occurs, i. e. (5.41), assuming c£ &#x3E; c we argue as before and obtain a
contradiction.
The proof of Theorem 1. 2 is complete.
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6. PROOF OF THEOREM 1. EXISTENCE OF A SOLUTION FOR

THE BISTABLE NONLINEARITY IN CASE o IS CONVEX

We continue our study of the bistable case (type C) begun in Section 5,
with f of type C. Assuming

fe C1, () ([0, 1 ]) for some positive 8  1, (6 . 1 )

and that co is convex, we prove the existence of a solution of problem
( 1 . 16), ( 1 . 2), ( 1 . 3), i. e. we prove Theorem 1 . 3 .

From the results in Section 5 (viz. Theorem 1.2), we know that there
exists a solution u of (1.16), ( 1 . 2) with u ( - oo , . ) = 0 and u ( + oo , . ) _ ~,
for some undetermined 0  ~  1, of

Using terminology from dynamical systems we will refer to solutions B)/
of (6 . 2) as stationary solutions, and a pair (c, u (x~, y)) satisfying (1.16),
( 1. 2), with

as a connection between stationary solutions As always, the limits
are understood to be uniform in y.
Theorem 5. 3 asserts the existence of a connection from 0 to some B)/,

003C8~ 1 where B(/ is a priori undetermined. Here, as we said, assuming 03C9
to be convex, we prove that there is actually a connection from 0 to 1.

The proof relies on two further properties of equation (6.2) in case of
convex The first one is the instability of nonconstant stationary
solutions. This has been established independently by Matano [Ma] and
Casten and Holland [CH]. To state this result precisely we use the following
notation.

Let 03C8 be a stationary solution (of (6 . 2)) and be the principal
(least) eigenvalue with Neumann conditions on oco. That
is,
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It is characterized by the existence of a positive eigenfunction cp (y); cp
satisfies

We make cp unique by the normalization

PROPOSITION 6.1 ([Ma], [CH]). - Under the assumptions above, in

particular that c~ is convex, let ~r be a nonconstant solution of (6. 2). Then
gs is unstable in the sense that ~.1  0.

From this property, we now derive the second - a known result; it

concerns solutions of (6. 2).

PROPOSITION 6. 2. - Under the assumptions above (with c~ convex), there
does not exist a pair of distinct ordered nonconstant stationary solutions,
i. e., are solutions of (6 . 2) with 0 ~03C8~03C8  1, and 03C8~ 0, 03C8 ~ 1,
then ~ _ ~.
Proof - Suppose two such different solutions Bt/ and B[/ exist. By the

strong maximum principle and the Hopf lemma, we see that 0  ~r  1

in co. If one of the two - say 03C8- is the constant 8, we have an obvious
contradiction, for then f (~) &#x3E; 0 in m. On the other hand, integrating (6 . 2)
yields

which is impossible.
Hence, we may assume that ~ ~ 8 The same argument shows

that

Let ~.~ and cp &#x3E; 0 be the principal eigenvalue and eigenfunction of (6 . 3)
corresponding to and ~,1 and cp the corresponding ones for ’1i. By
Proposition 6 . 1, ~,1  o.

From this we see that for 0  E small,

Therefore, ~ + Ecp is a subsolution of equation (6 . 2). Likewise, for 0  ~
small, is a supersolution. For E small, in o. By the
standard theory of sub and supersolutions it follows that there is a

maximal solution (This is obtained by

Annales de l’Institut Henri Poincaré - Analyse non linéaire



549TRAVELLING FRONTS IN CYLINDERS

successively solving (~ - k) ~r~ + 1 + f (~~) + k ~r~ _ © in co, a,, ~r J + ~ = 0 on a~,
with Here k&#x3E;O is a constant chosen so that f(s)+ks is

increasing on [0,1]. Then 03C8=lim03C8j as j~ oo .) But then if  and cp are
the principal eigenvalue and eigenfunction for - A- f’ (B)/) we see, as

above that for 8 small, is a subsolution of (6 . 2) and
The sub and super solution theory yields again a station-

ary solution B!/ satisfying 03C8 + bcp  i(r  03C8- Ecp - contradicting the maximal-

We now prove the existence of a connection from 0 to 1, that is a
solution of ( 1 . 16), ( 1 . 2), ( 1 . 3). In Section 5, we constructed in
La = ( - a, a) x 03C9 a solution (ca, ua) of

with the normalization

In analyzing the limit as we showed - see the proof of
Theorem 5 . 3 - that for a sequence a = a J ~ oo , and locally
in norm, 0  u  1, and Vp&#x3E;n. (c, u) is a solution of

( 1.16)-( 1. 2) and u ( - oo , . ) = o, u ( + oo , . ) _ ~, with W a stationary solution
of (6. 2) such that

We will prove that - 1, arguing by contradiction. Suppose 1. Since

~  1, it follows from the maximum principle and the Hopf lemma that
in co.

