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ABSTRACT. - It is shown that for any maximal monotone set-valued

operator T on a real Banach space E, there is a sequence ( of bounded
maximal monotone operators which have nonempty values at each point
and which converge to T in a reasonable sense. Better convergence proper-
ties are shown to hold when T is in a new proper subclass of maximal
monotone operators (the "locally" maximal monotone operators), a sub-
class which coincides with the entire class in reflexive spaces. The approx-
imation method is patterned on the one which results when the (maximal
monotone) subdifferential ~f of a proper lower semicontinuous convex
function f is approximated by a sequence of bounded subdifferentials

where each fn is the (continuous and convex) inf-convolution of f
with the function n~.~. The main advantage of this approximation scheme
over the classical Moreau-Yosida approximation method is that it exists
in non-reflexive Banach spaces.
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574 S. FITZPATRICK AND R. R. PHELPS

RESUME. - On montre que, pour chaque operateur maximal
monotone T sur un espace de Banach E, ’ il existe une suite {Tn} d’opera-
teurs maximaux monotones bornes et non vides en chaque point, tel que

T dans un sens raisonnable. De meilleures proprietes de convergence
sont obtenues quand T est « localement maximal monotone », une sous-
classe nouvelle de celle des operateurs maximaux monotones et qui coincide
avec celle-ci dans les espaces reflexifs. La methode d’approximation pro-
cede selon l’exemple de l’approximation d’une sous-differentielle af (ou f
est propre, convexe, et semi-continue inferieur) au moyen d’une suite {~fn}
de sous-differentielles, ou chaque .in est la inf-convolution (continue et

convexe) de f avec la L’avantage principal de cette methode
sur la methode classique de Moreau-Yosida est de rester applicable dans
les espaces de Banach non reflexifs.

1. INTRODUCTION

The primary goal of this paper is to present a method for approximating
an arbitrary maximal monotone operator T on a real Banach space E by
a sequence of "nicer" maximal monotone operators. A distant secondary
goal (which arose while working on the primary one) is to highlight the
fact (see Section 5) that some basic open questions about monotone
operators on general Banach spaces are still open.
There already exists a well known and useful approximation method,

called the Yosida (or Moreau-Yosida) approximation, but its definition
requires that the space E be reflexive (and that it be renormed to be

strictly convex with strictly convex dual); we will briefly compare the two
methods at the end of Section 5. Our method was motivated by the special
case when the (maximal monotone) subdifferential of a lower
semicontinuous convex proper function f on E. We start by examining
this special case in some detail, since it not only motivates our method,
but provides a guide as to what may be possible in the general case.
As will be shown below, the subdifferential can be approximated in

a reasonable sense by the subdifferentials of the inf-convolutions (or
"epi-sums")

(The approximating sequence {fn} was originally introduced by Hausdorff
[Hau] for any lower-bounded lower semicontinuous function f of a real
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575BOUNDED APPROXIMATIONS

variable.) Specifically, recall that the extended real-valued lower semiconti-
nuous convex function f on the real Banach space E is said to be proper
provided f (x) &#x3E; - oo for all x E E and its (convex) essential domain

is nonempty. Given such a function, one can define, for all sufficiently
large n, the sequence of convex, everywhere finite functions fn as above.
[It is obvious that fn (x)  oo for all n. Moreover, since the subdiffe-
rential af (x) is nonempty for at least one x E E - say it contains the
element x* - it is easily seen that (x) &#x3E; - oo for all x provided x* ~ I .
We assume below that this is always the case, that is, that n is sufficiently
large that fn (x) &#x3E; - oo for all x.]
Some well-known elementary properties of the inf-convolution off with
. I (see, for instance, [La] and [H-U 1]) are listed below.
NOTATION. - We denote by B* and S* the closed unit ball and the

unit sphere of E*, respectively. The essential domain of af is denoted by
while its range is 

for some 

1.1. PROPOSITION. - With f as above, the sequence ~ has the following
properties:

(i) Each f~ is convex and Lipschitzian, with Lipschitz constant n.
(ii ) (x) -- .f’ (x) for each x~E and each n.
(iii) f,~ (x) ~ f (x) for each x E E.
(iv) D = E for all n.
(v) ~fn (x) = af (x) n n B* f and only ~ f~ (x) = f (x) ; equivalently, if and

only f af (x) intersects n B*.
As noted above, our aim is to develop an approximation scheme for

arbitrary maximal monotone operators which will generalize the relation-
ship between ~f and the sequence of subdifferentials {~fn}; this latter

relationship is described in more detail in the next proposition.

1. 2. PROPOSITION. - The subdifferentials ~fn converge to af in the follow-
ing sense: for any x E E,

for all sufficiently large n and

Proof - Everything in assertion (1) except the second inclusion follows
from Proposition 1. 1. Since fn has Lipschitz constant n, it follows that

To show that any is in the norm closure of
note first that by definition of fn (x), for each k=l, 2, 3, ... there

Vol. 9, n° 5-1992.



