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ABSTRACT. - We present a general approach to get the existence of
minimizers for a class of one-dimensional non-parametric integrals of the
calculus of variations with non-coercive integrands. Motivated by the
concrete applicative relevance of the problems, we extend the notion of
solution to a class of locally absolutely continuous functions with generic
boundary values. We extend by lower semi-continuity the functionals and
we prove for them representation formulae. Assuming some structure
conditions on the partial derivatives of the integrand, we obtain some

priori estimates that we use as a main tool to get existence. The
results are then applied to get existence theorems for the classical Fermat’s
problem and for recent optimal foraging models of behavioural ecology.
Key words : Calculus of variations, non-coercive integrals, optimal foraging.

RESUME. - On presente une approche générale pour obtenir l’existence
de minimiseurs pour une classe d’intégrales unidimensionnelles non para-
metriques du calcul des variations avec integrandes non coercitives. En

Classification A.M.S. : 49 A 05, 92 A 18.
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198 B. BOTTERON AND P. MARCELLINI

vue des applications concretes, on etend la notion de solution a une classe
de fonctions absolument continues localement ayant des valeurs aux bords
generiques. On etend par semi-continuité les fonctionnelles pour lesquelles
on prouve des formules de representation. Supposant quelques conditions
de structure sur les dérivées partielles de Fintegrandc, on obtient a priori
des estimations que l’on utilise pour obtenir l’existence. Les resultats
sont ensuite appliques a des exemples classiques (notamment au problème
de Fermat) et a des modeles recents d’approvisionnement optimal en
ecologie du comportement, pour lesquels on demontre des theoremes
d’existence.

1. INTRODUCTION

Most of the classical examples of problems in the calculus of variations
are related to the minimization, in a given class of functions v = v (x), of
one-dimensional non-parametric integrals of the type

Often the problems are non-coercive, in the sense that the function

f = f (x, s, ç) grows (at most) linearly when ] § ) --~ +00. We recall for

example some classical problems (i) to (iii) and recent ones (iv), (v) with
non-coercive integrand (see sections 5 and 6 for more details):

(i) The brachistocrone problem. First considered by J. Bernoulli in 1696,
it is related to the minimization of the integral

in the class of functions v~W1, 1 1 (a, b) such and

b].
(ii) The surface of revolution of minimal area. One is led to minimize

the one-dimensional integral

in the class of functions b) such that v (a) = A, v (b) = B and
b].
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199NON-COERCIVE INTEGRALS

(iii) Fermat’s principle in geometrical optics. The problem is to find the
trajectory v = v (x) of a ray of light propagating in an inhomogeneous
medium, so that the time F = F (v) required to travel from the point (0, So)
to the point (1, Si) is minimal. It consists then in the minimization of

in the class of functions v E W 1 ° 1 (o, 1 ) such that v (0) = So, v ( 1 ) = S 1 and
v (x) >_ 0 for x E [o, 1 ] . The coefficient a = a (x, s) is equal to the inverse of
the velocity of light in the medium and is proportional to the index of
refraction. Of course, the integrals (1.2) and (1.3) are particular cases
of (1 . 4).

(iv) Adiabatic model of the atmosphere. This model, considered recently
by Ball [6], predicts a finite height to the atmosphere. The problem consists
in the minimization of

in the class of functions v E ~JV 1 ° 1 (o, 1 ) such that v (0) = 0, v ( I ) = h and
v’ (x»O for a. e. x E [o, 1 ]. The positive constants po, ro, y > 1 and hare
gas constants and g the gravity constant.

