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ABSTRACT. - We prove the existence of a minimizer for a multidimen-
sional variational problem related to the Mumford-Shah approach to

computer vision.
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RESUME. - On demontre l’existence d’un minimum pour un probleme
variationnel en dimension n, voisin de celui que Mumford et Shah ont
postule a la base de la vision artificielle.

INTRODUCTION

In a recent paper [M-S], to which we refer for additional information,
D. Mumford and J. Shah suggest a variational approach to the study of
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176 G. CONGEDO AND I. TAMANINI

image segmentation in computer vision. In particular, they prove (see Theo-
rem 5.1 of [M-F] and also [Mo-S]) the existence of minimizers of the
following functional:

where R denotes an open plane rectangle, g is a continuous function on
the closure R of R, vo is a given positive constant and where r, f vary in
a suitable class of curves contained in R and, respectively, in the class of
locally constant functions on RBr.

In the present paper we will prove an existence result for a similar
minimum problem with an open subset of Rn, n >_ 2 as base domain.

According to [DeG], such a minimum problem pertains to the class of
"minimal boundary problems" ; a related problem of "free discontinuity
type" has recently been studied in [DeG-C-L].

Specifically, we shall demonstrate the following:

MAIN THEOREM. - Let n E N, n >-- 2, Q open c R", 0  ~,  + 00,

Then there exists at least one pair (K, u) minimizing the functional

defined for every K closed ~Rn and for every u~C1 (SZ B K) such that

Here we denote by Hn -1 the (n -1 )-dimensional Hausdorff measure in
R" (see § 1 below). Notice the equivalence of conditions 
and ~u~0 in SZ B K to the requirement that u be constant on every
connected component ofQBK.

Regularity properties of the minimizing pair (K, u) will be considered
in a subsequent paper [M-T] (see also [M-S], Theorem 5.2, and [Mo-S],
[Aim], [DeG-C-T], [Tl]). Here we only observe that:

(i) K~03A9 is countably (Hn-1, n -1) rectifiable, i. e. (see e. g. [F], [S])
there exists a sequence { of class C~ hypersurfaces such that

(ii) there exists a new pair (K’, u’) minimizing F which satisfies

and for which there holds
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177MULTIDIMENSIONAL SEGMENTATION

for every x~03A9 ~ K’, where Bx, p denotes the open ball of radius p > 0
centered at x. Notice that, given (K, u), the new pair (K’, u’) is uniquely
determined by the preceding conditions (ii).
We now give an outline of the proof of the Main Theorem.
Firstly, we derive some results concerning partitions of an open subset

Q of Rn in sequences of sets of finite perimeter (among them, a compactness
theorem). Next, we investigate how such partitions are related to the class
SBVloc (Q) of special bounded variation functions, introduced in [DeG-A].
Then we prove the existence of minimizers of a suitable functional G,
defined on locally constant functions of SBV10c (Q).
By a straightforward generalization of results proved in [C-T2] in the

context of "finite partitions", we can show that the jump set of a minimizer
of G is essentially closed in Q. As a consequence, we can prove that G
and F have the same minimum value, and we show that from every
minimizer of G we get a minimizing pair for F and vice versa.
The plan of the exposition is as follows. In section 1 we collect a few

properties of Hausdorff measure, the perimeter of a set, and the space
SBV10c (Q), and we study the relations between partitions in sets of finite
perimeter and locally constant SBV functions.

In section 2 we introduce the new functional G, prove the existence and
closure property of minimizers of G, and conclude the proof of the Main
Theorem. A few explicit examples, showing the effect of dropping the
boundedness assumption on g (the "grey-level image" in applications to
computer vision), are added to the end of section 2.
We observe that the problem treated in [DeG-C-L] is also a multidimen-

sional version of a variational problem suggested by Mumford and Shah
in the context of image segmentation. Moreover, the general philosophy
underlying the papers [DeG-C-L] and the present one is the same: the two
problems have a similar formulation, and both are solved by recourse
to a weak reformulation in the SBV framework, followed by a closure
theorem.