576 S. FITZPATRICK AND R. R. PHELPS

exists zk~E such that

For all y E E we have fn ( y)  f ( y), so if x* E of" (x), then

Thus, for each k, there exists Ek &#x3E; 0 such that for all v E E,

where [Take in (*) to see that
and use the fact that I x* to see that Ek -_ 1 /k.] Now, (*) implies

that (the ~k-subdifferential of f at zk, see, for instance,
[Ph], p. 48), so by the Br~ndsted-Rockafellar theorem, we can conclude
that for each k there exists Yk E E and such that

In particular, there exists

such that 
Assertion (2) follows from Proposition 1 . 1 (v).
To prove (3), we may obviously assume that ~fn (x) ~ 0, which

implies that of (x) n n B* = 0 [otherwise, by Proposition 1.1 (v), we would
have by Proposition 1 .1 (ii) and (v), we
must have fn (x) , f ’ (x). Fix oc such that fn (x)  oc  f (x); then there exists

such that

Indeed, if this were not true we could choose a sequence uk - x such that

and hence, by lower semicontinuity of f, we would have

Suppose, now, that and that E &#x3E; 0 is sufficiently small that
By definition offn(x), there exists uEE such that

hence Since jc* (x) we know that

and therefore

so that for all sufficiently small E &#x3E; o; we conclude that

In the following corollary to Proposition 1. 1, the relationship between
the subdifferentials ofn and of is used to obtain new information about
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577BOUNDED APPROXIMATIONS

the latter. Recall that a subdifferential of is said to be locally bounded at
the point xe D (lf) provided there exists a neighborhood U of x such
that of (U) is a bounded set.

1.3. COROLLARY. - Suppose that f is a proper lower semicontinuous
convex function on the Banach space E and that xo E bdry D (af ); then af is
not locally bounded at xo.

Proof - Suppose, to the contrary, that for some n &#x3E;__ 1 there exists
an open convex neighborhood U of xo such that for each

By Proposition 1 . 1 (v), this implies that f (x) = fn (x) for
each such x. Since 0  f - fn is lower semicontinuous, and since (by
the Brøbndsted-Rockafellar theorem), D (of) is dense in dom ( f ), we
conclude that in U n dom ( f ). From Proposition 1 .1 (v) again, it
follows that a, f ’ (x) (~ n B * = afn (x) ~ 0 for all so that

Since U is a neighborhood of a boundary
point of the convex set the Bishop-Phelps theorem implies
that there exists y~dom(f)~U and y*~0 in E* such that

( y*, y ) = sup ~ ~ y*, x ~ : x E dom ( f ) ~ . Since y is in the closure of dom ( f )
and in U, there exists a sequence { c dom ( f ) n U such that xk --~ y.
By the lower semicontinuity of f, we have

hence

But (as is easily verified ) for all ~, &#x3E;_ 0, a contrad-
iction which completes the proof.

2. APPROXIMATIONS TO MONOTONE OPERATORS

In this section we will present our scheme for approximating an arbitrary
maximal monotone operator on a Banach space. First, we recall some
basic definitions.

DEFINITIONS. - A subset M of E x E* is said to be monotone provided
~ x* - y*, whenever (x, x*), A set-valued mapping
T : E -~ 2E* is monotone provided its graph

is a monotone set. The effective domain D (T) of T is the set of all points
x E E for which T (x) is nonempty and T is said to be locally bounded if
each point of E has a neighborhood U such that T (D) = U ~ T (x) : x E U }
Vol. 9, n° 5-1992.



578 S. FITZPATRICK AND R. R. PHELPS

is contained in some ball in E*. A monotone operator T is said to be
maximal monotone if its graph is maximal (under inclusion) in the family
of all monotone subsets of E x E*. The inverse of T is defined by

Since X E and G (T) c E X E* are (within a permutation) the
same set, T -1 is maximal if and only if T is maximal.
As is well known, the subdifferential of a proper lower semicontinuous

convex function on a Banach space is a special case of a maximal mono-
tone operator. [This fundamental fact, first proved by Rockafellar 
has recently been given an remarkably short proof by S. Simons [Si].] Since
our scheme is modeled on this special case, we first see what Propo-
sition 1.2 would look like if it were about general monotone operators
instead of subdifferentials.

2. I. GOALS. - Let T be a maximal monotone operator on the Banach

space E. Determine when there exists a sequence ~ of maximal monotone
operators on E such that

(i ) all n.

(ii) T (x) n n B* c Tn (x) for each x E E and all n.
(iii) 
(iv) (T), then T~ (x) = T (x) n n B* for all sufficien tly large n.
(v) Tn(x)T(x)cnS* for all XEE.
Our construction will meet some (but not all) of these goals. We first

need a lemma.

2. 2. LEMMA. - Suppose that T : E ~ 2E* is monotone, locally bounded
and has closed graph (in the norm X weak* topology in E x E*). If the set
T (x) is nonempty and convex for each x E E, then T is maximal mono tone.

Proof - Let T be a maximal monotone operator on E which contains
T; we will show that T = T. To that end, take the closure in the product
space E X (E*, weak*) of the graph of T; this will be the graph of a set-
valued mapping T which, using the local boundedness, is readily seen to
be monotone. Since T has closed graph, T = T. By a known theorem (see,
for instance, [Ph], Th. 7 . 13), for each xeE, the set T (x) is the weak*
closed convex hull of T (x) = T (x). Since T (x) is weak* closed and convex
for each xEE, we have T (x) = T (x).

DEFINITION. - A sequence of sets {Xn} in the Banach space E is
said to be Mosco-convergent to the subset X c E provided the following
conditions hold:

(a) For all x e X there exists xn~Xn such that and

(b) If x~E is such that x in the weak topology, where xk e Xnk for
each k, then x E X.
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579BOUNDED APPROXIMATIONS

If the space E is a dual space and if in condition (b) the weak topology
is replaced by the weak* topology, we say that {Xn} is weak* Mosco-

convergent to X.
See [At] for an extensive discussion of Mosco convergence.