Fix a real number d satisfying

Since in La, there is a unique ta E (0, a) such that

Since ua --~ u locally, and we see that ta -~ + oo as a -~ 00. Shift
the origin to x~ = ta setting

This function Va is defined on [ - a - ta, a - tJ x co.
Choosing an appropriate further subsequence oo, we have

with Since the va are bounded locally in W 2 ° p, we
can further impose that va~v locally in as a=aj~~. Now v is a
solution of ( 1. 16), ( 1 . 2) in the domain ~b = ( - x co (this is all of E
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in case b = oo ). Note that this solution v is obtained for the same value of c
as our connection (c, u) from 0 to Moreover, a 1 v &#x3E;0 in this domain,
and

The argument used in Section 5, shows that v has a limit as xl -~ - oo:

and is a stationary solution.
For any real xl, and A&#x3E;0, we have xl + ta&#x3E;A for a large. Hence

for Letting a - oo we see that 
for any A &#x3E; 0 and therefore In view
of condition (6.10), Since and 03C8 are ordered stationary
solutions with 0  ~  ~1  l, it follows from Proposition 6. 2 
Using (6 . 8) and (6.10), we see that v is not constant, and since 8l 

in ~b, we conclude by the Hopf lemma that 81 v &#x3E; 0 on ( - oo, b) x 
Thus we have, for the same value of c, a connection u from 0 to ~r,

and a solution v of ( 1. 1 )-( 1 . 2) in ~b with v ( - and 
in ~b.
By analyzing the asymptotic behaviour of these, we now show that this

is impossible. To do this, we will rely on the results of Sections 3 and 4.
First we consider the behaviour of u near xl = + oo . Let

This function satisfies the equation
Aw + f3 (y, c) 3i w+g(y, w)=0 in L - (6.11)

where Note that and
that the first eigenvalue of - y - gw (y, 0) is precisely ~.1 which is

negative. For 0  E small, the first eigenvalue of - ~y - (gw ( y, 0) - E),
namely ~1 + E, is still negative. Therefore, we may apply the results of
Theorem 3 . 1 case 2, and Theorem 4 . 1. (The fact is used
in satisfying the conditions of the theorems.)

From these, we infer that there exists a positive principal eigenvalue
~,1 &#x3E; 0 and a corresponding eigenfunction cp 1= cp 1 (y) &#x3E; 0 in co of the

problem

The behaviour of u is then given by

as xi - + oo, with p a positive constant.
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Let us now consider the behaviour of v as Working with
the function v (y) we find that we can again apply Theorems 3 . 1
(case 2) and 4.1. Therefore, the behaviour of v as xi - - oo is given by

for some positive constant p’ &#x3E; 0. &#x3E; 0 and (/ &#x3E; 0 are the principal
positive eigenvalue and corresponding eigenfunction of

We emphasize again that we have the same value of c in both (6.12)
and (6.15). Therefore, the same eigenvalue problem (6.15) admits both a
positive principal eigenvalue ~,1 and a negative one, - ~,1, from (6 .12).
However, since ~.1 (~)  0, the case (c) of Theorem 2. 1 applies. It asserts

that principal eigenvalues, when they exist, always have the same sign.
We have reached a contradiction. This means that ua cannot break into
two pieces - for example, into a connection from 0 to 03C8 and one from B)/
to 1. Necessarily ua converges to a connection from 0 to 1. The proof of
Theorem 1. 3 is complete.

7. UNIQUENESS AND MONOTONICITY

In Section 7 of [BN 1 the sliding method was used to prove uniqueness
and monotonicity of the solution (c, u) of the problem ( 1. 1 ), with f as in
case B. In this section we will extend the argument there to other cases.
In Theorem 7 . 1 below we will first deal with uniqueness and monotonicity
of any solution u if c is fixed. Uniqueness of c, under various conditions,
is then proved in Theorem 7. 2.
We consider positive solutions u  1, u E C1 (~), of

with u -~ 0 and 1 respectively, at - oo and + oo, uniformly in y. The
function f is assumed to be continuous in co x [o, 1 and uniformly Lipschitz
continuous in u. In addition, we assume, as in Section 4, that for M &#x3E;_ 0

&#x3E; 

and positive constants so, 8, and for L 00 functions a’ ( y) ~ 0, and a ( y), the
functions
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satisfy

and

Note that unlike [BN1], no condition like (7 . 4) is required of h ( y, s).
We denote by ~.1 the first eigenvalue and by a, the

corresponding positive eigenfunction.