This last point is delicate in both papers, and the methods used in

establishing this result are quite different (though ultimately based on
appropriate decay estimates): they seem not to be conveyable from one
setting to another. Results on harmonic functions, of basic importance in
[DeG-C-L], are often meaningless in our context (we are working with
piecewise constant functions) ; while the recourse to partitions is crucial
here but not appropriate for the analysis of [DeG-C-L].

In conclusion, quoting from [DeG], it can be said that the two works
"show a sort of parallelism", each one exhibiting its own distinct features,
methods and results.

Finally, we would like to thank prof. E. De Giorgi for helpful discussions
during the preparation of this work.
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178 G. CONGEDO AND 1. TAMANINI

1. PARTITIONS IN SETS OF FINITE PERIMETER
AND FUNCTIONS OF CLASS SBV

In the following, we denote by Q an open set of Rn, h >_ 2 and by 
the open ball centered at x E Rn and of radius p > 0: 

When x = o, we write Bp instead of Bo, P. B (Q) is the family of Borel
subsets of Q.
For E and aE are respectively the closure and topological

boundary of E, diam E is the diameter of E and xE its characteristic
function, which is 1 on E and 0 on the complementary set E~. The notation
EccQ means that E is a compact subset of Q.
The Lebesgue measure of E c Rn is denoted by E ; we now recall the

definition of Hausdorff m-dimensional measure in R~‘ (m >__ 0):

where

and where r is Euler’s "gamma function" ; when m is a positive integer,
rom coincides with the m-dimensional volume of the unit ball of Rm

(see e. g. [F], 2 . 10 . 2, [S], § 2) ; in particular: . The following
useful result is proved e. g. in [S], Theorem 3 . 5: 

LEMMA 1 . 1. - Let E E B (Q) and assume that

for every compact K c Q. Then

We now introduce some more notation. The set of points of density
oc E [o, 1] of E E B (Rn) is denoted by E (a):

The perimeter of E in Q is defined by:
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179MULTIDIMENSIONAL SEGMENTATION

and coincides with H" -1 Q) in case of sets with regular boundary
in Q. When P (E, Q)  + oo we say that E has finite perimeter in Q ;
in this case DxE (the distributional gradient of the characteristic function
of E) is a vector-valued measure with finite total variation on Q:

The derivative of DxE with respect to allows one to introduce the
notion of interior unit normal vE to E at any point of the reduced boundary
a * E of E:

there exists

We refer to [DeG-C-P], [G], [M-M] for a complete exposition of the
theory of sets of finite perimeter, we only recall a few basic properties,
which will be useful in the sequel:
Assuming P (E, Q)  + oo we have:

In the proof of Lemma 1.4 below we will use the following result, which
is proved in [DeG-C-P], Cap. IV, Def. 2.1 and Theorem 4. 5 :

LEMMA 1 . 2. - There exist two constants K 1 (n), K2 (n) depending onlyon the dimension n, such that if E E B (Rn) verifies
then

We now define the notion of Borel partition of a given set:

DEFINITION 1. 3. - Let B E B (Rn) ; we say that the sequence { is a
Borel partition of B if and only if

More generally, we could require that when and

I B BU Ej=0, assuming of course Ei c B, V i.

The following Lemma (and subsequent remark) is of basic importance:
roughly speaking, it says that "most" of Q is constituted by "interior"
(density 1) and "boundary" (density 1 /2) points of the sets in the partition,
and that "most" of such boundary points form the interface between
pairs of the partitioning sets. The partition corresponding to the usual
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180 G. CONGEDO AND 1. TAMANINI

construction of the Cantor set [i. e., the sequence of "middle thirds" of
the unit interval (0, 1) c R together with the Cantor set itself] shows the
need of assumption (*) below.

LEMMA 1.4. - Let { be a Borel partition of the open set S2 of Rn,
satisfying

Then:

Proof. - Defining

we have indeed

Moreover, for h - + oo we have

[thanks to hypothesis (*)] and

From ( 1 . 1 ), (1.2), ( 1 . 4), ( 1 . 5) and from Lemma 1 . 2 we thus obtain

which gives (i), (ii), on the account of (1. 6)..