NOTATION. - If A is a subset of E*, the weak* closed convex hull of A
is denoted by co A.

2. 3. THEOREM. - Suppose that T is a maximal monotone operator on E
and for n = 1 , 2, 3, ... let Cn = co [R (T) (~ n B*~. There exists a sequence
~ of maximal monotone operators on E such that

(i ) D (Tn) = E for all n.
(ii) T (x) (~ n B* c Tn (x) for each x E E and all n.
(iii ) R (Tn) c Cn c n B * for all n.
(iv) For any xo E int D (T), there exists an open neighborhood U of xo in

D (T) and no &#x3E;_ 1 such that Tn = T in U for all n &#x3E;-- no.
(v) For all x E E, the sequence of sets { Tn (x)} is weak* Mosco-conver-

gen t to T (x).

Proof. - For each n &#x3E;_ 1 define Sn by

where B* is the weak* compact unit ball in E*. These set-valued maps
are obviously monotone. Next, consider the family, ordered by inclusion,
of all monotone subsets of E x Cn. By applying Zorn’s lemma, we can
obtain a maximal monotone subset of E x Cn containing the graph G (Sn)
of Sn; this defines a monotone operator Tn. By a special case of an
extension theorem due to Debrunner and Flor [D-F] (see below) for each
xeE, there exists x* E Cn such that G (T~) U ~ (x, x*) ~ is a monotone

subset of E x Cn. The maximality of Tn implies that G contains the

point (x, x*), so we conclude that D (Tn) is all of E. It follows easily from
the maximality of Tn that it has closed graph (in E X (Cn, weak*)) and
that for all xEE, Tn (x) is nonempty, weak* closed and convex. From
Lemma 2 . 2 we conclude that Tn is maximal monotone in E X E*, not
merely in E x Cn. Properties (i ), (ii ) and (iii) are obvious consequences of
the foregoing construction.
To prove (iv), consider a point x E int D (T). By local boundedness of T

(see [Ro 1], [B-F] or [Ph], p. 29), there exists an open neighborhood U of
xo in D (T) and such that for all xeU. Suppose,
now, that n &#x3E;_ no, hence that T (U) c n B * . In view of this inclusion,
T [The latter inclusion means that G (Sn ~u).]
Now, it is known (see, for instance, [Ph], Cor. 7 . 8), that T Iv is maximal
in U. (That is, its graph in U x E* is maximal among all the monotone
subsets of U x E*.) It follows that T Iv = Tn u for each n &#x3E;_ no, which was
to be shown.

Vol. 9, n° 5-1992.
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Finally, to prove (v), we check (a) and (b) in the definition of weak*
Mosco-convergence. For (a), suppose that x* E T (x); since

x* E Sn (x) c Tn (x) provided we need only take xn = x*. For (b),
suppose that x* E E* and that converges weak* to x*. By
maximality of T, to see that x* ET (x), it suffices to show that

0 -- ~ x* - y*, x - y ~ whenever y e D (T) and But for I
we have and hence x - y ~, so weak* con-
vergence yields the desired inequality.
The proof above used the following very special case of an extension

theorem of Debrunner and Flor [D-F]. Since the proof of the latter is

simpler in this special case, we have included it for the sake of complete-
ness. As in the original proof, the key tool is a variant of the Farkas lemma
(on the existence of solutions for finite systems of linear inequalities). A
different proof, using an appropriate form of the Hahn-Banach theorem,
has been given by K~nig and Neumann [K-N].

2.4. LEMMA (Debrunner-Flor). - Suppose that C is a weak* compact
convex subset of E* and that M C E x C is a monotone set. For any xo E E
there exists xo E C such that ~ (xo, xo) ~ U M is a monotone set.

Proof - For each element (y, y*) E M let

Each of these sets is the intersection with C of a weak* closed half-space,
hence is weak* compact, and the theorem will be proved if we can produce
a point xo in the intersection ~{C(y, y*) : ( y, y*)~M}. By compactness,
it suffices to prove that this family of sets has the finite intersection

property. Suppose, then, that

We will show that there exist ~,~ &#x3E;__ o, j =1, 2, ... , n, such that ~ ~,~ =1
..., n ~ . Let since it is a

convex combination, xo will be in C, so it suffices to find constants

~o, ~1, ~2, . - . , An which solve the system of linear inequalities
n

(We then divide by Ao to By a variant of the Farkas lemma
[Tu], if this system fails to have a solution, then there is a solution

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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N~2~ ~ ~ ~ ~ of the system

This implies that there exist nonnegative which satisfy

Evidently, the are not all zero, so if we multiply the j-th inequality
by ~.~ and sum over j, we get

Now, the terms in this double sum can be paired so that it becomes

which, by monotonicity, is nonnegative, a contradiction which completes
the proof.
We will see in the next two sections that, under additional hypotheses,

Goal 2 .1 (v) is valid. Assuming that it is (in fact, that a slightly weaker
version is valid), we can show that the range of a maximal monotone
operator has convex closure. This fact, along with some closely related
results, has been proved in reflexive spaces by Rockafellar We first

require a somewhat technical geometric lemma.

2 . 5. LEMMA. - Let E be a Banach space and x* E E* with I x* I = 2. If
0  r  1 /2, define

have 1 a2 and
22014~

Proof - First, suppose that y* E A, so that it can be represented in the
form y* _ ~, x* + ( 1- ~ ~, ( ) u*, where ( ~. ~ _ 1, u* E r B * The

triangle inequality gives Now

Vol. 9, n° 5-1992.
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we calculate

.r - . ~ ~- 
. 