THEOREM 7. l. - Assume all the conditions above. Suppose furthermore
that 0, then the solution u is unique, up to translation in the xl direction,
and u 1 &#x3E; 0 in E. Moreover the same result holds if ~,1= 0, h ( y, s) _ 0, , for
Osso and

Proof - According to Theorem 4.4, any function u satisfying the
conditions of Theorem 7 .1 satisfies (4 . 4), i. e., for some r1 &#x3E; 0,

or

Here À and cp (y) are principal positive eigenvalues and eigenvectors of
(2 . 5). Furthermore, the case (7. 7) may occur only if ~.1  0 and the

principal positive eigenvalue À is unique. In that case,

satisfies (2. 1).
According to Theorem 4. 5, the function u also satisfies: for some y &#x3E; 0,

Here i &#x3E; 0 and cp’ (y) &#x3E; 0 are the principal positive eigenvalue and eigen-
function of (2. 5) - with, however, -03B2 in place of j3.

Suppose now that u and u satisfy the conditions of Theorem 7.1.

Suppose they satisfy (7. 8) with respective constants y, y, and (7. 6) or
(7.7) with respective constants oc, a. Without loss of generality we need
only consider the following cases:

(1) u and u satisfy (7 . 6) with respective constants a and a.
(2) u and u both satisfy (7. 7) with respective constants a, a.
(3) u satisfies (7 . 7) and u satisfies (7 . 6) with respective constants a, a.
For any real r, is a solution of (7 . 1), and it

satisfies (7 . 8) with y replaced by In each of the cases (1), (2) and
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(3), the function ur satisfies (7. 6) or (7 . 7) with a replaced by a (and
cpo replaced by cpo - in case of (7 . 7)).
We may assume, after shifting u to the left if necessary, that y  y and

oc &#x3E; oc. We shall make use of the following.

LEMMA 7 . 1. - For some positive r large, ur&#x3E;u everywhere.

Proof - In any of the cases (1), (2), (3), using (7 . 6) or (7 . 7), and
(7 . 9), we easily verify that for some R &#x3E; o,

if xi __ - R or R. Suppose the assertion of the lemma is false, then 3
sequences rj ~ ~, and (xj,yj) E E such that

By the preceding remark, either or Two cases are

possible: (a) the x~ are all bounded, i. e. _ M, or (b) a subsequence of
the Xj tend to - oo . In case (a), the right hand side of (7 . 9) is bounded
above by 1 - 8 for some 8 &#x3E; 0 while the left hand side tends to 1. Impos-
sible. In case (b), for the subsequence x~ -~ - oo, the left hand side is &#x3E;_ S
for some 8 &#x3E; 0 while the right hand side tends to zero - once more this is
impossible..

Return to the proof of Theorem 7.1. With r chosen according to

Lemma 7.1, now start shifting V back, i. e. decreasing r, until we reach a
value r = s, for which one of the following first happens:

(i ) somewhere in S,
(ii) 
(iii ) 

This must occur for some finite s.
We will show that in cases (i ) and (ii),

under the assumptions of the theorem. For case (i ), this is clear by the
maximum principle and the Hopf lemma - since tf - u is nonnegative, and
satisfies a linear elliptic equation in E. For case (ii), (7. 10) follows from
Lemma 4.1. Consider, then, case (iii). In this case and we may
suppose otherwise we are in case (ii).
Now we treat the various cases listed above. Consider first the case

when ~,1= 0. In this case, for - x large, and this remains true if we
shift us to the right by any amount. Thus we may decrease r further,
beyond s until we reach a value r = t  s such that and either

(i)’ ut = u somewhere in E, or (ii)’ y e~ r = ~. But then we are back in cases
(i ) and (ii ) and, as above, we conclude that 
We are left, finally, with case (iii) and 1 ~0. If we now shift us to the

right (by any amount) it will lie below u for -x1 large. Arguing as in the
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proof of Lemma 7 . 1 we see that we may shift I so far to the right, to ut,
so that ut  u in 03A3 and 03B3e-03C4t03B3. At this point, start shifting it back to
the left, i. e., increase t. There will be a first value d  s, such that ud first
touches u, i. e. u, and either

or

Such a value ds must occur. But then we are back to case (i) or (ii)
and we conclude, as before, that ud = u.
We have proved the uniqueness of u modulo shift. To prove monoto-

nicity, we apply the same sliding argument with u = u itself. In this case,
for any Y &#x3E; o, for large. Applying Lemma 7 . 1 again we may
take r so large that ur&#x3E; u everywhere. Then, shifting to the right to us, so
that we are in case (i ), (ii ) or (iii), we find that necessarily s &#x3E;_ 0 and then,
in fact, s = 0. This implies that u is strictly increasing in x 1.
Applying 81 to the equation for u we see that satisfies a linear

elliptic equation with bounded coefficients. Since u1~0 it follows by the
maximum principle and the Hopf Lemma, that u &#x3E;0 in E.
Theorem 7. 1 is proved.

Remark 7. l. - Our proof of uniqueness in the theorem hinges on
knowing that solutions decay exponentially as xl -~ - oo . At the beginning
of Section 3 we presented some examples of type A, with f’ (0) = 0, in
which u decays at - oo like a power Those examples were merely
one-dimensional - and in one dimension, uniqueness and monotonicity are
easily established. However in higher dimensions, in case ~,1= o, we do
not know whether solutions of (7 . 1 ) (which tend to 0 and 1 at - oo and
+ oo) are monotonic, or unique.