Remark 1.5. - Recalling (1.4), ( 1 . 5), conclusion (ii) of Lemma 1 . 4
also yields:

Annales de l’Institut Henri Poincare - Analyse non linéaire



181MULTIDIMENSIONAL SEGMENTATION

Next we state a theorem which embodies a compactness and a semicontinu-
ity result for Borel partitions.

THEOREM 1. 6. - Let { Eh, }~, ~ i ~h, be sequences of Borel sets
of Rn and, respectively, of real numbers such that

Then there exists a Borel partition ~ Eoo, of o and a sequence ~ 
such that, passing to a subsequence f necessary:

Proof - Denote by ç = { E~ ~ a generic Borel partition of Q satisfying

and by 03C8 a fixed function such that

Rearranging the elements of ç if necessary, we can and shall assume that

It follows that for every je N and every ball B~~03A9

where B) > 0 is such on B. For every j~j0 (depending
only on K3, B) we have thus:

whence

Vol. 8, n° 2-1991.



182 G. CONGEDO AND 1. TAMANINI

owing to the isoperimetric inequality relative to balls in Rn (see [F], [G]).
Going back to (*) we find 

i. e.

where c, c’ denote constants depending on n, K3, B)/.
If we call ~h the partition { of Q given in the Theorem,

then, arguing as above, we can assume that

for every h E N, every ball B cc o and B), with c’
independent of h.

Since by assumption P (Eh, i, SZ) _ K3, d h, i, by a standard diago-
nalization argument (see [DeG-C-P], [M-M]) we can extract from { 03BEh } a
subsequence (not relabeled) such that V i:

as /! -~ + oo.

Clearly, when while for every ball Bc=c=Q and

every j: 
~ 

which on the account of (* *) yields

The sequence {E~, i} is therefore a Borel partition of Q (recall the
comment following Def. 1. 3), and (i), (ii) follow immediately from (* * *)
and the semicontinuity of the perimeter..

Following [DeG-A], we now introduce the space SBV(Q) of special
bounded variation functions Q. To this purpose, we recall some notation.

When u : 03A9 ~ R is a Borel function, x E Q and ~ } we say
that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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for every g E C° (It) ; for z E R, the previous definition coincides with the
one given in [F]. We denote by Su the jump set of u:

For we set 
y - x

When with I v I =1, we say that z is the exterior trace
of u at x in the direction v, and write z = tr + (x, u, v), if and only if

(where. is the inner product in Rn) ; the interior trace is then defined by
putting tr- (x, u, v) = tr + (x, u, - v).
When both traces are finite at x, we can denote by u + (x) the greatest

and by u - (x) the least value of the traces. When and u(x)ER,
we say that u is approximately differentiable at x if and only if there exists
a vector V u (x) E R" such that

in this case, V u (x) is called the approximate gradient of u at x.
In order to study functions taking on a countable number of values,

we introduce some more notation.
When u : SZ --~ R is a Borel function and t E R we set

and say that

Moreover, we set

When t E R, v E R" with we say that

where is the we define similarly
tr - (x, u, v), and denote by u +, u - the greatest and least value between
tr + and tr’.

Vol. 8, n° 2-1991.



184 G. CONGEDO AND 1. TAMANINI

Remark 1. 7. - If u : SZ -~ R is a Borel function, then:
(i) 
(ii) u takes on a finite or countable number of values and coincides

with u Hn-almost everywhere in Q ~ Su ; reciprocally, if u takes on a finite
or countable number of values then u exists Hn-a. e. in Q ;

(iii) When u takes on a finite number of values, we have Su = Su.
As usual, we denote by BV (Q) the space of functions having bounded

total variation in Q:

and

BV (Q) is a Banach space with norm ] u (Q) M (x) + In’ Du |.

Notice that EEB(Rn) has finite measure and finite perimeter in Q if
and only if xE E BV (Q).

