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ABSTRACT. - We consider smooth solutions, to the nonlinear elliptic
system associated with a two dimensional elastic material which has energy
functional

The function H (d) is nonnegative, convex and unbounded in a neighbor-
hood of zero. Two maximum principles are proved for and we show
that if Q’ c c Q then II (03A9’) and ~ DU-1 I (03A9’) are bounded a priori
in terms of ]] and ~ (~) for some p = p (H).
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RESUME. - On considere une solution régulière U du systeme elliptique
non linéaire associe a la fonctionnelle d’energie

en dimension 2, la fonction H etant positive, convexe, et H (t) - + 00
quand t ~ 0 +. On demontre deux principes du maximum et une estimation
de a Finterieur de Q.

1. INTRODUCTION

In this paper we derive several a priori estimates for classical solutions
of certain problems in two-dimensional compressible nonlinear elasticity.
We consider a two-dimensional elastic body occupying a reference

configuration Q in (~2 where Q is an open bounded set with smooth

boundary. We define a smooth deformation of the body as a diffeo-

morphism,

which satisfies R2) ~ C1 (SZ, R2) with det DU = ux vy - uy vx > 0
in Q. We assume that the body is composed of a compressible neo-
Hookean material. Its mechanical properties are then described by a stored
energy function of the form

for 2x2 real matrices with det F > 0 ~ . The function H is
assumed to satisfy the following hypotheses:

1. H E C 3 ((o, oo ))
2. 
3. For some positive constants s, cl, c2, and do,

and k = o,1, 2, 3 .
4. For some constant T and positive constants c3, c4, and dl,
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121NONLINEAR ELASTICITY

Assumption 3 implies that H (t) is proportional to t - S as t ~ 0 + . Thus c
satisfies the growth condition

This condition expresses the notion that it takes an infinite amount of
energy to extend or compress a finite volume of material into zero volume.
(See [1] for a detailed discussion of this condition.)
Under a smooth deformation, a point X in Q is displaced to a point

~ll (X). The total stored energy (neglecting body forces) is given by

where denotes the gradient of ~. By our assumptions on ~, it follows
that U + E 03A6 is also a smooth deformation for any 03A6 E Co (SZ ; R2) and E
sufficiently small. Thus one can compute the first variation of ~’ at ~:

A classical equilibrium solution is defined to be a smooth deformation ~
whose first variation is zero. This gives the Euler-Lagrange equations

For c as in ( 1.1 ) we obtain the system

where This system is elliptic since the strict
Legendre-Hadamard condition

holds for all À, and all The ellipticity is not uniform,
however, since becomes singular at the boundary of 2, i. e.,

and the corresponding infimum is equal to 1 for all F in 2.
Significant progress has been made in finding deformations that solve

elliptic boundary value problems for stored energy functions y whose
structure is compatible with compressible nonlinear elasticity theory. Here
y has two important properties: first, it has the singular behavior described
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122 P. BAUMAN, N. C. OWEN AND D. PHILLIPS

in (1 . 3) and second, it is frame-indifferent ; that is, a rotation following a
deformation leaves y unchanged, so that ,

A class of functions which permits these properties is that of polyconvex
functions defined by Ball [1]. Ball and Murat have shown (see [1] and [3])
that if y is polyconvex and satisfies certain growth conditions, there exists

a minimizer of among all functions ~ in W 1 °2 (~ ; 1R2) satis-

fying det > 0 almost everywhere and taking on prescribed boundary
values. (See Giaquinta, Modica and Soucek [7] for an alternative approach
to such problems.) The function o of ( 1.1 ) is polyconvex and satisfies
(1.6). Moreover, Ball and Murat’s existence theorems apply to

W (U) = 03A9 03C3(DU) dX. However, there are no regularity results to show

that the minimizer lies in a smoother class of functions or that it is in

fact a weak solution to the Euler-Lagrange equations.
The regularity theory for elliptic variational problems in two space

dimensions is developed mainly in the case where y is defined and finite-
valued at all = ~ 2 X 2 real matrices} and y is convex. For

instance if y is C2, D2 y is uniformly positive definite and ] is

bounded, then it is known that any minimizer has Holder continuous first
derivatives in Q. (See [6].) From this point, linear elliptic theory implies
that ~ is as smooth as y allows ; e. g., if y is then the minimizer is

for k >_ 2 and 0  a  1. For the same problem in n space dimensions
where n >_ 3 there are partial regularity results, i. e., any minimizer is

smooth on an open subset Qo of Q with /P (SZ B SZo) = 0 for some p  n - 2.
The condition that y be convex is too restrictive for elasticity since it is

not compatible with the principle of frame indifference (1.6). In fact, for
a as in (1 . 1), D2 a is not positive definite on 2.

