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ABSTRACT. - We study the asymptotic behavior of positive solutions
of semilinear equations with nearly critical nonlinearity. The solutions are
shown to blow up at exactly one point. The exact rate and location of
blowing up are studied.

RESUME. - On etudie le comportement asymptotique de solutions

positives d’equations elliptiques semi-lineaires présentant une non-linearite
presque critique. Les solutions explosent en un seul point, et on etudie la
localisation de ce point et le rythme d’explosion.

1. INTRODUCTION

Let Q be a (smooth) bounded domain in RN with N~3. Consider the
problem

where p = (N + 2)/(N - 2) and It is well known that when E > o,
problem (1) has a solution M,. On the other hand, when E = 0, problem (1)
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becomes delicate. In [P], Pohozaev discovered that (1) does not have a
solution if Q is starshaped. Recently Bahri and Coron [BC] showed that
(1) has a solution when Q has non-trivial topology in the sense that

Z2) ~ 0 for some positive integer k, where Z2) is the kth
homology group of Q in Z2 coefficients. While Ding [D] showed later that
even if Q is contractible, (1) can still have a solution when the geometry
of Q is non-trivial in a certain sense. p = (N + 2)/(N - 2) is often called the
critical exponent for (1).

It is interesting to study the asymptotic behavior of the subcritical
solutions UE of (1) as E - 0. In [AP], Atkinson and Peletier made the first
study when Q is the unit ball in R~. They showed, using ODE argument,
that

and at any 0 ~ :

In [BP], Brezis and Peletier returned to this problem. They used PDE
methods to give another proof of the above result still for the spherical
domains, along with some other interesting results. They conjectured that
similar behavior occurs also for non-spherical domains but left the problem
open. We solve this problem for non-spherical domains:

THEOREM 1. - Let Ut be a solution of problem ( 1 ), assume

where SN is the best Sobolev constant in RN :

Then we have (after passing to a subsequence):
(i) there exists xo E Q such that as E ~ 0,

and

in the sense of distributions;
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(ii) the xo above is a critical point of cp, i. e.,

where x), x E SZ, and g (x, y) is the regular part of the Green’s
function G (x, y), i. e.,

where aN is the area of the unit sphere in RN.
(iii)

where g = cp (xo) with xo the same as in (i);
(iv) for any xo ~, we have:

with the same g I as in (iii).
Our proof, along the lines in [BP], exploits Pohozaev identity and finds

a good approximation for Ute It is easy to see from our hypotheses that
II u£ ~~~ 

-~ + oo 0. The usual blowing up technique gives us a
rough idea how the solutions blow up, but wP need finer control over the
blowing up. We show xo) for some
xo e S2 in appropriate norms. The proof of this fact uses the blowing up
technique and a certain crucial estimate, Lemma 3 below, which is not
in [BP].
We also prove another related conjecture of Brezis and Peletier:

THEOREM 2. - Let QcRN, N > 4, be a bounded domain with smooth
boundary. Let u£ be a solution of

where p = (N + 2)/(N - 2). Assume u£ is a minimizing sequence for the Sobolev
inequality. Then (i), (ii) of Theorem 1 hold, (iii) and (iv) are modified as:

(iii)
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where g = cp (xo) and

(iv) for any xo ~, we have : .’

Remark 1. - It is easy to see from the maximum principle that cp (x)  0,
V x~03A9 and cp (x) - - oo as x ~ ~03A9, so cp at least has a maximum point.
Generally the number n of critical points of cp depends on the geometry of
Q, but we have:

n~ if 03C6 is a Morse function, with (3i the ith Betti number of H* (Q; Z);
- 

cat (Q),
in general, where cat (Q) is the category number of 03A9.

Remark 2. - When Q is strictly starshaped, we have an easy proof
of (ii).
We learned that O. Rey independently proved results similar to those

of this paper. He uses different methods [R3].

2. PROOF OF THEOREM 1 AND THEOREM 2

Since the proofs of the two theorems are very similar, we will give a
detailed proof of Theorem 1, and indicate the necessary changes when
proving Theorem 2. From now on we will concentrate on Theorem l.