J 
__

as claimed. The same representation of y* shows that its distance from
the segment [ - x*, x*] is less than or equal to

This shows that A c [ - x*, x*] B*, so the same is true of co A. Thus,
if y* E [co A] n bdry C, then we have y* = Jlx* + z* where ) ) z* I I _ [3, ( ~, I _ 1
and y* ~ int C. == 1, then ) ) y* - sgn If  l,
we can write since y* ~ int C, we must

which shows 

as we wanted.

DEFINITION. - By a homothet of a monotone operator T we mean any
operator of the form ~, T + u*, where ~, &#x3E; 0 and u* E E*.

It is easily seen that R (À T + u*) _ ~, R (T) + u* and that homothets of T
are (maximal) monotone if and only if T is (maximal) monotone.

2.6. PROPOSITION. - Suppose that T is a maximal monotone operator
on E and that for each equivalent dual ball B* on E* (with unit sphere S*)
and every homothet T of T, there is a maximal monotone extension T 1 of
the operator x ~ T (x) (~ B* such that

(i ) 
(ii ) 

(iii ) 
Then the norm closure of R (T) is conwx.

Proof. - Suppose that R (T) is not convex. Thus, it is not midpoint
convex and it follows by a simple argument that there exist two points in
R (T) whose midpoint is not in R (T). By changing to an appropriate
homothet of T, we may assume that x* and - x* are in R (T) with

( ~ =1 but for some r E (0, 1 /2) the range of T does not intersect 2 r B*.
Define an equivalent dual ball by

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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By our hypothesis on E we can find a maximal monotone extension T 1
such that D (T 1) = E and R (T 1) c co [R (T) n C] while

R (T1)BR (T) c bdry C.
We now apply Lemma 2. 5, with 2 x* in place of x* and with

as before. Since R (T l) n R (T) c C U R (T) c A and

we conclude that

However, for each xeE the set T 1 (x) is convex and therefore cannot
intersect and Since the operator T1 is
norm-to-weak* upper semicontinuous, the sets Tl 1 ( - 2 x* + a B*) and
T~ 1 (2 x* + a B*) are closed; moreover, they are disjoint and their union
is all of E. Connectedness of E shows that one of them must be empty,
contradicting the fact that the contain + x*, respectively.

3. LOCALLY MAXIMAL MONOTONE OPERATORS

In this section we will show that it is possible to obtain the kind of
conclusions we want for the approximating operators T~, provided we
assume that the operator T belongs to the following special subclass of
maximal monotone operators.

DEFINITION. - A monotone operator T on a Banach space E is said to
be locally maximal monotone f, for each x E E and x* ~ T (x), and each
open convex subset U of E* which contains x* and intersects R (T), there is
zEE and z* e T (z) n U such that ( z* - x*, z - x ~  0.

Since E* is a permissible choice for U, it is clear that a locally maximal
monotone operator is maximal monotone. We will see later that an

example of Gossez can be used to show that not every maximal
monotone operator is locally maximal monotone. Note that the term
"locally" really refers to the range of T; in fact, it is straightforward to
see that T is locally maximal monotone if and only if, for each open
convex U c E* which intersects R (T), the graph of the monotone operator
x -~ T (x) (~ U is maximal among all monotone subsets of E x U.
The following theorem shows that locally maximal monotone operators

satisfy most of our goals.

Vol. 9, n° 5-1992.
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3. 1. THEOREM. - Suppose that E is a Banach space and that T is a

locally maximal monotone operator on E. Then there exists a sequence {Tn}
of maximal monotone operators such that

(i ) D (Tn) = E for all n.
(ii) 
(iii) T (x) n n B* c Tn (x) for each x E E and all n.
(iv) for each x~E and all n.
(v) Tn (x) = T (x) n n B*, provided T (x) n int n B* ~ 0.
(vi) If XED (T), then Tn (x) = T (x) (~ n B* for all sufficiently large n.
(vii) then Tn (x) c n S* for all n.

Proof - Assertions (i ), (ii ) and (iii) are valid for any maximal mono-
tone operator, as shown in the first three assertions in Theorem 2. 3. To

prove (iv), suppose there exists x* E Tn (x)BT (x) with ))  n and let
U = int n B*. Then U is an open convex set containing x* and intersecting
R (T), so local maximality of T provides zeE and z* E T (z) n U c Tn (z)
such that ~ z* - x*, z - x ~  o, contradicting the monotonicity of Tn.
To prove (v), suppose that x*ETn(x). By hypothesis, there exists

hence the open line segment between y* and x* is
contained in Tn (x) n U, thus in T(x)nU, by part (iv). Since T (x) is

closed, it follows that x* E T (x), so Tn (x) = T (x) n B*. Finally parts (vi)
and (vii) are immediate from (v) and (iv), respectively.

This result will allow us to attain our goals in reflexive Banach spaces
for arbitrary maximal monotone operators (see Section 4), once we have
shown that in such spaces they are locally maximal monotone. To this
end, we reformulate the definition.

3.2. PROPOSITION. - A monotone operator T on E is locally maximal
monotone f and only f it satisfies the following condition: for any weak*
closed convex and bounded subset C of E* such that R (T) n int C ~ 0 and
for each x E E and x*~intC with x*~T(x), there exists z E E and

z* E T (z) n C such that ~ x* - z*, x - z ~  o.