In recent work of Evans [4] (see also Evans and Gariepy [5]), the

convexity of y is replaced by a weaker condition related to polyconvexity
and a partial regularity result is obtained. However, it is required that y
be continuous and finite-valued on M 2 " 2 which rules out the singular
behavior of o in (1 . 3).

In all the works cited above where y’ is locally bounded the main idea
is to estimate the gradient of the solution, namely On the other hand

for solutions related to a as in ( 1. 1 ) one must simultaneously estimate
and (DU)-1. Our investigation shows that the special structure of 03C3

allows one to deduce such bounds. As a result, we are able to get a priori
estimates on classical equilibrium solutions of (1.4). In particular, we
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show that if Q’ c c Q then

where c and a depend only on Q, Q’, H, ~’ (~lC), and II for some

p = p (H) with 2  p  oo . (See Theorems 4 . 2 and 5 . 2) Moreover, we show

that the functions, , and z= ’ I ’ 2 where

f (d) = dH’ (d) - H (d), are super and sub-solutions, respectively, for certain
elliptic equations. As a result, they satisfy classical maximum principles
inQ.

It is our hope that the estimates presented here will help to produce a
regularity theory for minimizers of aT’ (~) or aid in establishing the
existence of classical equilibrium solutions by a different approach.
Our paper is organized as follows. Assume ~ is a classical equilibrium

solution in Q and let In Section 2 we show that higher
integrability of d-S can be obtained from higher integrability of D~ ~ 2.
Recall that for d near zero and hence

For any p with 1 p  oo and Q’ cc Q, we prove that

(See Corollary 2. 3.)
In section 3 we prove maximum principles which give global bounds

on ] and (D~) -1 ~ . . Let vl (X) and v2 (X) be the singular values of
at X, i. e., the eigenvalues of [D~ (D~)T) l2 with 0  vl  v2  oo . We

have

Thus it suffices to bound (1 03BD1(X) + 03BD2(X)). We show that the functions
d(X) and z (X) * |DU|2 + f (d), where f (d) = dH’ (d) - H (d), satisfy super2
and subelliptic inequalities, respectively. (See Theorems 3 . 2 and 3 . 6.)
Thus

and

Vol. 8, n° 2-1991.
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From our hypotheses on H it follows that

In section 4 we prove interior estimates. Let Q’ mm Q" c=c= Q and let

16 12 + 16 . Then( ~ J

and

(See Theorems 4.2 and 4.4.) It follows from (1. 7) that

(See Theorem 4. 5.)
Finally in section 5 we prove a Holder estimate of depending only

on infvi and ~32 = sup v2 . Since the system ( 1. 4) is elliptic this is the
Q n

estimate needed to get higher order °‘) interior estimates. We prove
the following Caccioppoli inequality on 

There exists a constant c 1 (fli, P2) so that for any ball B2r (Xo) c SZ we
have

where dX. (See Lemma 5.1.) It then follows from

(1 . 9) and elliptic theory that

for some a>0 where a and c2 depend only on Q, SZ’, H, 11/ (~), and

II c~>. (See Theorem 5 . 2.) From this and elliptic theory we obtain

for any k >__ 2 and 0  1 such that H E (f~+) where c3 depends only
on SZ, Q’, H, ~Y’ (~), ~ and (See Theorem 5 . 4.)
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2. LP-ESTIMATES OF 1
d

In this section we show that if ~ is a classical equilibrium solution, the
Lfoc norm of is bounded a priori by the energy ~’ (~)
and the LP-norm of I2. (See Corollary 2 . 3.) To prove this we use
the following system of partial differential equations which is equivalent
to (1. 4):

The first equation above is the sum of the equations obtained by multiply-
ing ( 1. 4) 1 by ux and ( 1. 4)2 by vx. The second equation is the sum of the
equations obtained by multiplying ( 1. 4) 1 by uy and ( 1. 4) 2 by uy.

Define f (d ) = d . H’ (d ) - H (d ) and note that f ’ (d ) = d . H" (d ) . Let

z = z (X) = - ~ From (2.1) we deduce:

LEMMA 2.1. - Assume G,ll is a classical equilibrium solution. Then
Az = 2 Uxx. Uyy) + 2 (v;y - "xx . vyy).
Proof - Differentiating (2 .1 ) 1 with respect to x, (2 .1 )2 with respect

to y, and adding, we obtain

Now

Combining this with (2. 2) we have

We are now in a position to prove:

THEOREM 2.2. - Assume ~ is a classical equilibrium solution and
~. For any p in (1, oo),

Vol. 8, n° 2-1991.
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where cl and c2 are constants depending only on r, p, and H.