Referring to a [G], [F], [M-M] for general properties of BV functions,
we recal that then

(i) Su is countably (H" -1, n -1 ) rectifiable ;
(ii) u + (x), u - (x) exist for Hn-1-almost all x E Su ;
(iii) the coarea formula holds:

According to [DeG-A], we denote by SBV(Q) the space of BV(Q) func-
tions for which (iv) above holds with ~ replaced by the equality sign.
The following useful characterization is a simple consequence of [AI],
Prop. 3 .1:

and

(see also [DeG-A], [DeG]). From this it follows immediately that SBV(Q)
is closed with respect to norm convergence in BV, i. e.
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185MULTIDIMENSIONAL SEGMENTATION

Finally, we say that [resp., if and only if

u E BV (S2’) [resp., u E SBV (S2’)] for every open Q’ccQ.
The following Lemma, analogous to Theorem 3.6 of [DeG-C-L],

relies on the Poincare-Wirtinger type inequality proved in [DeG-C-L],
Theor. 3 .1 and Remark 3.2.

LEMMA 1. 8. - such that ~u=0 a. e. in Q and x E Q

verifies

then Su.
Proof - The inequality of Poincaré-Wirtinger type proved in [DeG-C-L]

states that whenever

then one has

and

where B is a ball in Rn, n >_ 2, KS (n), K6 (n) are positive constants and
where u is a suitable truncation of u and med (u, B) is the least median of
u in B: we refer to [DeG-C-L], § 3, for the precise definitions of these
concepts.

In our case, hypothesis ( * ) implies that d E > 0 a radius 03C1~>0 can be
found such that

Since u E SBV (Bx, P) and V u = 0 a. e. in we then get

provided E is sufficiently small. Reducing E if necessary, it follows that
the median is constant in p, for p small enough:

From (* *) we obtain u (x) = t and the proof is concluded..
As a straightforward consequence of Lemma 1. 8 we have the following

COROLLARY 1. 9. - If u~SBVloc(03A9) is s. t. ‘7 u -= 0 a. e. in Q, then

u ~ Su ~ Q. If in addition (Su n K)  + oo for all compact K c Q,
then Lemma 1.1 gives immediately (Su B Su) = o.

Vol. 8, n° 2-1991.



186 G. CONGEDO AND 1. TAMANINI

The next two lemmas investigate the relation between partitions in sets
of finite perimeter and SBV functions whose approximate gradient vanishes
almost everywhere.

LEMMA 1 .10. - Let { Ui } be a Borel partition of the open set 
and ~ be a bounded sequence c R with ti ~ tj for i ~ j.

and there holds:

(i)

(ii)

Proof. - For h E N define

and observe that

(i. e. ( u - uh (B) 
~ 0, b’ B c c Q), so that [see ( 1.13)] u E SBVloc (Q).

Conclusion (i) is now clear, while (it) follows from Lemma 1.4 and
Remark 1. 5, since

LEMMA 1. 11. - Let u~SBVloc(03A9) be such that ~u=0 a. e. in Q and

(Su)  + ~. Then there exist a Borel partition {Ui} of Q and a
sequence ~ c R with ti ~ t~ for i ~ j, such that

Proof. - Combining Remark 1. 7 (i) and Corollary 1.9 we get, thanks
to the hypothesis Hn - 1 (SJ  + oo :

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



187MULTIDIMENSIONAL SEGMENTATION

so that ic exists a. e. in Q [see (1.10)].
By virtue of Remark 1. 7 (ii) we can and shall assume that

where { ti } is a sequence of distinct real numbers (t; if i~j) and { Ui }
is a Borel partition of Q.