The proof of Theorem 7. 1 yields the following

LEMMA 7. 2. - Let u be a solution of (7 . 1), 0  u  1 tending to 0 and 1
at - oo and + oo and satisfying

for some positive constants C, k. Then no solution of the problem can decay
at - oo fas ter than I for any l &#x3E; k.

We turn now to the case where ~3 depends on a parameter c,

j3 = (3 ( y, c) - satisfying the conditions ( 1. 17), ( 1 . 18). Having ( 1 . 16) in

mind, we restrict ourselves to f independent of y and satisfying (7. 2)-
(7.4).
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As before we consider functions u, 0  u  1 in ~, tending to 0 and 1 as

xl -~ - ~ and + oo, uniformly in y, which satisfy
. ,.. _ _ .... , ... ~ .

According to Theorem 7 . 1, with c fixed, any such solution of (7.11) is
unique modulo translation, and As we have remarked before,
standard local elliptic estimates imply that ul 2014~ 0 as Ix 1 -~ oo .
Under further conditions on f we will now prove that also c is unique.

We will treat the following cases (in which 0  o  1 ):

(Indeed in case A, c may be any value in an interval [c*, oo) - compare
Section 9 below.)

THEOREM 7 . 2. - Let u and j3 ( y, c) be as above and with f satisfying
(7. 2)-(7 . 4). Then in either case B or C’, the constant c is unique. In case C",

c is also unique a f ’ (3 ( y, c) = c a ( y), a &#x3E; 0 on 

This is essentially contained in Theorem 7 . 2 of [BN1]; for completeness
we include the proof.

Proof - (a) Consider a solution (c, u) of (7 . 11 ). By Theorem 4 . 5, for
some constant y &#x3E; 0,

Here -T is the negative principal eigenvalue and cp’ the corresponding
positive eigenfunction, for (2 . 5) - with ( - ~i (y, c)) in place of fi. Suppose
we are in case B or C’. Then we claim that

where (~., (p) are the positive principal eigenvalue and eigenvector of (2. 5)
In particular, we claim that these exist. Here we use

Theorem 4.4. In case C’, we have a = - f’ (0)&#x3E;0; then case I of
Theorem 4.4 yields the claim. If we are in case B, we integrate the
equation in (7. 11) over E and find

Then case I’ of Theorem 4.4 applies, and yields (7 . 13). Note indeed that
here a -1.
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Suppose now that u is a solution of (7 .11 ) c&#x3E; c; u is
assumed to satisfy the same conditions as u. u then satisfies (7. 13) and
(7 .14) with corresponding (X, (p), (i, cp’), and oc, y &#x3E; o.

Since p ( y, c) ( y, c) we may now make use of Theorem 2.1 (e), accord-
ing to which,

It follows that for Ix 1 I large, u&#x3E; u. Consequently if we consider
u (xi + r, t), as in the proof of Theorem 7.1, we see that for r large,

In fact for every real r, 3 R (r) such that

and R (r) is bounded for r bounded.
Now starting with large r, so that (7.15) holds, decrease it to a first

value s, such that uS = u somewhere in E. Because of (7 .16), such s must
exist. But then

satisfies

Thus tor some bounded function d,

Since z &#x3E;_ 0 and z vanishes somewhere in E it follows from the maximum
principle and the Hopf lemma that z=0. Contradiction..

(b) We now prove the last assertion of Theorem 7 . 2. Let (c, u) be a
solution of (7.11). If we multiply the equation in (7.17) by U1 and

integrate over L we find

Applying Green’s theorem to the first term we find that its integral
vanishes (since -~ 0 as I xl ~ -~ oo). Because of our hypotheses we see
that c&#x3E;O.
As in the preceding argument, u satisfies (7.12). We claim that it

also satisfies (7 .13). This follows from Theorem 4. 4, case I’ - because
~3 ( y, c) = c oc ( y) &#x3E; 0 and because f ’ 0 in (0, 8) . Then the remainder of the
argument in (a) carries over without change. Theorem 7 . 2 is proved.

Next, the

Proof of Theorem 1 . 1’. - The conditions in Theorem 1 . 1’ allow us to

apply Theorem 7 . 1 case 3, and Theorem 7. 2 case B - the desired conclu-
sion follows.
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Proof of Theorem 1.2’. - The proof proceeds exactly along the lines
of the proofs of Theorem 7 .1 (in case ~,1= o, ~ --_ o), and Theorem 7 . 2.
We leave the details to the reader.

We conclude this section with a comparison principle for the unique
solutions (c, u), 0  u  1, of

in case B. 