Proof. - In one direction, if T is locally maximal monotone and C is
given, let U = int C. In the other direction, if U is open and convex in E*,
if u e E and with and but x* ~ T (x), then
there exists E &#x3E; 0 such that u* + E B* c U and x*+£B*cU. By convexity,
C=[M*, x*] + E B* is a weak* closed, convex and bounded subset of U
which can be used to verify that U has the required property.
We recall the following definition.

DEFINITION. - If S and T are monotone operators, their sum S + T is
the monotone operator defined, using vector addition of sets, by
(S + T) (x) = S (x) + T (x) provided x~D (S) n D (T) - D (S + T), while

(S + T) (x) = 0 otherwise.

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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The only use of reflexivity in the next result is in the application of
Rockafellar’s theorem which asserts that the sum of two maximal

monotone operators is maximal monotone, provided the domain of one
of them intersects the interior of the domain of the other (and the space
is reflexive).

3. 3. PROPOSITION. - If E is reflexive and T is maximal monotone on E,
then it is locally maximal monotone.

Proof - Suppose that C is weak* closed and convex, that
that xeE and that x* E int C but

x* ~ T (x). Let be the (maximal monotone) subdifferential of the
indicator function of C. Since int D (S -1) = int C and since the latter
intersects D (T -1 ), Rockafellar’s theorem implies that T -1 + S -1 is max-
imal monotone. Now x* ~ T (x) implies that x ~ T -1 (x*), and since

S -1 (x*) _ ~ 0 ~, we see that x ~ T -1 (x*) + S -1 (x*). By maximality of
T-1 + S - l, there exists z* E D and 
such that ~ x* - z*, x - z ~  o. Thus, T satisfies the condition in

Proposition 3. 2 and is therefore locally maximal monotone.
The following proposition shows that if T is locally maximal monotone,

then the ranges of our approximating operators are contained in the norm
closure of the range of T, as suggested by Goal 2.1 (iii).

3 .4. PROPOSITION. - Let T be a locally maximal monotone operator on
a Banach space E with R (T) (~ int n B* ~ 0. Then R (Tn) c R (T) for any
monotone operator Tn such that T (x) (~ n B* c Tn (x) for all x E E.

Proof - Suppose, to the contrary, that Let E &#x3E; 0 be

sufficiently small such that dist (x*, R (T)) &#x3E; 2 n s and R (T) n (n - s) B* ~ 0.
Let y* E R (T) (~ (n - s) B* and consider the open set

Local maximality shows that there is z* E T (z) (1 U such that

~ x* - z*, x - z ~  o. Since x*ETn(x) and we must

have )) z* II&#x3E; n. Now for some v* with II v* and some 0 _ ~, __ 1 we
have z* _ ~, x* + ( 1- ~,) y* + v* so that

and hence 1 - À  s. Now

which contradicts the fact that z* e R (T).

3 . 5. THEOREM. - If T is a locally maximal monotone operator on the
Banach space E, then R (T) is convex.
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Proof - Since the property of being locally maximal monotone does
not depend on which (equivalent) norm we have on E and since (as is

readily verified) T is locally maximal monotone if and only if the same is
true of each homothet of T, Theorem 3.1 guarantees that T satisfies the
hypotheses of Proposition 2. 6, hence the conclusion of the latter that

R (T) is convex.
It follows from this that not every maximal monotone operator is locally

maximal monotone : Gossez [Go2) has exhibited a maximal monotone
operator T on 11 for which R (T) is not convex. [That Gossez’s example is
actually maximal can readily be deduced from our Lemma 2.2.]
The foregoing observation also implies that property (iv) of

Theorem 3 . 1 (the fact that Tn (x) c n S*) cannot hold in general.
This is a consequence of the following proposition, which gives a sufficient
condition on E that every maximal monotone operator be locally maximal
monotone.

3 . 6. PROPOSITION. - Suppose that E is a Banach space such that for
each equivalent renorming of E, whenever a maximal monotone operator T
on E admits a maximal monotone operator T1 satisfying

(i) R(Tl)cB* and
(ii ) T (x) n B * c T 1 (x) for each x E E, then it also satisfies
(iii ) T for each x E E.
Then every maximal monotone operator on E is locally maximal.

Proof - Suppose that T is maximal monotone and that for some x E E
and x* tf T (x), there is an open convex subset U of E* containing x* such

that for some u E E. The element v*=2014(~*+M*) is in U.
_ _ 

2

Let x*=x*-y*, u* = u* - y*, U = U - y* and T=T-y*. Then T is
maximal monotone, and both x* and
u* ( _ - x*) are in U. Renorm E so that the new equivalent dual ball is

where c &#x3E; 0 is sufficiently small that If T were not locally maximal
monotone, then we would have ~ z* - x*, z - x ~ &#x3E;__ 0 for all 
and for all z*ET(z)nU. Define S 1 to be the
monotone operator whose graph is the union of {(x, x*)} and the graph
of By Zorn’s lemma, it is contained in a maximal
monotone subset of E x B i which is therefore the graph of a mono-
tone operator T 1. By applying the Debrunner-Flor Lemma 2 . 4 and

Lemma 2.2 as in the proof of Theorem 2.3, we conclude that T 1 is a
maximal monotone operator on E satisfying (i ) and (ii )
T (z) n B i c T 1 (z) for all z E E. By hypothesis, it satisfies (iii ): every element
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of T 1 (x)BT (x) must have Bi-norm equal to 1. Since x*Eint Bi, we
conclude that a contradiction which completes the proof.