(v) Models in behavioural ecology. This variational problem appears in
models of optimal foraging theory and has been first considered by Arditi
and Dacorogna [2]. The problem is related to the minimization of an

integral of the type

for p > 1, in the class of functions such that v (0) = 0,
v ( 1 ) = S > 0 and v’ (x) >__ 0 for a. e. x E [0, 1 ] . In this case the integrand is
bounded (and therefore non-coercive) with respect to v’ >_ 0.
The classical problems (i) and (ii) have been extensively studied each

by itself, by considering the special structure of each integrand f; one can
see for example [12], [32], [33] (see also the recent paper [14] for the

brachistocrone). Up to now, an existence theorem for Fermat’s problem
(iii) seems not known. The more recent problem (v), motivated by models
in behavioural ecology ([2], [3], [4], [9], [20]), has been considered in [8],
[10], [11] for some functions p (x) and h (x).
Up to now, a general theorem for the minimization of non-parametric

non-coercive integrals seems not known. An approach that has been

already used in the literature consists in proving that a related parametric
problem has a solution that, in some cases, is also a minimizer of the
original non-parametric integral. Problems of slow growth are treated with
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this method in chapter 14 of the book of Cesari[12]. However, with this
method, it is not possible to handle most of the applications and many
classical examples, as the integral ( 1. 3) of the surface of revolution of
minimal area, which is a particular but relevant example of our approach.

In this paper, we present a general approach to get the existence of
minimizers for a class of one-dimensional non-parametric integrals of the
calculus of variations. We shall show (theorems 4.1, 4 . 3 and 4.4) that it
is possible not to assume that the problem is coercive, by assuming instead
some structure conditions on the partial derivatives of f [see in particular
(3.5) and (3.7)]. We then apply the general results to solve the classical
Fermat’s problem (iii) (see theorem 5.1) and to obtain a new existence
theorem for some models in behavioural ecology including (v), under new
assumptions relevant and natural in the specific application (theorem 6 .1 ).
We first introduce a natural extension of the notion of solution. We

consider the class of locally absolutely continuous functions v with generic
boundary values v (a) and v (b) (and not necessarily the original prescribed
values A and B) and we extend to this class the given integral
functional F (v) "by lower semicontinuity".
Under assumptions general enough to be verified in many applications

including the above examples, we prove in section 2 that the extended
functional F (v) has an integral representation. By using then the 
a priori estimates given in section 3, we propose in section 4 three existence
theorems including the non-coercive case.

Let us rapidly describe what we obtain by considering again the example
(ii) of surfaces of revolution of minimal area. It is well-known that the

integral F in (1.3) has no minimum in the Sobolev class of functions
b) such that v (a) = A and v (b) = B, if b - a is too large with

respect to A and B. But geometrically and physically (and also analytically,
by considering integrals in parametric form), there always exists a surface
of revolution of minimal area whose shape u is either a catenary (Fig. 1),
or equal to zero in the open interval ]a, b[ (Fig. 2).

In the case of Figure 2, the surface of revolution is the union of two
disks perpendicular to the x axis, of radius respectively A and B, positioned
respectively at x = a and x = b. The extended functional F at u turns out
to be equal to the sum of the areas of the two disks, while ingenuously
we could have taken as an extension F = F and obtain F (u) = 0 (if we
defined the extension F as F itself for all v E we would then obtain
that u = 0 is always the minimizer of F among functions with generic
boundary values).
We consider again example (ii) together with some other classical exam-

ples [including the preceding ones (i) to (iv)] in section 5. In particular,
with theorem 5.1 we obtain an existence result for Fermat’s problem (iii)
that, to our knowledge, is new. In section 6, we prove an existence theorem
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Fig. 1 Fig. 2

for the ecological problem (v) under assumptions that are new with respect
to [11] ] and that are natural in the application.

° 

From a mathematical point of view, the solutions we find are those of
an extended (or relaxed) problem. But at least for the cases that we
consider in sections 5 and 6, they have a concrete applicative (geometrical,
physical or ecological) relevance in the sense that it is meaningless, from
the point of view of the applications, to discriminate if they assume the
boundary data or not.