’

If we extend f as zero outside of [0, 1] then, for any E, 0 _- E _ 1, we may
consider the problem (7.18) but with the condition u - 0 at - oo replaced
by u - - E at - oo . It is clear that the proofs of existence and uniqueness
(Theorems 7.1, 7 . 2) of solutions uE) carry over as in the case E = o.
Our next result shows how cE changes with E and in addition, in case

~ = o, how c changes withf We only consider case B.

PROPOSITION 7 .1. - (i ) Consider the unique solution (c, u) of
Theorems 7 . .1 and 7. 2. The unique c is increasing in its dependence on f,
i. e. if f’ also satisfies the conditions of the theorems, i. e. f’ = 0 on (0, 9),
etc., and then the corresponding unique c’ &#x3E;_- c.

(ii) In addition, for f fixed, the unique c£ is nonincreasing in ~.

Proof. - Assertion (i ) follows from Lemma 5 . 4 and the uniqueness
of c. To prove (ii), suppose to the contrary that for some ~ &#x3E; ~, with
corresponding unique solutions (c, u), (c, u), c &#x3E; c. Then

By Theorem 4 . 5, u and u satisfy at + x , for y. y &#x3E; 0,

By Theorem 2.1 (e), - i  - i. Consequently u&#x3E;u for ~-i 1 large and this
remains true for any xl-translation of u. Clearly u&#x3E;u near - oo . As usual,
translate u to the left so that it is larger than u everywhere. Then shift it
back to the right until it is &#x3E;_ u and equality holds somewhere. Since

in E, we see that u - u satisfies a suitable elliptic inequality and by
the maximum principle and the Hopf lemma, we would have u - u = o.
Impossible..
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8. CASE A: THE POSITIVE SOURCE TERM. EXISTENCE OF c*

In this and the next two sections we consider case A:

Here, as usual, f (0) = f ( 1 ) = o, , f is Lipschitz continuous f’ (o) &#x3E;__ 0 and
f’ ( 1 )  0 exist, and f is assumed to satisfy ( 1 . 5) and (1 . 19): for some ~,

and some 

In this and the next section we prove Theorem 1.4 in the general
case A. In section 9 we consider further the case f’ (0) &#x3E; 0, and in Section 10
we consider the KPP case.

In this section, we prove the existence of one value of c, c*, for which
there is a solution u, 0  u  1, of

This will be achieved by truncating f(s) near s = o, using case B, namely
Theorems 1 . 1 and 1 . 2, and then a limiting procedure.

For 0  8 _ 1 let xo be a cutoff function satisfying x e C~ (R), 0 _ xe _ 1,2 y e o - -

Xe (s) = 0, V s _ 8, and Xe (s) =1, d s &#x3E;_ 2 9. Furthermore we require:

_ , if 08’8 1 Set

i. e. we cut off the source term f(s) near s = 0.
We may now apply Theorems 1. 1 and 1.2, according to which there is

a unique solution (ce, uo) of
B
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ue is unique modulo translation. After translation, we may normalize Ue
so that

By construction,

It follows from the comparison principle, Proposition 7 . 1, that

Now we come to the main point, to obtain an upper bound for Ca
independent of 8. This will be done again with the aid of a comparison
function, and Lemma 5 .1. Thus our derivation of the upper bound is not
quite simple.

Let (ka, va) be the solution of the corresponding one dimensional

problem: 0  v  1

Recall that our solution (co, uo) was obtained in the limit from solutions
of the problem (5 . 2-4), (5.5)’ in the finite cylinder. It follows from the

comparison principle that

(Indeed one cannot have P ( y, ce) &#x3E; ke everywhere; see the uniqueness argu-
ment above.) Using Proposition 7. 1 (i) we see that to obtain an upper
bound for Ce it suffices to obtain one for ke independent of 8.
To this end we are going to make use of a function w similar to those

in the examples near the beginning of Section 3. First we recall that by
Theorems 4.4 and 4 . 6 - now just for the ordinary differential equa-
tion (8. 6) -

for some positive constants a, À, y, r, where and i &#x3E; 0 is a

positive root of i2 + T ka + f’ ( 1 ) = 0.
Now we construct the comparison function w. Let w be a smooth strictly

increasing function of x, 0  w  1 with w &#x3E; 0 and w (0) = -. Furthermore w2
is to equal to for x _ - N, N large, and equals 1 - e --r:’ x for x &#x3E; N.

Vol. 9, n° 5-1992.