Putting for short

we notice that [see ( 1. 9), ( 1.10)], so that
from ( 1.14), using coarea formula ( 1.12), (iii) and recalling ( 1. 4), ( 1. 5),
we get Vi:

Now Lemma 1.4, applied to the finite partition

of Q, yields V h (see Remark 1. 5):

by virtue of (1.14), (1.15), and (i) follows at once..
Remark 1.12. - In the hypotheses of Lemma 1 . 11 we have therefore,

thanks to ( 1.14) and Lemma 1. 4:

2. WEAK FORMULATION OF THE MINIMUM PROBLEM
AND PROOF OF THE MAIN THEOREM

With the notation of section 1, we denote by G the functional

defined for u E SBVloc (Q) with V u = 0 a. e. in Q, where Q is an open subset
of R", ~, > o, 

First we prove (Theorem 2. 2) the existence of minimizers w of G when
g is bounded, then (Theorem 2. 6) that Sw is essentially closed in Q, and

Vol. 8, n° 2-1991.
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from this we ultimately derive the existence of minimizers of the functional
F of the introduction (Remark 2. 7).

Remark 2 .1. - We have at once G (0) = 03BB In g |p dx  + ~; if moreover

(Q), then

(see [DeG-C-L], Remark 2.2), and any function w minimizing G satisfies

As an immediate consequence of the results stated in the preceding
section (Lemma 1. 10 and 1. 11 and Theorem 1. 6 ; we could also apply
the general compactness and semicontinuity results obtained by L. Ambro-
sio in [Al], [A2]) we obtain the existence of minimizers of G.

THEOREM 2.2. - If Q is open c Rn, n >_ 2, ~, > o, 
g E LP (Q) U L°° (Q), then the functional

achieves a finite minimum in the class of functions u E SBVloc (Q) such that
~ u = 0 a. e. in Q. Every w minimizing G satisfies:

Now we want to prove that the jump set of any minimizer w of G is
essentially closed in Q, i. e. as we shall see later

on, this will enable us to obtain a minimizing pair for F (as will be shown
in [M-T], the sharper result is indeed true, as a consequence
of the local finiteness of the partition { W~ ~ ; this seems however to require
the more complex machinery of Geometric Measure Theory: monotonicity,
blow-up of solutions, etc.).
We recall that and that Hn -1 (Sw B Sw) = 0 [see

Remark 1. 7 (i) and Corollary 1. 9 ; see also Remark 1.12 (i)]. Therefore,
it is clearly enough to prove that n Q) = o. Indeed, we
will prove the sharper result

We think it possible to find a short, direct proof of this fact in this

particular setting (i. e., when w is a minimizer of G), perhaps by simplifying
our subsequent argument. However, formula (2 . 1 ) has a much more
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general validity, and we think it worthy to present a general result of this
kind, which might be useful in other situations.

Before stating this result, we prove that any minimizer w of G satisfies
a certain local estimate, an extended form of which will constitute the
basic assumption enabling us to derive (2 .1 ).

m

PROPOSITION 2. 3. - Let (Theorem 2 . 2) w = ~ be a minimizer
1= 1

of G, call T = ~ so that d = diam T _ 2 ~ ~ g I ~ ~ and fix Q’ open
with Q’ c c Q. Then ‘d A open c c Q’ and d u E SBVloc (Q ; T) with support
(u - w) c A we have:

Here, SBVloc (Q ; T) is the class of functions ue SBVloc (Q) such that
u (x) E T, ‘d x E S2.

Notice that c3 can be made arbitrarily small by reducing .

Proof. - The first assertion is clear, in view of Theorem 2. 2 (iii). Let
A be open c c Q’ and u~SBVloc(03A9; T) with support (u - w) c A ; since

a. e. in Q, from G (w) -- G (u) we obtain

thanks to the which holds
V a, bE R, and (2. 2) follows at once..
We are now in a position to state our general closure result, from which

the essential closure of Sw follows immediately as we have seen. In the
next Theorem, we consider a function w (which could be in particular a
minimizer of G) satisfying a generalization of the local condition (2.2)
[see (2 . 3) below], where terms like (Su n A) are replaced by J (u, A) ;
F is essentially an integral functional of the following type:

with a bounded Borel integrand cp satisfying: 0  c 1 _ cp _ c2  + oo . When
ci = c2 = 1, we reobtain in particular the Hausdorff measure of the jump
set Su.

In addition to the closure of Sw in Q, we will obtain a basic density
estimate.

Vol. 8, n° 2-1991.