Let us conclude this introduction by recalling that in the extension from
F to F, we follow a scheme that already exists in the literature. Since
Lebesgue [22], it has been considered by De Giorgi, Giusti, Miranda
([19], [27]), by Serrin [30] and many others (for example [16], [18], [24],
[28]; see also the relaxation procedure by Ekeland and Temam [17]). In
particular Dal Maso [16] considers the extension of an integral functional
to BV(Q), the space of functions of bounded variation, where Q is an
open set of ~", with n _> 1. Our extension in section 2 is related to his
extension, but for n =1, our more general assumptions are satisfied in
particular by problems like the above (i) to (v). Finally, let us mention
that a similar extension procedure has been recently considered by Marcel-
lini [26], to treat the phenomenon of cavitation in nonlinear elasticity.

2. REPRESENTATION FORMULAE FOR EXTENDED
FUNCTIONALS

Let us consider non-coercive functionals of the type

defined for functions v : [0, 1] - R belonging to a subset ~l~’p of W 1 ~ p (o,1 ),
the usual Sobolev’s space, for p >_ 1.

Vol. 8, n° 2-1991.
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For functions belonging to if’p, i. e. the closure of 1f/p in 
with respect to its weak topology, let us define the weak lower semiconti-
nuous extension F of F by:

We are then concerned in this section with finding a representation formula
of F for different choices of ~’p.
We first consider the following subspace ~’p of functions satisfying

boundary conditions:

where So, and we give the representation of F in theorem 2 .1. In
this case, (0, 1) and we define the values at x=O and at x= 1
of a function v E if’ p by:

In principle v(0) and could take infinite values, but, with the
assumptions we shall make, we can restrict ourselves to the case where
they are finite. We shall make the following assumptions:
(2 . 5) f =. f ’ (x, s, ç) is a Caratheodory function defined in [0, 1] 

convex with respect to ~;
(2 . 6) there exist a constant K 0, a convex function h = h (ç) and

continuous functions a = a (x, s), b = b (x, s) such that, for every
(x, s, ~) E [0,1 ] X ~ x l~:

(a) a (x, s) h (~) - K _ f (x, s, ~) _- a (x, s) h (ç) + b (x, s),
(b) ~ ~ ~ ~ h (~)~
(c) either a = a (x, s) is bounded from below by a positive con-

stant, or a = a (s) is independent of x and is positive a. e. in ~.
We shall furthermore use the following notations:

Since h is convex, the limits in (2 . 8 a) exist in R U { + only for the
sake of simplicity, we shall assume that:

THEOREM 2. 1 (Representation in the unconstrained case). - Let F, F
and be defined respectively by (2 . 1 ), (2. 2) and (2. 3), for p >-_ 1. Under
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assumptions (2 . 5), (2 . 6) and (2. 8), for every v E ~p = (0, 1 ), the follow-
ing representation formula holds:

Note that in (2 . 9), we write by abuse of notation F (v) instead of

Remark 2. 2. - Assumption (2. 8 b) is not necessary in theorem 2 . 1.

With a similar proof, without assuming that h + = h _ , we would get, instead
of (2. 9):

where [t] + and [t] - denote respectively the positive and negative parts of
t-[t]+_[t]_.
Remark 2. 3. - Following the same proof of theorem 2 .1, other growth

conditions than (2.6) can be considered to obtain (2.9). Motivated by
integrals of nonlinear elasticity (e. g. [5], [26]), we could replace (2 . 6 a) by:

where a, P, and a, (3 > q -1.
For some applications, we next consider the same representation prob-

lem for another subset ~"p of W 1 ~ p (o, 1 ), namely for functions satisfying
boundary conditions and a supplementary monotonicity constraint:

where and p >__ 1. The weak closure of ~p in WfdcP is in this case

and with the monotonicity constraint, the values at x = 0 and at x =1 of
v E are defined naturally respectively as the infimum and the supremum
of the values v (x) for x E ]0, 1 [.