560 H. BERESTYCKI AND L. NIRENBERG

Here ~,’, T’ are fixed, with 0  ~,’  ~, and i’ &#x3E; i. Choose K so large that
w - K w  0 for all x. Since w &#x3E; o,

for a suitable smooth function g on [o,1 ], with g&#x3E; 0 on (0,1). We are
going to choose K so large that g &#x3E;_ f on [0, 1]. Observe that for x __ - N,
i. e. for w __ e -’~~ N, ,

while for w &#x3E;_ 

By taking K large we may therefore achieve that

For the remaining values of w, we have - N _ x _ N. There, w is bounded
away from zero, and we may therefore increase K further, if necessary, to
achieve that g &#x3E;_ f everywhere, since g is defined by (8 . 8).
Having now chosen K so that g &#x3E;__ f, we observe by (8 . 7) and our choice

of w, that

CLAIM : Ve, 

Proof - Suppose ke &#x3E; K for some 8; we will obtain a contradiction. By
(8 . 9), for a large,

Since ke&#x3E;K and g &#x3E;_ . f,

We now apply Lemma 5.1 (just in R) and conclude that w&#x3E;ve on ( - a, a).

But this contradicts the normalization w (0) = v (0) = - . The claim is pro-) e( ) 
2

ved.

We now return to our solutions (ce, ue). Since the co are bounded above,
there exists a limit

We may then proceed as in Section 5. By local estimates, we find that for
a sequence of 8 -~ 0, the u~ converge (uniformly on compact sets) to a
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solution u of

Furthermore, since in the limit, ~1 u &#x3E;_ o. Therefore, has
limits Wo(Y) and ~r (y) as and +00 respectively; As in
Section 5, these are then solutions of the equation

Integrating over o we see that

and since f &#x3E; 0 on (0, 1) it follows that 03C80 and 03C8 are constants, either 0 or
1. In view of the last equation in (8 .10), necessarily 03C80 = 0 and 03C8 =1.
Furthermore, as mentioned in Section 5, using local estimates, one finds
that the convergence of u to 0 and 1 as xl -~ - oo and + 00 is uniform
in y. As usual, we have U1 &#x3E; 0 in S.
We have established the existence of a solution (c*, u) of (8 . 3). Further-

more, c* is the limit of ce as 6 B 0..

9. CASE A: THE RANGE OF VALUES OF c

With c* characterized as above, we now investigate problem
(1.16) - case A - for other values of c. In this section, we complete the
proof of Theorem 1. 4. That is, we will show that ( 1 . 16) has no solution
for any value of c  c* whereas there exists a solution of (1.16) for

any c &#x3E;_ c*. Part (ii) of Theorem 1.4 is an immediate consequence of
Theorem 7 .1.

9 .1. Existence of solutions for c &#x3E;_ c*

We will derive the existence of a solution of (1.16) for any c &#x3E;_ c* using
Theorem 5 .1 and our construction of c*. Here, we denote by u* the
solution of problem (1.16) associated with c*.
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By our construction,

Therefore, u* is a supersolution for the problem for any c &#x3E; c*.

Any constant h, 0 _ h _ 1 is a subsolution of ( 1 . 1 ) (aside from the limiting
condition oo):

We consider a fixed c &#x3E; c* . Let a &#x3E;_ 1 be fixed. Theorem 5 . 1 with u = u*,
then yields the following: for any positive constant h  min u* ( - a, y) there

y~03C9

exists a unique solution v in La = ( - a, a) x (o of the problem

Moreover, for

Let us now redo this construction but with u* shifted. More precisely,
for rER, we let and

As in the previous construction, there exists a unique function
v’’ E W2, p n C (EJ (d p &#x3E;_ 1) with hr  u*r in Ea, satisfying

Since hr and u* (a + r, y) vary continuously with r E R, the uniqueness of
the solution of (9. 5) implies that vr depends continuously - say in the
CO (La) topology - on r. Also, since u* is increasing in xl, vr is a subsolu-
tion for the problem (9 . 5) corresponding to any r’ &#x3E; r. We may therefore
apply Lemma 5 . 1 and conclude that vr’ &#x3E;vr. Obviously the behaviour of
u* at ~i -~ =L oo implies that vr -~ 1 if r -~ + oo and vr -~ 0 as r - - oo,

uniformly on La.
From these facts we see that there exists one (and exactly one) value

of r such that We denote by ua the corresponding
2

solution v’’.
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To sum up, ua satisfies

For any p &#x3E; 1 the family if is bounded in the W2° p norm on any
compact set of 2 as a - 00. Hence, there exists a sequence a J ~ oo such
that uaJ - u uniformly on compact sets of E, and u satisfies

The last condition in (9 . 7) (and the fact that . f’&#x3E; 0 in (0,1)) show that u is
not constant. As in the previous section we may conclude that

We have thus proved that for any c &#x3E;_ c*, the problem (1.16), ( 1 . 2),
(1.3) has a solution..

Remark 9 . 1. - Our construction of a solution when c &#x3E; c* may appear
intricate. In fact, this is a rather delicate point. For instance, one may
think of directly trying the approximation method used in Section 5.

Namely

However, in general, this does not produce a solution of ( 1 . 16) when
a~ 00 in the case c &#x3E; c*. Indeed, in the one dimensional case, where 03B2 = c,
it is shown in [BL 2, chapter 2] that w - 0 uniformly on compact sets
when ~ 2014~ oo .