190 G. CONGEDO AND 1. TAMANINI

THEOREM 2. 4. - Let S2 be open n >__ 2, let T be countable c R with
d= diam T  + ~, and let us denote by SBVloc (Q ; T) the class of functions
u E SBVloc (Q) such that u (x) E T, V x E Q.

Let

be a functional satisfying the following properties:

~u~ SBVloc (Q ; T), V A open cco, where cl, c2 are constants satisfying
0cl__c2 +o~o;
(P2) IF (u, . ) is a positive measure on B (Q), ~u~ SBVloc (Q ; T) ;
(P3) iF (u, A) = iF (v, A), V A open c c o, V u, v E SBVloc (Q ; T) such that
u(x)=v(x), ‘d xEA.

Finally, let w E SBVloc (Q ; T) be such that

V A open c c Q, ~u~SBVloc(03A9; T) such that support (w - u) c A, where the
constant c3 satisfies 0 _ c3  + oo .

Then, if

(2 . 4)
we have:

(i)
(ii)

We emphasize that a result of this type has already been proven in

[C-T2], Theorem 4.7, in the case when T is a finite set (i. e., when the
partition { associated with w is finite: in that case one has indeed

Sw=SwnQ). See also [C-T1], Section 4. A crucial tool in the proof of
Theorem 2.4 is the following "decay lemma" which, roughly speaking,
asserts that if a certain value tio E T is "preferred" by w in a certain
annulus

[see (2.5) below for the precise meaning of this statement], then the
same value is "even more preferred" in a nested annulus Ar1, S ~~ Ar, s
[see (2 6), (2 7)] . °

LEMMA 2. 5. - With the same notation as in Theorem 2.4, there exist
positive constants ~ and 03C3 (depending only on n, cl, c2, c3 and d) such that
if w E SBVloc (Q ; T) satisfies (2. 3), if c c Q and f for a certain ti0 E T
it holds 

’

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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then there exists rl satisfying ( for sl s):

Notice that no restriction is made on c3 [compare with (2.4)].
Lemma 2.5 is a straightforward adaptation of Lemma 4. 3 of [C-T2]

(which deals with the case T finite ; on the account of Lemma 1.10 and
1.11, its extension to a countable T is essentially a matter of replacing
finite sums by infinite series). We notice that a completely analogous result
(corresponding to Lemma 4. 1 of [C-T2]) can be formulated in terms of
the average Hausdorff measure of the jump set as "decay parameter"
[i. e., using instead 

Proof of Theorem 2. 4. - From (2. 3) we get, recalling (P 1 ):

. 

Since evidently V w = 0 a. e. in Q, from Lemmas 1.10, 1.11 of section 1
we obtain

If now then by definition there exists io E N such that

x E Wio (1); therefore, (2. 5) clearly holds in a suitable annulus Ar, S around
x (we can assume x = 0 and take r = 0 and s small enough). By repeated
application of Lemma 2. 5 we find a nested sequence of annuli (shrinking
to a sphere) where the average measure of the complementary set Wio
tends to zero. Ultimately we find a value r > 0 such that r~~03A9 and
aB c Wio ( 1 ) (see also Lemma 4 . 5 of [C-T2]).

Setting

we deduce [using (2.3), (2.4), (2.8), together with (P1)-(P3) above and
the isoperimetric inequality in Rn] that x rt Sw (see the proof of Theorem 4. 7
of [C-T2] for details). Combining this and corollary 1. 9, we get conclusion
(i) of the Theorem. We obtain (ii) by similar arguments, this time using
the second "decay lemma" [formulated in terms S)]
quoted above.. 

In view of Proposition 2. 3 and the preceding discussion, the results (i)
and (ii) of Theorem 2 . 4 hold for any minimizer w of G. In conclusion we

Vol. 8, n° 2-1991.



192 G. CONGEDO AND I. TAMANINI

then have:

THEOREM 2.6. - In the same assumptions of Theorem 2.2, any w
minimizing G satisfies, in addition to (i)-(iii) of that Theorem, the following
conditions

(iv) w = w ~ 03A9;
(v) liminf (Sw (~ Bx, p) > 0, V x E Sw n Q ;’

(vi) w is constant on every connected component of Q ~ Sw ;
(vii) n Q) B Sw) - o.