Proof - By direct calculation,

for any C3-functions, u and v. Combining this with Lemma 2.1, we obtain:

where X = (x, y) = (Xl’ x2) and for 1 ~ i, j _ 2.

Now choose ~~C~c(B3r) with 0~~~1, ~=1 on and
r

I D2 ~|~c r2 where c is independent of r. Let (Br) and set

Then

By Holder’s inequality and the definition of w,

where - + - = 1. Hence
~ ~
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From our hypotheses on H [See ( 1. 2)], we have

for d > 0. Since and it follows that

where c3 depends on r, p, and H.
To estimate II, we note that by the Calderon-Zygmund inequality,

and hence

where c4 and cs depend only on p.
By (2.4), (2. 5), and (2. 6), we have

and the theorem follows. D
Our hypothesis ( 1 . 2) implies that

Indeed on this interval H’ (d)  0 so by (1. 2)3

From this and Theorem 2. 2 we have:

COROLLARY 2. 3. - Assume ~ll is a classical equilibrium solution and
SZ’ cc SZ. If 1 p  ~, then

where cl and c2 depend on Q, Q’, H, and p.
Our proof of Theorem 2. 2 used duality and hence it requires only that

~ satisfy (2. 3) in the sense of distributions. As a result, Theorem 2. 2 can
be extended to a weaker class of equilibrium solutions. We conclude this
section by defining the notion of weak equilibrium solutions (due to Ball)
and showing that Theorem 2. 2 holds for such solutions.

Vol. 8, n° 2-1991.
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Our definition is based on the following two results:

THEOREM 2 . 4 (See Ball and Murat [3].) - Let

Suppose E ~ and set

Then ’Y~ (~ll ) attains its minimum in ~ (~o).
The minimizer of in ~ (Uo) satisfies a system of partial differential

equations which reduces to ( 1. 4) for sufficiently smooth solutions. This
follows from:

THEOREM 2 . 5 (Ball). - Assume ~ll = u2) E ~. Then for each ~ in

f~2) there is an Eo>O such that for

where a - cr (D~ll ) _ + H (det and X = (xl, x2). In particular if
2

~ll minimizes ’~’ in ~ (~o), then

in the sense of distributions for k = 1 , 2.
The proof of this result is described briefly in [2]. We prove it an detail

in Appendix A, and we also show that the above system of partial
differential equations simplifies to:

in Q in the sense of distributions where ~=(M~, M~)=(M, v) and

~)=(~~)’
Based on these results, we make the following definition.

DEFINITION 2. 6. - Suppose Then U is said to be a weak

equilibrium solution in fl if 0= d d~ W(U~(X; O)) I for all O in

C~ (Q ; !R~), or equivalently, if (2.8) holds in the sense of distributions.
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By Theorems 2 . 4 and 2. 5, weak equilibrium solutions in j~ always
exist. Differentiating the first equation in (2.8) with respect to x, the
second with respect to y, and adding, we get (2 . 3) in ~’ (Q). From the
proofs of Theorem 2. 2 and Corollary 2. 3 we conclude:

THEOREM 2.7. - Let U be a weak equilibrium solution in S2 with

for some Then and if
S2’ c c Q" c Q,

where cl and c2 depend on Q’, Q", Hand p.

3. MAXIMUM PRINCIPLES FOR z AND d

In this section we prove via maximum principles that if ~ is a classical

equilibrium solution, , the functions 1 _ 1 and z _ 
d det DO 2

attain their maxima on the boundary of Q. As a result, we obtain global
bounds on and I D~ -1 ~ in terms of their boundary values in Q.
Our proof is based on showing that z and d are sub and super solutions,

respectively, for certain elliptic equations. We use the fact that c (F) is
invariant under rotations in the reference and current configurations.
Assume that P and Q are in SO (2), i. e. P and Q are real, orthogonal

matrices with det P = det Q = 1. Assume V E C2 (Br (Xo) ; 1R2) with
det DV > O. Define V (X’) on by

where X = Xo + Q (X’ - Xo). It follows easily that

Hence

From this we obtain:

PROPOSITION 3. l. - Assume ~ll is a classical equilibrium solution in

B,. --_ B,. c Q. Then ~ (X’) - (u (x’, y’), v (x’, y’)) satisfies equations ( 1. 4)
in the variables X’ = (x’, y’) in Br.