THEOREM 2.4 (Representation for constrained problems). - Let F, F,
and ’~p be defined respectively by (2 . 1), (2. 2) and (2 . 12), for p >_ 1. The
representation formula (2. 9) holds, under (2. 5), (2. 8) and under the follow-
ing assumption:

(2 . 14) there exist a non-negative convex function h = h (~),
continuous functions a = a (x, s), b 1= b 1 (x, s) and b2 = b2 (x, s) with
a >__ 0 such that, for every x E [0, 1 ], s E (~, ~ >_ 0 :
a (x, s) h (~) - b 1 (x, s)  f (x, s, ~) _ a (x, s) h (~) + b2 (x, s).

Vol. 8, n° 2-1991.



204 B. BOTTERON AND P. MARCELLINI

Proof of theorem 2 .1. - Let v E ’~’p be fixed with p >_ 1. If v E ’Y~~’p, the
result F = F follows immediately from the weakly lower semicontinuity of
F in We shall separate the problem at x = 0 and at x =1. For
simplicity, let us assume that and let us consider the general case
at x = 0, the other cases being similar. We ha ve then to show that:

In a first step, we show the inequality ~ in (2.15). Let us fix any
sequence (vk) c with vk weakly converging to v in such that, up
to a subsequence still denoted by (vk) :

From the definition (2.4), there exists a sequence (x,,) c ]o,1 with x~ -~ 0
such that lim v (x~) = v (o). Moreover, from (2 .16), for every fixed v,

~ -. + 00

lim vk(x03BD) = v There exists then k03BD such that (x,,) - v (  1/v.
k -~- + ~o

Therefore, we have that:

and we hence get a sequence c ]o,1 and a subsequence of (vk)
that we denote by (vv) such that:

We then have

(2.18) lim inf F (vk) = lim F (v~)

For fixed vo, the last integral term in (2.18) becomes greater than

by the weak lower semicontinuity, since f (x, v, . ) is convex. Letting then
vo - + oo, we get 

.
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With (2 . 6 a) and the Jensen inequality in a generalized form (see e. g. [26]),
the first integral in (2.18) becomes

where the following notations have been introduced:

Let us separate the two cases in (2 . 6 c). If a (x, s) is independent of x,
we have, with (2 . 7), that V~ = A (o, v~ (x~)) - A (0, v,, (0)), and then, with
(2 .17) and since v,, (0) = So, that

With (2. 6), we furthermore have that

If + oo, the inequality in (2.15) would be obvious. Let us
v

suppose then that lim F(03BD) is finite. With (2.24), we get the uniform
v

boundedness of (~) in L~ (0,1) with respect to v, since A is strictly
increasing.

If a (x, s)~ c > 0 depends on x and s, we have, with (2.6), that

Thus in this case, is uniformly bounded in WI, 1 (0,1) and in L~ (0,1).
With the uniform continuity of a in [0, 1] x we

v v

have that for E > 0 being fixed and v sufficiently large:

Vol. 8, n° 2-1991.
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We hence get (2.23) in that case too. If the limit in (2.23) is different
from zero, since a is bounded in we

v v

have that t03BD in (2. 22) goes either to +00 or to -~. Since t03BD has the
same sign as V,"

Hence, by (2 . 21 ),

which concludes with (2. 18) and (2. 20) the first step of the proof.
In the following second step, we show the inequality ~ in (2. 15). To

do that, we consider a particular sequence in the definition (2.2) of F in
the following way. From the definition (2 . 4) of v (0), we know that there
exists a sequence (xk) c ] 0, 1 [, with xk ~ 0, such that v (xk) - v (0). We then
consider the following sequence (vk) c 

With this choice, obviously vk weakly converges to v in as k -~ 00.