4. THE REFLEXIVE CASE

The following theorem is an immediate corollary of Theorem 3. 1 and
Proposition 3 . 3.

4. 1. THEOREM. - Suppose that E is reflexive, and that T is maximal
monotone. Then there exists a sequence {Tn} of maximal monotone oper-
ators such that

(i) D (Tn) = E for all n.
(ii) R (Tn) o co [R (T) n n B*] c n B* for all n.
(iii) T (x) n n B* c Tn (x) for each x E E and all n.
(iv) T~ (x)BT (x) c n S* for each x E E.
(v) T n (x) = T (x) n n B *, provided T (x) (1 int n B * ~ 0.
(vi) If x~D (T), then Tn (x) = T (x) n n B* for all sufficien tly large n.
(vii ) IfxD(T), then for all n.
The next theorem was arrived at by reformulating Theorem 4 . 1 in terms

of the inverses of all the monotone operators involved, then interchanging
the roles of E and E* and renaming the operators.

NOTATION. - If T is a monotone operator on E, then for any subset
A c E, the operator T IA is defined by T IA (x) = 0 if x ~ A and T IA (x) = T (x)
if x E A. The closed unit ball in E is denoted by B.

4.2. THEOREM. - Suppose that E is reflexive and that T is a maximal
monotone operator on E. Then there exists a sequence of maximal monotone
operators ~ with the following properties:

(i) R(Tn)=E* for each n.
(ii ) D (Tn) c co [D (T) n n B] for each n.
(iii) each n and each x E E.

(iv) Tn (x) = T (x) for each x E int n B .

Proof. - Assertions (i ), (ii ) and (iii) are easily seen to be equivalent to
the corresponding assertions in Theorem 4 . 1, applied to the inverses of the
operators T and Tn. To prove (iv), note that (iii) implies that T (x) c Tn (x)
whenever x E n B. The reverse inclusion follows by contradiction from part
(iv) of Theorem 4. 1 (again applied to inverses).

It would be very satisfying if we knew that the approximating operators
constructed in Theorem 2. 3 were, when applied to the case T = af, necess-
arily the same as the subdifferentials of the inf-convolutions f’n of

Proposition 1.2. That this is indeed the case in reflexive spaces, at least,
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will be a consequence of a uniqueness theorem (below); we first require a
definition and a lemma. _

DEFINITION. - For simplicity of notation, we let An denote the maximal
monotone subdifferential operator ~(/~ . . ~ ~ ).

It is clear that and ~ x*, from

this it follows readily that for any x*eE*,

4. 3. LEMMA. - Suppose that T is maximal monotone and that T,~ is a

maximal monotone extension of Sn (x) = T (x) n n B*, (x E E) which satisfies
. 

D(Tn)=E and R(Tn)enB*; then Furthermore, ifE is

reflexive and R (T) n int n B * ~ 0, then T n 1= + A,~ 1.
Proof - Note that 1 is a monotone operator; also

D (Tn 1) c n B* and 0 e (x*) for each x* e D (Tn 1). Thus, T,~ 1 + An is
a monotone extension of so maximality of Tn yields the first equality.
To prove the second one, note that

This, together with reflexivity, implies that T -1 + An 1 is maximal mono-
tone By the first equality, we have Tn 1= Tn ~ + An 1 ~ T -1 + An 1,
since An 1 is empty outside of n B*. The maximality shows
that equality holds.
The following theorem shows that, in reflexive spaces the approximating

operators Tn of Theorem 2. 3 are (for all sufficiently large n) unique; in
fact, we need only assume that R (Tn) c n B* (rather than 

4.4. THEOREM. - Suppose that E is reflexive, that T is maximal mono-
tone on E and that for each n, Tn is a maximal monotone operator satisfying

(i ) D (Tn) = E and R c: n B*

(ii ) 
If n is sufficiently large that R (T) T int then Tn = Tn whenever

Tn is a maximal monotone operator on E which satisfies (i) and (ii).
Proof - It suffices to show that for all xEE; equality

of Tn and Tn follows from the maximality of Tn. Suppose, then, that

x* E Tn (x) and define

By the same use of the Debrunner-Flor lemma as in the proof of
Theorem 2. 3, there exists a maximal monotone operator Vn which extends
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Sn and satisfies D(VJ=E and R (Vn) c n B*. By the second assertion in
Lemma 4. 3 (applied to Vn, then to Tn), we have

and hence T n (x)=Vn (x) ~ x * .

4.5. COROLLARY. - Suppose that E is reflexive and that f is a

proper semicontinuous convex function on E. Suppose, further, that

R (a, f ’) n int n B * ~ 0 and that Tn is a maximal monotone operator satisfying
(i) and (ii) of Proposition 4. 4. Then Tn = ~fn.
Conclusion (v) of Theorem 4. 1 can be improved slightly if the

norm in the dual of the reflexive space E is strictly convex; that is, if

~I tx* + (1- t) y* I  1 whenever x* and y* are distinct elements in E* of
norm 1 and 0  t  1.

4.6. PROPOSITION. - Suppose that E is reflexive and that the norm
in E* is strictly convex. If x E E is such that T (x) n n B* ~ 0, then

Tn (x) = T (x) (~ n B * .

Proo, f : - Let x* E Tn (x) and choose y* E T (x) n n B* c Tn (x); without
loss of generality, we assume that y*#x*. Now, for 0  t  1, define

x* _ ( 1- t) x* + ty * . Then since E* is strictly
convex. From Theorem 4 . .1 (iv), we conclude that x* E T (x) and, since the
latter is closed, x* E T (x).
The following simple example shows that the foregoing proposition may

fail if E* is not assumed to be strictly convex.