Vol. 8, n° 2-1991.
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Proof - From our calculations on o, we have:

for all C in Co (Br ; [R2) and hence

For U as above and Br = Br c Q, we may choose P and Q so
that DOÙ (Xo) is diagonal. Indeed, since det DU(X0) > 0, it has a polar
decomposition: (Xo) = CR, where C is symmetric and positive definite
and Re SO (2). Hence = A PR where P E SO (2) and A is diag-
onal and positive definite. Setting Q = RT PT we have (Xo) = A where

in Br. We use this to prove:

THEOREM 3. 2. - Let U be a classical equilibrium solution and set

Since the Laplacian is invariant under translations and rotations,
Ox z (Xo) = cp (xo). From this, (3 . 1), and Proposition 3 . 1 we may
assume without loss of generality that

with ux > 0 and vy > o.
Consider the partial differential equation for z found in Lemma 2 .1,

namely

At Xo:

where we used ( 1. 4) for the first equality and

for the second. Now
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Solving for vxy in this equation we obtain

By (3 .2) and (3 . 3), we have

Hence

A similar argument gives

Thus H" (d) . I ~ z I2. D

By definition of classical equilibrium solutions, we have f (d), H" (d),
| V f (d) |, and |~ z I locally bounded in Q. From this and Theorem 3 . 2 we
obtain:

THEOREM 3.3. - Assume ~lC is a classical equilibrium solution. Then
z (X) satisfies the strong maximum principle, i. e.

for each X in Q with equality holding if and only if z - constant. Moreover
if z --_ constant then ~ is affine, i. e. ~ (X) = AX + b.

Vol. 8, n° 2-1991.
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Proof. - The strong maximum principle follows from the fact that z is
a subsolution for the elliptic equation, To prove
the second assertion, it suffices to show that if z - constant then D2 ~ = 0
in Q. Fix Xo in Q. From (3 .1 ) it follows without loss of generality that
we may assume (Xo) is diagonal. If z= constant, then By
(3 .4) and (3 . 5), we have

Hence vxy 
= uxx = uxy 

= 

vyy 
= 0 at Xo. It follows that

and

From this and (1. 4) we have D2 u (Xo) = (Xo) =0. D

We now proceed to obtain an elliptic equation for which
d (X) = det (X) is a supersolution. Let F 1 and F2 be linear operators
defined by

v) is a given chassical equilibrium solution. Applying F 1 to
( 1. 4) 1, F 2 to ( 1. 4) 2, and adding we get:

Adding to both sides and using the

identity,

we obtain

Note that L 1 (d) is an elliptic operator. In fact, we have:

PROPOSITION 3 4. - Assume ~ is a classical equilibrium solution. Define

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where 003BD1  v2 are the singular values of In particular,

for all ~ E (1~2 and Ll is an elliptic operator.

Proof - By direct calculation,

and

Since aij is a symmetric 2x2 matrix, its eigenvalues are uniquely determi-
ned by these quantities. Hence

Our maximum principle for d follows from an equation derived
from (3 . 6). We shall need:

LEMMA 3.5. - Assume P and Q are in SO (2) and V E C2 (Br (Xo)).
Define V on Br by V (X’) = P . V (X) where X = Xo + Q (X’ - Xo). Let
V (X) = (u (x, y), v (x, y)) (x’, y’), V (x’, y’)). Then

Proof. - Since QT, we have

and

where

and x2) _ (x’, y’). Hence

where the matrices in brackets are 2 x 2 "block matrices" whose entries
are in 1R2, and the multiplication on the right is defined as in matrix

Vol. 8, n° 2-1991.
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multiplication of three 2x2 matrices. Let the product of two vectors in
f~2 be their inner product. Then

We can now prove:

THEOREM 3. 6. - Assume ~ is a classical equilibrium solution and define
as in Proposition 3.4. Then

and

in Q where M1, M2, and M 3 are universal constants (independent of H, ~,
and Q).

Proof. - First we prove (3 . 8). By (3 . 6) above,

We wish to estimate I from above and we do this in terms of Fix

an arbitrary Xo in Q and choose r > 0 so that BY (Xo) c S2. Recall that
there exists P and Q in SO (2) (depending on Xo) so that if ~

(X’) = P . ~ (X) with X = Xo + Q (X’ - Xo) then (Xo) is diagonal and
positive define. Note that ? (X‘) - det (X’)) = det (X)) - d (X)

From this, Proposition 3 . 1, and Lemma 3 . 5,
we may assume without loss of generality that uy = vx = 0 and

~ ux, vy ~ _ ~ vl, v2 ~ at Xo. By direct calculation,

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Combining with ( 1. 4) we obtain

Now

Evaluating at Xo, we have:

and hence

From ( I . 4) 1 we have uyy 
= - uxx - H" (d ) . dx at Xo. Thus

u y  2. uxx + 2. vy . H" (d)2 . dfl and we get

In the same manner we find

By (3.10) we obtain

at Xo we have vl=min {ux, and

v~ = max {ux, Thus

Vol. 8, n° 2-1991.
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The last term on the right is dominated by

Hence

This proves (3 . 8).
To prove (3 .9) we note that

Combining this with (3 . 8) we obtain (3 . 9). D

The above theorem implies that d is a supersolution for an elliptic
equation in Q. As a consequence we have:

THEOREM 3. 7. - If 0Zt is a classical equilibrium solution, then

for each X in S2 with equality holding if and only if d is constant. Moreover,
in the latter case ~C is affine.