9 . 2. Nonexistence of solutions for c  c*

To complete the proof of Theorem 1 . 4, it remains to be shown that, in
our case, for any c  c*, problem ( 1 . 16) has no solution.

In the proof, we will use some results about an auxiliary problem
corresponding to a modification of the limiting condition as 
This problem was mentioned near the end of Section 7.
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For we consider the problem

Here, fe is the truncation of f defined in the previous section ( fe _ , f ’).
Recall that fe (as well as f) are always extended as zero outside (0,1). The
case E = 0 corresponds to (8. 3) with f = fe.
As pointed out in Section 7, we know that there exists a unique solution

c = c and satisfying the normalization condition

By the comparison principle (Proposition 7. 1), ct is monotonic with

respect to E: for all 0 _- ~  E’, c~ _ ce.
Next we show

LEMMA 9 . 1. - The parameters ce are continuous in E.

Proof. - Consider a monotonic sequence of values of E in 0 _ ~  1
tending to some EO. We wish to prove that

By the usual limiting arguments - relying on local estimates - we know
that a subsequence of vs converges in E (uniformly on compact sets) to a
function v satisfying

and the normalization (9.10). Furthermore v 1 &#x3E;_ 0 in E. As in Section 8
we find that v has uniform limits v - ( y), v + ( y) as x 1 -~ - oo and + oJ
respectively; v- &#x3E;__ - E°. Moreover, since fe &#x3E;_ 0, these limits are constants,and v + = 8 or 1. In order to show that v + ==1 it suffices to show that v

is not a constant. Concerning v -, all we know at this point is that

8.
Therefore it suffices to show that v - - - E° . Indeed, then,

v ( - oo, . ) _ - v ( + oo, . ) =1, which means that v is a solution of (8 . 3)e
with c = y. By uniqueness, 
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To show we use the exponential behaviour. For 
let ~,E &#x3E; 0 be the principal eigenvalue and cp£ = cp£ (y) the associated eigen-
function of

(see Section 2) with (pg normalized by max(pg= 1.
0

By Theorem 2.1 (e) we see that ~ is monotonic decreasing with respect
to 8~0-since ~ also is. Therefore ~~~&#x3E;0 for all 
For a subsequence of E -~ 0, ~ -~ some ~&#x3E;0 and pg ~ p uniformly in

co; V/?&#x3E;1 and 03BB, (p satisfy

Also cp &#x3E; 0, max cp == 1. By the maximum principle and the Hopf lemma,
cp &#x3E; b &#x3E; 0 for some constant 8. In fact we must have, for our subsequence,
cpE _&#x3E; ~ (with possibly a different ~).

In view of (9.10), on E U { x 1 __ 0 ~,

Using the maximum principle we find that

Letting E -~ E° through the subsequence we find that

Hence v - - - E°, which implies, as we observed, that v + =1. Hence

03B3=c~00. []
We can now turn to the claim that there is no solution of (1 . 16) if

c  c*. We argue by contradiction and assume that for some c  c*, there
is a solution u. We do not assume a priori any further property of u. In
particular, we do not assume that u is monotonic in xl.
By continuity, cco for some small enough 8 &#x3E; o, likewise, for E &#x3E; 0

small enough, c  c. Let E &#x3E; 0 and 8 &#x3E; 0 be chosen in this manner and let
(c~, v£) denote a solution of (9 . 9)E.
For + oo, u and vE have exponential behaviour given by (4.15):
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where y, y’ are positive constants, T, 1’ &#x3E; 0, cp ( y) and q/ ( y) are the principal
elements of the corresponding eigenvalue problems.
By Theorem 2.1 (e), it follows that, since c  ce,

Hence, near + oo , u dominates ve. Since near x 1= - oo , u -~ 0 and
ve -~ - E, we may, after shifting u, assume that everywhere in E. Now
shift u to the right until its graph first "touches" that of vg. In view of
the exponential behaviour (9.13) and by (9. 14), this occurs at a finite

point. Therefore in E and vanishes at some finite point
in ~. Let 

Since c  c~, we see that u and v = vi satisfy

Hence, z = u - vi satisfies some linear elliptic inequality

for some Since z &#x3E;_ 0 in 03A3 and z~0 (indeed, z(-~,.)=~), the
maximum principle implies z&#x3E; 0 in 2, and we have reached a contradic-
tion.

Thus, for any c  c*, there is no solution of problem ( 1.16). The proof
of Theorem 1 . 4 is complete.

10. THE KPP CASE

The purpose of this section is to give a nearly explicit value of c* under
the further assumption (1 .12). The function f satisfies the conditions of
the previous section, in particular

We recall that f : [0, 1] ] ~ R is Lipschitz continuous. We also require f to
satisfy all the assumptions of the previous two sections. Namely, we
assume conditions (8 . 2) which state in particular that f has derivatives at
0 and 1 and f’ (1)  0; we also assume f’ (0) &#x3E; o.