4.7. Example. - Let T be the maximal monotone operator from the
two-dimensional space E =112~ to E* = l ~~~ defined by T (xl, x2) _ (x2, - xl).
Then T (o,1 ) n B * ~ 0, but T 1 (o,1 ) ~ T (o, 1) n B*.

Proof. - It can be verified directly that T is monotone and maximal.
It is obvious that T (0, 0) E int B*, so by the second part of Lemma 4. 3,

In particular, (0, (1,1), hence (1, 1)ET1 (0, 1 ) but

It is worth recalling at this point that any reflexive Banach space
can be renormed so that its dual is strictly convex. (See, for instance
[Da], p. 160.)
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5. REMARKS AND QUESTIONS

While the primary aim of this paper has been to develop a potentially
useful approximation scheme for maximal monotone operators on arbi-
trary Banach spaces, the attempt to do so has highlighted the fact that
there is much more to learn about the structure and behavior of such

operators. There has not been much progress in this endeavor since
Rockafellar’s papers some twenty years ago (particularly notable examples
being see, also, [Go1]). For instance, the fundamental fact
that the sum S + T of two maximal monotone operators S and T is again
maximal (and monotone), provided D (S) n int D (T) is nonempty, has

only been proved in reflexive spaces; we know of no counter-example for
nonreflexive spaces.

5.1. QUESTION. - Suppose that Sand T are maximal monotone operators
on the Banach space E such that D (S) n int D (T) ~ 0. Must S + T be
maximal?

Using additional hypotheses on S and T, Brezis, Crandall and Pazy
[B-C-P] have proved maximality of S + T (in reflexive spaces, unfortu-

nately) without assuming that either D (S) or D (T) has nonempty interior.
The following example shows that, even in a two-dimensional space,
some additional restriction is needed (beyond D (S) F1 D (T) merely being
nonempty).

5 . 2. EXAMPLE. - In the plane R2 let C = ~ (x, y) : y &#x3E;_ x2 ~ and let L be
the x-axis. Further, define S = aI~ and T = aIL; then these subdifferentials
are maximal monotone, but their monotone sum S + T, with domain
D (S + T) = C n L --_ ~ (0, 0) ~, is not maximal.

Proo, f : - As in [Ph], p. 54, (S + T) (0, 0) _ ~ (0, y) ; y E R ~, so its

graph G (S + T) is a proper subset of the monotone set ( (0, 0) ~ x R2.
The only use of reflexivity in proving uniqueness of our approximating

operators was in Lemma 4. 3, where it was used to show that a sum

(namely, T-1 + An 1) is maximal monotone. It is conceivable that the

special nature of . I ~) might allow this conclusion without

reflexivity, but the following example shows that, even when T is the
subdifferential of a very simple convex function, this need not be true.

5.3. EXAMPLE. - Let E be a Banach space and suppose that E is not

reflexive, so there exists x* which does not attain its norni. Define
y (~) = ~ ~’*, and let Then T -1 + A,~ 1 is not maximal.

Proof - It is straightforward to compute that
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On the other hand, from the description of A; 1 given at the beginning of
Section 4, and the fact that x* does not attain its supremum on the unit

ball, it follows that An 1 (rx*) _ { 0 ~ for  n. Thus,
and which is not

maximal, it graph being a proper subset of the graph of T -1.
The foregoing example sheds some light on the maximality of "parallel

sums", as defined below. (The terminology arises from analogy with the
formula giving the joint resistance of two resistors in parallel.)

DEFINITION. - Suppose that S and T are monotone operators on E.
Their parallel sum S : T is defined to be the operator (S -1 + T -1) -1. The
domain of this operator is defined (in an indirect way) as the range of
S-1 + T-1, where this latter sum has domain equal to R (S) n R (T).
This notion has been studied by Passty [Pa] and [To], as well as

by [Lu] (who gave a different - but equivalent - definition and used the
terminology "inf-convolution").
Other fundamental questions also remain open in non reflexive spaces;

for instance, rather little is known about the structure of either the range
or domain of an arbitrary maximal monotone operator. Rockafellar 
has shown that in reflexive spaces, both D (T) and R (T) have convex
closures and, as mentioned earlier, Gossez has shown that R (T)
need not have convex closure when but the following question
appears to be open.

5.4. QUESTION. - Suppose that T is maximal monotone on the Banach
space E. Must D (T) be convex?
Note that this is true when T = lf (where f is a proper lower semiconti-

nuous convex function on E). Another result about af (see Corollary 1. 3)
which remains open for general maximal monotone operators leads to the
next question. (Relevant results are to be found in [B-F] and [Ro 1].)

5.5. QUESTION. - Suppose that T is maximal monotone. Is it true that
T fails to be locally bounded at each point of the boundary of D (T)? What
if D (T) is assumed to be convex, or to have convex closure ?
As shown in Section 3, not every maximal monotone operator is locally

maximal monotone, but the following question is open.