Proof - Since d satisfies (3. 8), the first assertion follows from the

stong maximum principle. If d is constant, it follows from (3 . 8) that

= 0 in Q and hence ~ is affine. D

We note that by (1. 8), upper bounds on and exist if

and only if 1 + is bounded from above. The latter bound follows

from Theorems 3 . 3 and 3 . 7. More precisely, we have:

THEOREM 3. 8. - is a classical equilibrium solution, then

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where 8 is a positive number depending only on f, inf 03BD1, and SUp 03BD2.
~Q c~

Assume d~d>0 in Q and in Q, where d=det (DU)
t D~ !~and z= ~20142014L +~(~). Let v = inf vl and v = sup v~. Since

~ 
~ 

c~n ~n

Hence

It follows that

By Theorems 3. 3 and 3. 7 we may assume without loss of generality that
d >_ v2 and z  v2 + f (v2). Thus

4. INTERIOR ESTIMATES OF z AND 1
d

In this section we prove L°° estimates of z and d 1 (and hence of 103BD1
and 03BD2) in subdomains in terms of Lp estimates of ] in Q.
Our approach is based on an application of the Aleksandrov maximum
principle to local estimates for nonliear elliptic equations due to Trudinger.
(See [9].)
We being by recalling the estimate of Aleksandrov in the two-dimen-

sional case. Let D be a bounded domain in R2. Let (X)] be a symmetric,
positive definite, 2x2 matrix defined for X in D. Set B (X) = det [bij (X)].
If 03C3~C (D) define r to be the upper contact set of cp (X):

for all X in ~ and some P = P (Y)e f~2 ~.
Vol. 8, n° 2-1991.
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The Aleksandrov Maximum Principle asserts the following: Let
2

cp E C2 Co (~) and assume that L l~l in Then
i, j = 1 

’ 

where co is a universal constant. (See Section 9.1 in [8].)
We are interested in interior estimates of C2 solutions satisfying an

inequality of the form

in Q . To this end, let £D = B2r * m Q and define

q (X) = (4 - x _ x ° 
2 

) 2 for X in If Q C (fi) and 03C6=~ w,

then ~p e C~ (B~ ~) Q C~ ( B~ ~) and

in B2 ~. Now

Moreover, Trudinger observed that

[See inequality (10) of [9].] Now let b (X) be the largest eigenvalue of
[bij (X)]. By (4.1) and the above inequalities, we have

where c is a universal constant. Since the Aleksandrov maximum principle
requires such an estimate only on r ((p), we obtain:

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Thus

where ~ is a universal constant.

We use this inequality in two instances: first with ~= - where ~o
d do

is the constant defined in (1.2) and second with w=z= |DU |2+f(d).

As we have seen in Section 3, supremum bounds on these two functions

provide such bounds on 2014 and B~’ In both applications we show that the
~i

integrand in (4.3) can be estimated in terms of - and ~.
d

LEMMA 4.1.2014 classical equilibrium solution in Q and assume

where c is determined by the constants in (1.2).

Proof. - We use c for all constants determined by ( 1. 2). Observe that

By (3 . 7) and (3. 9), we have

Vol. 8, n° 2-1991.
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From ( 1 . 2) we obtain

Now d_ P and so

Thus if w = 1 - 1 we have
d do

Let!!) = B2 r, cp = 11 w, and = By definition of F and since cp = 0
on it follows that r (cp) c ~ w >_ 0 ~ . Hence r and

By Proposition 3 .4,

Hence on r 

Also by Proposition 3.4,

From this (4. 3), (4. 5), and (4. 6) we have

By (4 . 4),

Thus
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The above lemma and Theorem 2. 2 can be combined to prove:

THEOREM 4.2. - Assume ~ is a classical equilibrium solution in S2 and
Q’ ~~03A9. Then

where c is a constant depending on Q’, Q, and the constants in (1.2).