Moreover, if w takes on a finite number of values, then:
(viii) Sw = Sw (~ Q [see remark 1. 7 (iii)].
The role played by the assumption g~L~ (Q) in relation to conditions

(vii), (viii) above is discussed in the examples at the end of the paper.
Remark 2.7. - At this point we are in a position to prove that the

functional

where Q is open in Rn, n >_ 2, ~, > o, 1 _ p ~ + oo , g e LP (Q) U L~ (Q), achie-
ves its minimum in the class of pairs (K, u) with K closed c Rn and
u~C1 (SZ B K) such that ~u~0 in SZ B K (in this case, we say briefly that
u is locally constant in Q B K).

Indeed, we notice that
(1) if K is closed in Rn, if u is locally constant in QBK and if v denotes

the truncated function

then

(2) if in addition Hn -1 (K ri SZ)  + oo and if u is bounded and locally
constant in QBK, then u E SBVloc (Q) and satisfies

(in these assumptions we have indeed Su C see [DeG-C-L],
Lemma 2. 3).

(3) if w minimizes G (Theorem 2. 2), then

(see Theorem 2. 6 and Remark 1. 7).
The Main Theorem, stated in the Introduction, follows immediately

from (1)-(3) above. 
-

Specifically, we obtain that if w minimizes G, then w) minimizes F ;
vice versa, if (K, u) minimizes F, then necessarily 
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(since and thus uESBV1oc(Q)
and Su c K n Q [by (1) and (2) above]: it follows that u minimizes G so
that (K’, u’) --_ u) is a new minimizing pair for F, which satisfies all
properties stated in (ii) of the Introduction [recall (v) of Theorem 2 . 6 ;
also recall (1.12) (i), which yields statement (i) of the Introduction].
We conclude the present work by discussing a few examples, showing

that an unbounded datum g can give rise to minimizers w of functional
G satisfying Sw > 0 [compare with (vii) of Theorem 2 . 6].
Example 2. 8. - (a) According to [C-T2], Example (E3) of section 3,

we denote by the open n-ball of radius centered
oo

on the xl-axis, at the point of abscissa 2 - i. Let E = U Bi, so that the
i=0

origin of Rn is a boundary point of E and at the same time a point of
zero density for E itself. Let Q = BR be a ball such that E c=c= Q, 1 _p  + o0
and ~, > o. Setting in B~, g - 0 in SZ B E, we claim that g is the
only minimizer of G, at least when ~, > n.
To this aim, it will be clearly sufficient to compare g with those u which

coincide with g itself on certain balls B;, and vanish on the remaining
balls B;’, as well as on the complementary set E~ (~ Q.
We find:

which proves our claim (by " we mean the sum extended to the indices

corresponding to the balls 
In this way function g defined above [which belongs to Lq (Q), V q  np

as one readily verifies] gives rise to a minimizer w of G for which

(b) By a refinement of the preceding construction we can also determine
a minimizer w of G for which n I > 0. To this aim, we choose
a sequence { of points in R" and a strictly increasing sequence { i (h) }
of positive integers such that for

there holds

(*)
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We give a sketch of the construction required in the case n = 2. As starting
points of the sequence { we choose the vertices of the unitary square ;
then we choose the middle points of the sides and the centre of the square.
Correspondingly, the sequence i (h) is determined by requiring that Bh be
disjonted from the balls Bk (k  h) constructed before.
At this point we repete the procedure in each of the 4 squares thus

determined, excluding from { those middle points and centers which
belong to the closure of balls already constructed.

Setting Q=BR with R such that E cc SZ, ~, > o, 1 _ p  + oo, 
in Bh, g (x) = 0 in QBE, we find by similar arguments as those used in
example (a) above, that for ~, > n the only minimizer of G is g itself, and
that g E Lq (Q), V q  np.

oo

We see that Sg = U and thus I (Sg U SZ) B S9 ~ > 0 thanks to (*).
h=l i
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