In this section, we further assume that f satisfies condition (1 . 12):

The results of Sections 8 and 9 therefore apply.
We recall that there exists a real number c* such that (1.16), ( 1 . 2),

(1 . 3) admit a solution u if and only if c &#x3E;_ c*. Moreover, we know that
for each fixed c ? c*, this solution is unique and satisfies u 1 &#x3E; 0 in E.
As before, we assume that satisfies conditions (1.17), ( 1. 18) .
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The characterization of c* will be in terms of an associated eigenvalue
problem. We recall from Sections 2 and 4 that the exponential behaviour
near xi - - oo is governed by the eigenvalue problem

Since f’ (0) &#x3E; 0, by Theorem 2. 2 we know that there exists a unique
value y such that ( 10 . 3) admits 0, 1 or 2 principal positive eigenvalues
according to whether c  y, c = y or c &#x3E; y respectively. y depends only on co,
f’ (0) and the function P.

THEOREM 10. 1. - Let y be the above critical number. Then,

Remark 10 . .1. - Consider the one dimensional case - by uniqueness
this is equivalent to the In this case solutions u depend
only on xl, the principal eigenfunctions of (10.3) are the constants, and
the principal eigenvalues are determined from the quadratic equation

Hence, in this case,

This, of course, is the formula of [KPP] for the one dimensional problem.
Theorem 10.1 is a higher dimensional version of this formula.

Remark 10 . 2. - In general, when ( 10 . 2) is not satisfied, c* and y do
not necessarily coincide. In the proof below we will see that c* &#x3E; y always
holds. But it may happen that c* &#x3E; y if (10. 2) is not satisfied. In fact,
here is a simple one dimensional example. Suppose Then

u = u (x 1 ) satisfies

Let us derive a lower bound on c. It is easily seen that u converges to 0
as x~ --~ ~ oo . Multiplying the equation successively by û and ( 1- u) yields

Therefore,
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Now, y only depends on f’ (0). Thus for some fixed values of f’ (0) one
/*i

may choose a function f such that is arbitrarily large, thus

making c arbitrarily large, while keeping y bounded. Hence, we obtain

Proof of Theorem 10. 1. - First, assume that there exists a solution u
for some value c. Then, since f’ (0) &#x3E; 0, u has exponential behaviour near
xl --~ - oo . (See Section 4.) In particular, since u &#x3E; 0 in L, it follows from
Theorem 4 . 4 that there must exist at least one eigenfunction of (10.3)
which has a constant sign. This means that there exists a principal eigen-
value of (10.3). Therefore, c &#x3E; y and we infer that c* &#x3E; y. Note that this is
true in general as soon as f’ (0) &#x3E; 0. We do not require ( 10 . 2) for this
inequality.)
Assuming (10.2) let us now prove that c* = y. We argue by contradiction

and assume that c* &#x3E; y. Choose some c satisfying

Consider, for 8 &#x3E; 0 small, a truncation of f,f03B8 satisfying all the conditions
in Section 8. In particular, f on [0, 1], for all 0.

Since c &#x3E; y, we know that there exist two principal positive eigenvalues "-
of the problem

Let À denote one of these two eigenvalues (it does not matter which)
and let (p be an associated eigenfunction; cp &#x3E; 0 in co. The function

defined on E satisfies
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Let (co, ue) be the unique solution of the problem with fe:

Since lim ce = c* - as we have shown in Section 9 - we may choose 9 &#x3E; o
eBo

so that

Because of condition ( 10 . 2) we see that z is a global supersolutiou
corresponding to the value c and the nonlinearity f. That is, it satisfies, in
the whole cylinder

On the other hand, since co&#x3E; c, f &#x3E; fe and aue &#x3E; 0 we see that u e
~xl

is a subsolution:

Moreover, as xl ~ - oo, the behaviour of uo is governed by

for some positive constant rt&#x3E; 0, where p &#x3E; 0 and 03C8 &#x3E; 0 in 03C9 are determined
from

It follows from Theorem 2 . 1 (e), that ~ &#x3E; ~,. This shows that ue is
dominated by z as xl ~ - oo . This is obviously also true as xl --~ +00.
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After, possibly, a finite translation of u, we may then assume that
for 

Fix a so large that z (a, y) &#x3E; 1, Theorem 5 . 1 yields the existence
of a solution ua in the finite cylinder La of

We may then apply Lemma 5.1 and conclude that, in addition,

It is now straightforward to pass to the limit as a - 00. There is a

sequence a= aj - oo such that the corresponding solution ua converges
locally to u satisfying

In addition u satisfies U1 &#x3E; 0 and

Hence u satisfies

Since u _ 1 we also see that

We have constructed a solution u of problem (1 . 1) corresponding to c.
Since c  c* this is impossible - in view of Theorem 9 . 1.
We have proved that c* = y..
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