Proof. - Suppose = Q. By Lemma 4 .1 it follows that

where c depends on the constants in (1 .2). Applying Young’s inequality,

namely |ab|~1 |a|p + 1 with p = 6 s + and q = 6 s + 8 we obtain
p q 3s 3s+8

Combining this with Corollary 2. 3 gives the desired conclusion. D

We do a similar analysis to obtain local supremum estimates of z (and
hence of |DU|) in terms of estimates of I I:
LEMMA 4 . 3. - Suppose ~ is a classical equilibrium solution. I, f ’

B2 r ~B2 r(X0) c SZ the unction z X 1 2 + f d satisfies
2

where c is a universal constant.

Proof - By Theorem 3. 2, z satisfies

Applying (4 . 3) with = [~~~] gives the desired inequality. D

THEOREM 4.4. - Assume ~ is a classical equilibrium solution and
Q’ c c S2" c c S2. Then

Vol. 8, n° 2-1991.
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where = max 16 12 + 16 and the constants c and c depend on Q, S2’

Q", and H.
Proof - Since f’ (d ) = d. H" (d ) we have

Now H" (d) ~ d -S- 2 for d _ do and for It follows that

I f (d) >_ cl . d2 . H" (d) - c2 for d _ do or d >_- dl, where c and c2 are positive
constants depending on H. Since H" > 0 and f’ > 0, we obtain:

for all 
Now assume that By Lemma 4 . 3 and the above

estimate on H" d),

where z + = max ~ z, 0 ~ . In B 2 r n { d >_ do ~, d - 4 is bounded above by a
constant. Hence

In B 2 r (~ ~ d __ do ) , we have c 3 _ d - S __ c4 . ~ f (d ) ~ . [See (2 . 7)] . Hence

d - 8 _ c . ~ f (d ) ~ 8~S and
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where c depends on H. By (4. 7) and the above estimates,

Now by Theorem 2. 2, the term on the right is bounded by

The conclusion of the theorem follows from this and (4.8). D

Recall that z= and 1 = 1 .It follows from

Theorems 4.2 and 4.4 that +03BD2 (and hence I and are

bounded on compact subdomains of Q by constants depending on H,

W (U), and where/?= max { 16, 12+ 16 s}. More precisely, we
have:

THEOREM 4 . 5. - is a classical equilibrium solution and Q’c=c=Q,
then

where 9 is a constant depending only on (~), ILp ~~~, H, Q’, and Q.
Proof - Let

where

By Theorems 4 . 2 and 4 . 4 there exists a constant C2>0 depending only
on Q, Q’, and H such that

Let c = 2 c 1 c 2 and c = 1 Then
C1 C2
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Since f is increasing it follows that

The theorem follows if we set 8 = (1 + c) . ,

5. Ck, ex ESTIMATES OF CLASSICAL EQUILIBRIUM SOLUTIONS

In this section we prove a Caccioppoli inequality on D ó/J (Lemma 5 . 1).
As a consequence, we obtain a priori Holder estimates of DU on sub-

domains in terms of =sup and ~2 --_ su p v and
N1 ~ Vi Q’

hence in terms of ~ (~) and ( c~~]. Classical elliptic theory then
provides estimates for k >__ 2 in terms of

Pi. 03B22, ~ H ~ U ~L2(03A9), and II DU~C03B1 (03A9’’).

We denote by the average of F over B~ 

LEMMA 5. 1 (CACCIOPPOLI INEQUALITY ON Let 0Zt be a classical

equilibrium solution and assume that B2 r --_ B2 r c S2". Then

where c = c ((31, 
Proof. - We use M for universal constants and c~ for constants

depending only on ~31 and Let and set

where k is a positive constant to be determined and ~ E Co (B2r) with 11 = 1

on r and ~ - y ~ )~ 1 ~ ) ~ ~ x~ y ~ ~ y~ x ~ ~
r

in Multiplying by cp and integrating by parts, we obtain

The second term on the right is bounded in absolute value by
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Hence

Setting

we obtain

Now

By Theorem 3.6,

To estimate II, we use the fact that

Hence

for any E > o.
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From this estimate and (5 . 2) we get

Combining this inequality and (5.1) we have

Now set k =1 + c2. Then which implies that

Our estimate (5. 3) simplifies to

Observe that if we solve ( 1. 4) 1 for Au and ( 1. 4)2 for Ov, square each
equation, and add the results, we obtain
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It is shown in Appendix B that

Hence

Settin g E = 8 4 we have our assertion. D

The above lemma and the Sobolev-Poincare inequality imply the follow-
ing:

THEOREM 5.2. - Assume U is a classical equilibrium solution and
SZ’ c c SZ. Then

where a and c are positive constants depending only on Q, Q’, H, W (W/),

and I I D* ~Lp (03A9) With P 
= max ( 1 6, 1 2 + 16 s).