Let uE be a solution to ( 1 ). Multiplying ( 1 ) by u£ and integrating by
parts, we obtain:

Together with the assumption (2), we arrive at:

hence

Next we state the Pohozaev identity for Mg.
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LEMMA l. - Let S2 be a bounded smooth domain in RN, and u be a
classical solution of

Then the following identily holds:

where F (x, u) = u0 f (x, t) dt, Fx is the gradient of F with respect to x, dSx
0

is the volume element of ~03A9, and n is the unit outward normal of aSZ.
The proof is by now standard. Applying Lemma 1 to ( 1 ), we have:

for any 
Next we will study the blowing up behavior of It is easy to see that

as E -~ 0. For suppose, on the contrary, that I ~ ~~~
remains bounded for a sequence En -~ 0 as n -~ 00. Then, in view of the
elliptic regularity theory, remains bounded in C~ (0). So we can extract
a subsequence, still denoted as which converges uniformly to a limit
v. By (4), v ~ 0, hence by taking limit in (2) we find that v achieves the
best Sobolev constant, a contradiction to the well known fact that the
best Sobolev constant is never achieved on a bounded domain.

Let x~ E Q, E R + such that

We first claim that x~ will stay away from the boundary lQ of Q. This is
a consequence of the moving planes method as in [GNN] and an interior
integral estimate of the solutions [DLN]. Let cp 1 > 0 be the principal
eigenfunction of - A. Multiply (1) by 03C61 and integrate by parts:
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where is the principal eigenvalue of-A. Choose b > 0 such that

N (N - 2) bp -1- £ >__ 2 ~,1, we have

for some constants C’, C. Therefore _ which further implies

that C (Q’) for any Q’ c c Q. If the domain Q is strictly convex,

applying the moving planes method in [GNN], there exist toa > 0 depending
on the domain Q only, ruch that u (x - t v) is nondecreasing for t E [o, to],
v E RN satisfying v ~ =1 and (v, n (x)) >__ a and x E aQ. Therefore we can find
y, b > 0 such that for any x E Q: d (z, lQ)  b ~ there exists a measurable
set r x with (i) meas {I-’x) >_ y, (it) z E Q : d (z, ~03A9) > 03B4/2}, and (iii)

any Actually, rx can be taken to a piece of cone
with vertex at x. Let aSZ) > b/2 ~, then for any

hence back to our argument, since u£ - oo as E - 0, x£ will stay out
of the region {z~03A9:d(z, ~03C9)03B4}. For a general domain, one can first
use a Kelvin transform near each boundary point, and then apply the
method in [GNN]. Pick any point P E aQ, for instance. Since we assume
the boundary of the domain Q is smooth, we may assume, without loss
of generality, that the ball B (O, 1) contacts P from the exterior of Q. Let
Wg be the Kelvin transform of uE:

then

where Qp is the image of Q under the Kelvin transform. The conditions
in [GNN] are obviously satisfied along the PO direction, see Corollary 1

on p. 227 of [GNN], therefore w~ is nondecreasing along the PO direction
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in a neighborhood of P. The same argument as in the last paragraph
shows the interior integral estimate.

Let Xt - xo eQ. We define a family of rescaled functions

then

Notice that vE (o) =1, 0  v£  1 for and that SZE converges to RN.
Thus elliptic theory implies { v£ ~ is equicontinuous on every compact
subset of RN, hence by Arzela-Ascoli theorem, there exists a subsequence
converging to some V uniformly on every compact set, and

The solution of (8) is unique [CGS], and

where

Back to the convergence argument, we remark that as E --~ 0, v£ -V in
H1 (RN). This follows from assumption (2) and [S].

COROLLARY 1. - There exists 6 > 0 such that

Proof. - Since ~,E -~ 0 as £ -~ 0, it follows that ~,E _ 1. By the above
convergence argument, v~ ~ V uniformly over B 1 we have, for some C > 0,
that:
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But

Thus with (4), ~ _ ~,E _ 1 as E - 0, for some b > o.
To proceed further, we need the following lemma, adapted from [BP].

LEMMA 2. - Let u solve

t~ is a neighborhood of lo. Then

or q  N 03B1~(0, 1), and ~03C9 is a strict subdomain 
N2014 1

Proo, f . - We first claim that for any q  N/(N - 1 ),

This follows easily, by duality, from the fact that if v satisfies

where fo, f;, ~’= 1, ..., N, e LP (Q), then

for any p > N; in other words ( - 0) -1 maps W -1 ~ p (Q) into L~ (Q) and by
duality, it also maps L 1 (Q) into Wo ° q (S~) with 1 /q + 1 /p =1.
Next we claim that

for any neighborhoods ~’ c c ~ of Let x denote the characteristic

function of 03C9 and write f=f1+f2 with f1=~f and f2=(1-~)f. For

i =1, 2, let ui be the solutions of the problems
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so that 

By the LP regularity theory we have

for any q  oo, and consequently

for any a  1. On the other hand, as above,

for any q  N/(N -1 ). Finally we note that u2 satisfies

It follows from the standard elliptic regularity theory that

for any neihgborhood ~’ of strictly smaller than o. Combine the above
estimates, we prove the lemma.
We also need the following crucial estimate, the proof of which will be

delayed to the next section.