5 . 6. QUESTION. - Suppose that f is a proper lower semicontinuous convex
function on the Banach space E. Must the maximal monotone operator

locally maximal monotone? (*)

(*) This question has been answered in the affirmative by S. Simons, "Subdifferentials
are locally maximal monotone", Bull. Australian Math. Soc. (to appear).
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An affirmative answer to this last question would be a generalization
of the fundamental and nontrivial fact that such subdifferentials are

maximal monotone.
Another question arising in this paper is whether Corollary 4. 5 is valid

in nonreflexive spaces; that is, whether the approximating operators in
Theorem 2. 3 coincide with the subdifferentials of Section 1 when
T = of More generally, is it true that the uniqueness result in Theorem 4 . 4
is valid in nonreflexive spaces?
The referee has suggested an interesting question, concerning the possi-

bility of a form of convergence of ~ T~ ~ to T different from the weak*
Mosco convergence of Theorem 2. 3. We first require a definition.

5 . 7. DEFINITION. - A sequence of convex subsets {Cn} of a normed
linear space is said to converge to another convex set C in the bounded

Hausdorff topology if, for every bounded subset A, the Hausdorff distance
from Cn n A to C n A tends to zero. We say that a sequence {Tn} of
monotone operators on E is graph-convergent to the monotone operator
T in the bounded Hausdorff sense provided the sequence G (Tn) of graphs
in E x E* converges to the graph G (T) of T in the bounded Hausdorff
topology.
Note that in using this notion we may assume, without loss of generality,

that the bounded subset AcE x E* is of the form r (B X B*), for some
r&#x3E;O. For more about graph-convergence, see [A-N-T].

5.8. PROPOSITION. - Suppose that T is a maximal monotone operator
on E. The approximating sequence Tn is graph-convergent to T in the
bounded Hausdorff sense if T is either locally maximal monotone or is the
subdifferential of a proper lower semicontinuous convex function on E.

Proof. - Suppose that The key to the proof
is the fact that, in either of the two cases of interest, if n &#x3E; r, then
G (Tn) (~ A = G (T) n A, so that the Hausdorff distance between these sets
is zero. Indeed, one inclusion is valid for any maximal monotone T : if

(x, x*) e G (T) (~ A, then x* e r B * c n B *, so by Theorem 2 . 3 (ii ),
hence (x, x*) E G (Tn) n A. For the reverse inclusion, suppose

that (x, x*) E G (Tn) n A. This implies that I I x* I  rand x* E Tn (x), so if
x* ~ T (x), then by Proposition 1 . 2 (if T is a subdifferential) or

Theorem 3 . 1 (ii ) (if T is locally maximal monotone), we must have
a contradiction which completes the proof.

It remains an open question whether the foregoing proposition is valid
for arbitrary maximal monotone operators.
We next compare our approximation scheme with the Moreau-Yosida

approximations. Because the latter are only defined in strictly convex
reflexive spaces having strictly convex duals, we necessarily restrict our
attention to such spaces. Rather than repeat their definition, we simply
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describe their convergence properties. Now, the Moreau-Yosida approxim-
ations use a continuous parameter ~, &#x3E; o, with X - 0; for purposes of

comparison, we replace A by (Aternatively, one could reverse this; see
below.) One can now formulate the Moreau-Yosida convergence properties
as follows:

5.9. THEOREM. - Suppose that T is a maximal monotone operator on
E, normalized so that 0 E T (0). Then there exists a sequence of single-valued
maximal monotone operators {Tn} with the following properties:

(i) and D(Tn)=Efor each n.
(ii) For each converges in the weak topology to the

unique point of least norm in T (x).
(iii ) For each x ~ D (T), ~ Tn (x) I I ~ oo .
This result should be compared with Theorem 4.1 and Proposition 4. 6.
It is perhaps more illuminating to see what happens when the two

methods are applied to a subdifferential. As we have shown in Section 4,
when T = af, then (ar least for all sufficiently large n) we have 
where fn is the inf-convolution of f and n ~ ~ . In this case, the Moreau-
Yosida approximations become the subdifferentials of the inf-convolutions
of f with the functions (n/2) ~ ~ . ~ I 2.

If, in the original definition of the approximating sequence ( one

were to replace n throughout by l/A and consider ~, ~ 0 +, one would
obtain an approximating family ~ T~ ~ which would have precisely the
same convergence properties as X - 0 + does for n -~ oo . The only
changes would be in Theorem 2. 3 (v) and Proposition 5. 8, where Mosco
convergence (resp. graph-convergence) would have to be reformulated so
as to apply to the continuous family of sets ~ T~ (x) ~, a straightforward
task.

We conclude with some historical remarks about the inf-convolution

approximationsfn to a function f It was first used by F. Hausdorff [Hau]
in 1919 to give a much simpler proof of R. Baire’s [Bai] theorem that any
lower semicontinuous function of a real variable which is bounded below
is in the first Baire class. Hausdorff attributes the definition (with no
bibliographical reference) to M. Pasch. The Hausdorff-Pasch construction
was apparently independently rediscovered and published in 1934 by both
H. Whitney [Wh] (footnote p. 63) and E. J. McShane [McS] who used it
to extend a continuous (resp. Lipschitzian) function defined on a subset
of Euclidean space. [In fact, Whitney (who used an equivalent "supremum"
form of the definition), described the inf-convolution of f with h ( ~ ~ . ~ ~ ),
where h is any continuous nondecreasing real-valued function on the right
half line for which h (o) = o. With h (t) = nt, for instance, one obtains the

fn’s, while with h (t) 1 t2 one gets the Moreau-Yosida approximations.]t ) 
2 A 
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In 1980, J.-B. Hiriart-Urruty [H-U 1] carried out a systematic investigation
of the Hausdorff-Pasch construction for convex functions; the same year,
he, too, used it to extend Lipschitzian functions More recently, it
has been applied by [No] and [Ph], among others.
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