Proof. - Without loss of generality assume that Q’ is a Lipschitz
domain. (If not, we can replace Q’ with a Lipschitz domain, Qo, satisfying
Q’ ~03A90 mmo.) Choose Q" and Q"’ so that Q’mmo" ~~03A9 and assume
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By the Sobolev-Poincaré inequality,

where co is independent of r. Combining this with Lemma 5.1, we obtain
the following "reverse-Holder" type of inequality:

where c =c1(03B21, 03B22), 03B21 = inf 03BD1 i and It follows (by
Q’ ,

Proposition 1.1 of Chapter V in [6] and Lemma 5.1) that there exist cons-
tants q > 2 and c2 and C3>0 depending only on Q’, Q", Q"’, ~31 and [i2
such that

By the Sobolev imbedding theorem and the above inequality,

where a =1- 2 and c~ depends only on QB > Q", > SZ"’ > Nl and By
q

Theorem 4.5,

where cs depends only on Q, Q’, Q", Q"’, H, W (U) and ( DU~Lp (03A9). The

theorem now follows from (5 . 5) and (5 . 6). D

We conclude this section with the following results concerning higher
order a priori estimates.

LEMMA 5.3. - Assume ~lC is a classical equilibrium solution, SZ’ c c o,
and a is the exponent defined in Theorem 5.2. Then

where c depends on Q, Q’, H, W(U), II (03A9), and II DU~Lp (03A9) with

Proof. - We observe that ~ satisfies ( 1 . 4) which can be written as
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where (x i , x2) = (x, y), (u i , u2) = (u, v) = W/ and Differentiating
lx~

. 

this system with respect to x~, we have

If we set

becomes

Choose Q" so that Q’ ~~03A9" ~~03A9. Then

where ci depends on Q", Q, H, J%’ (W/), and Indeed we have

cr(F)= |F|2 2 +H (det F). Now HEC3(1R+), U~C1, 03B1(03A9"), anda (F) = - + H (det F) . Now H e C3 (R + ), W/ e C1, 03B1 (Q"), and

Theorems 4.2 and 5.2 imply that

where d, d, and ~DU I Ic« (03A9") depend on Q, Q’, H, W (U), and ~DU~Lp (03A9).
Hence

Moroeover the strict-Legendre Hadamard condition holds:

for all 03BB, 03C0~ R2. [See ( 1. 5)] Thus we can apply the regularity theory
for linear elliptic systems with Holder continuous coefficients (see
Proposition 2.1 and Theorem 3.2 of Chapter III in [6]) to conclude that

and hence

Since ] ~2L2 (03A9")~ 2 . W (U), the theorem follows. D

THEOREM 5.4. - Let ~ll be a classical equilibrium solution and assume
[in addition to ( 1 . 2)] that where k >__ 2 and 0  [i  1. Then
~ E (Q) and for any Q’ c c Q
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- where c depends on k, (3, S2, S2’, H, W (U), ~U ~L2 (03A9), and I ~Lp (03A9) for

Proof - Let I be such that with Q" as in the previous
lemma. Note that if ~ e Cl° ~ (Q", (~2) then e Cl -1 ~ a (Q").
By (5.8) and Theorem 3.3 of Chapter III in [6] it follows that

for R’ =1 ~ 2 and .

~xq 
’

where c[ depends on Q’, Q", p, H, I and I ~ t~"~. From Lemma 5.3

(for l = o) we have

where co depends on Q, Q’, H, W (U), ~U ~L2 (Q)’ (Q)’ The asser-
tion follows by iterating (5 . 9) on nested subdomains. D

APPENDIX

A. Let ~ _ ~ ~ E W 1 ~ 2 (SZ; Dó/J > 0 a. e. in Q and 
where

and Q is a bounded domain in R2. Assume U E A and y (F) is a differenti-
able function defined on 2. In general it is impossible to take a first
variation of W at U with respect to a linear perturbation, that is, to

where C e C1 (Q; [~). In fact it may happen that
dE 

( ) ~~=o o ~ ~ )~ y pp

for each s 5~ 0 the set {X E Q : D + E C) (X) ~ M +" 2 ~ has positive measure.
Hence ~ (~ + E ~) is undefined for On the other hand, Ball observed
that if one considers nonlinear perturbations which amount to deforma-
tions of the interior of Q, then under certain conditions on y the first
variation is well defined. (See [2].)
We prove Ball’s result in Theorem A.l below. In Lemma A.2 we check

that the hypotheses of Ball’s theorem hold for

Finally in Theorem A.3, we show that equations (2. 8) hold for weak
equilibrium solutions when 
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Let y satisfy the following hypotheses:

THEOREM A,I. - Assume Wes/ and y satisfies (A,I). For each
O in C&#x26; (Q; R~) there exists Eo> 0 so that 4Y~ (X) * 4Y (X + E . O (X)) e si for
] E ]  ~0, d d~ W(U~) |~ = o exists, and

where y - y (DGIC), and (xl, x2) = X. Moreover for each j and k
with 1  j, k -- 2 the term in parentheses is summable.