LEMMA 3. - There exists A>O, such that

An immediate consequence of this lemma is a lower bound for ~,£.

COROLLARY 2. - There exists a constant C > 0, such that

Proof. - First we will use Lemmas 2 and 3 to establish the estimate:

Then (9) follows from (6) and (4). According to Lemma 2, it is sufficient
to estimate the right hand side of (1) in L 1 (SZ) and Lemma 3

implies -
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for some C > o. On the other hand, for x ~ xo:

These estimates together with Lemma 2 finishes the proof.

COROLLARY 3 : 1

Proof. - By the theorem of the mean,

for some 0  t  1. Therefore (9) gives the result.
Next we claim

PROPOSITION 1 : 1

in for any neighborhood ~ of lo, not containing xo.

Proof. - The proof again uses Lemmas 2 and 3. The equation for

Now by Lemma 3 and Corollary 3, the L 1 (Q) norm of the right hand
side is

Also for any x ~ xo:

Therefore Lemma 2 gives the conclusion of Proposition 1.
Now we give the proof of Theorem 1.

Proof of Theorem l. - Rewrite the Pohozaev identity (6) as
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Proposition 1 allows us to take limit:

where we also used (4). Then (iii) of Theorem 1 follows from the following
lemma:

LEMMA 4 [BP]. - For every x0~03A9

A consequence of (6) is

Pass to the limit in (10), we obtain

Using the following lemma, we obtain (ii) of Theorem 1.

LEMMA 5 [BP]. - For every Xo E Q

(iv) of Theorem 1 follows from Proposition 1 and (ii). (i) is more or
less standard, see also Remark 3.

Proof of Lemma 4. - Without loss of generality we may assume xo = o.
Let u = G (x, 0), we apply Lemma 1 to u on QBB(0, r) for r small:

Since u = 0 on aSZ,

While

therefore
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Hence

Let r -~ 0, the limit of PHS is easily seen to be - (N - 2)/2 g (0, 0), therefore
we have :

The proof of Lemma 5 follows similarly.
The proof of Theorem 2 is almost identical to that of Theorem 1,

except that the Pohozaev identity appears differently:

3. Proof of Lemma 3

We have seen that

uniformly on compact sets of RN, which, in terms of says u£ -~ in
a certain sens. Lemma 3 makes this precise. We first need:

LEMMA 6. - Let S2 be a domain in RN and ue Ho (Q) be a positive
smooth solution of

where a 2N Then there exist ~0>0 and

depending on and such that for any Q E RN

we have
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with C depending on N only, where Q (Q, r) = Q n B (Q, r).

Proof. - Let r~ be a smooth cut-off function on RN such that

Multiply (11) by r~ 2 u~ (~i > 1 ) and integrate by parts

The integral on the left

By the Sobolev inequality, we have:
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Since q~ 201420142014, we have (q-2)N 2 ~q, choosing ~0 and r0 small enough

such that

then

which implies:

LEMMA 7. - Let u E Ho (Q) be a positive smooth solution of

with a~L03B1(03A9) for some a > N . Then for any QERN
2

where C depends on ~ a ~L~ (03A9), a, N.

This is more or less standard elliptic regularity, see, for instance,
Theorem 8.17 in [GT].
Now we give the proof of Lemma 3.

Proof. - We first remark that Lemma 3 is equivalent to
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Let’s recall the equation for v~

and recall that v£ -~ V in H~ and uniformly on compact sets. Let w£ be
the Kelvin transform of vE:

then

where QE is the image of Q~ under Kelvin transform. Then it is easy to
see that (12) is equivalent to

for some B. Notice that SZ£ is the whole RN except a small region near O
and by definition of w~ and 0 __ vE _ 1, we have

so we only need to bound w~ near O.
We apply Lemmas 6 and 7. First let By

Corollary 1, we see ~~ a is bounded independent of E. That vE -~ V
in H~ norm implies and also w£ -~ V in Lp + 1. So for the
Eo, ro given in Lemma 6, we can find sufficiently small r > 0 such that

Fix r > 0, then Lemma 6 with gives

Then we write (13) as

with Applying Lemma 7 with

(18) with (15) gives (14), which then gives (12), finishing the proof.
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Remark 3. - We can prove (i) of Theorem 1 by following Sacks-
Uhlenbeck [SU] and using Lemmas 6 and 7.
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