Proof - Let ZE = ZE (X) = X + E . ~ (X). For E sufficiently small Z,(.) is
a C~ diffeomorphism from Q onto itself. We begin by showing that
~E = ~ (ZE) E ~ for E small. Now ~E E W 1 ° 2 (SZ; ~2) and

det (X) = det (Z, (X))] . det DZ, (X).
Since U~A and det DZ~ > 0 in Q for E sufficiently small we conclude that
det D~£ > 0 a. e. in Q. Thus ~ if ~’ (~llE)  oo and E is sufficiently
small, say 
Now

for where X,=X,(Z)=Z~(Z) since is invertible and
hence Now chose so that for all

and all X in Q, where 6 is the constant defined in (A. t). Without
loss of generality assume 8 is so small that ~C~C"’~4 whenever
|C-I|~03B8. Thus 1 16~det Dz-1s~16 for |~|~~0 and

Vol. 8, n° 2-1991.



152 P. BAUMAN, N. C. OWEN AND D. PHILLIPS

We bound this by estimating y (FC) assuming Note that

where C (t) _ (1- t) I + t C and

Since for 1 we have from (A . 1 )3 that

Hence

From this and (A. 3) we have

for where M is a fixed constant. Thus 
Next consider

We apply the dominated convergence theorem to let e - 0 in each of the
above integrals. For the first integral recall that 0  det DZ-~ 1 _ 16 and

_ 8 when E ~ From (A. 4) we have
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where the rightland side is integrable by hypothesis. Thus we can pass to
the limit under the integral. To evaluate the limit we use (A. 1 )2 and the
fact that For any F in M +" 2 and X in Q, we have

where the convergence is uniform for all X in Q. Since Xg = (Z) -~ Z
as 8 --~ 0 for each Z in Q, we conclude that

for all Z in Q. Hence

For the second integral we note that

where the convergence is uniform for all X in Q. Thus

for all Z in Q and

From this and (A. 5) we conclude that the first variation

exists and it is given by (A. 2).
Finally we point out that

for each j and k. Indeed, this is just [ - y. I + D~T . Dy (D~)]k~; from (A. 1 )3
with C = I it follows that this is integrable if ’Y~  oo . D
Next we consider
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with H as described in (1.2).

LEMMA A.2. - Let all F in M~. Then y satisfies
(A.I).
Proof - By (1.2) properties and (A.l)~ hold. Thus we need

only to establish (A. 

Choose 6>0 so that |C|+|C-1|~4 and 1 4~det C~4 whenever

and We have

for all F in M +" 2. Hence

and

for all C and F in M +" 2 with e. It follows that

where M 1 is a fixed constant. Since det F _ I F ~ 2, (A. 1)3 follows if we
prove: There exists M2 > 0 depending on H so that

whenever 1  r _ 4 and d > o.
4

We prove this inequality in two cases, i ~ -1 and T = -1 where T is
defined in (1. 2). Fix r and d as above and assume T 5~ - L By (1. 2) and
elementary calculus it follows that

where cl depends on H. For d sufficiently small or d sufficiently large,

Hence

for all d> 0 where c3 depends on H. By (A. 7) and (A. 8) we have (A. 6)
in the case T 5~ ~ 1.

If T== - 1 we note that by (1 . 2) and elementary calculus,
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and

for all ~>0 and - ~/~4 where ~ depends on H. Hence (A. 6) holds in
the case r = 2014 1. D

Finally we point out the specific form of our equations when

THEOREM A.3. - Assume U~A, = 6 and d Then U
d~

satisfies (2.8).
Proof - By (A.2) of Theorem A.1 we have

for k =1, 2. This can be expressed as

Since

and

we have

where d = det Setting f (d) = - H (d) + d. H’ (d) and (u, v) = ~ we get

and

B. In this section we prove the following result which was used in the
proof of Lemma 5.1.
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THEOREM B.1. - Assume u E W2° 2 (Q), B2r Xo) - B2r c Q, and

E Co (B2r) With ~ ~ ~ ~  c° on Br. Then
r

where cl depends only on co.

Proof. - By approximation we may assume that u E C3 (B2r). Consider
(Du) 2 - ~ uxi xi J. Integrating by parts twice, we have

i, j 
’ ’ ~ ~

for any i and j. Hence for 

Summing on i and j we have

Setting 8 = 1 we obtain
16
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which proves our assertion. 0
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