From the definition (2 . 2) of F,
F (v)  lim sup F (vk)

From (2.6):

But with the continuity of b,

We hence obtain the result, following the same kind of computations as
in the first step, for the particular sequence (vk). This concludes the second
step and hence the proof of the representation formula (2. 9). D

Proof of theorem 2 . 4. - We can follow the beginning of the proof of
theorem 2.1, up to (2.20). With (2.14), we should now replace (2.21)

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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by:

where V03BD and t03BD are defined by (2.22). With the monotonicity constraint
e. in the definition (2 .12) of ’~p, we get that

i. e. the uniform boundedness of the sequence (v") in W 1 ~ 1 with respect to
v. The last integral term in (2 . 28) being bounded since b 1 is continuous,
we hence get (2.26) and then (2.23). We then conclude like in
theorem 2.1. 0

3. A PRIORI ESTIMATES

We are concerned in this section with proving a priori estimates for the
solutions of the standard coercive variational problem

where So, and f = f (x, s, ~) is a non-negative function of
class C2 satisfying the following assumption: there exist K ~ 0, m > 0 and
an increasing function M : f~ ~ f~+ such that, for every
(x, s, 

where fs a . .f Let us recall that under ( 3.2 ) and ( 3 .4 ), problem (3 .1 )as
has minimizers in p (of course, they also belong to C° ([o, 1 ]), by the
imbedding theorem). We now state the first of the two a priori estimates’
theorems that we shall use in the existence theorems of the next section.

Vol. 8, n° 2-1991.
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THÉORÈME 3.1 (First a priori estimates’ theorem). - Let

f E C2 (]o,1 [ x l~) satisfy (3. 2), (3. 3) and (3 . 4). Let us assume that
the function cp, defined by

Then, every minimizer u of (3 .1 ) satisfies the following estimate

We state a second theorem in the case where cp has not necessarily a
definite sign.

THEOREM 3 . 2 (Second a priori estimates’ theorem). - Let

f E C3 (]o,1 [ X (~ x (~) satisfy (3 . 2), (3 . 3) and (3 . 4). Let us assume that for

ever ~ E 0 1 and for ever r >_ 0,
there exists Ko = Ko (b, r) >_ 0 such that for every
(x, s, ~) E [b, 1- ~] x [ - r, r] x ~with ~ ~ I > Ko,

(3. 7) if cp (x, s, ~) = 0, then (x, s, ~) > 0,
where cp is defined by (3. 5) and ~r is defined by

~ (x~ s~ ~) - ~Px (x~ s~ ~) + (x, s~ ~)-
Then, every minimizer u of (3 .1) satisfies the following estimate

We shall use theorems 3.1 and 3 . 2 in section 5 for classical examples and
in section 6 for models in behavioural ecology.

Remark 3 . 3. - Assumption (3 . 7) is satisfied if, for example, cp is
different from zero for I ç sufficiently large.
Proof of theorem 3 . 1. - Let be a minimizer of (3 . 1 ). The
convexity of f (x, s, ç) with respect to § and the condition (3. 2) ensures
(see lemma 2.1 in [25]) that

for every (x, s, ç) E [0, 1] x I~ x R and for some C > o. Then, with (3. 3), u
solves the Euler equation of F in the weak form (this is classical, see e. g.
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theorem 1.10 .1 in [28] or section 3 . 4 . 2 in [15]):

But since f E C2, then u E C2 and u solves the Euler equation of F in the
strong form (see [28] again):

which can be written, since u, f E C2 :

where cp is defined by (3. 5). With (3.4) and (3. 5), u is either convex or
concave in [0, 1]. Let us assume that and that u is convex in
[0, 1], the case and u concave being similar. Using the well-known
monotonicity of the differential quotients of a convex function, we have
that for 

Choosing y = 0 and z = 1 in (3 .10), we get for x E )~, 1- b[, where

We hence get (3 . 6), which concludes the proof of theorem 3 . 1. D

Proof of theorem 3 . 2. - Let u E P be a minimizer of (3 .1 ) and let r
in (3 . 7) be equal to ( ~o,1 ~. The following lemma 3 . 4 characterizes
the concavity or convexity properties of u that we need to prove
theorem 3.2:

LEMMA 3 . 4. - Let be a minimizer of (3 . 1 ). With the

assumptions and the notations of theorem 3. 2, for every E ~ ~ 2 1 fixed,
there exist x1, x2 with 03B4~x1 _- x2  1-03B4 such that:

(I) I u’ (x) every x E] xl, x2[,
(II) ( u’ (x) ( > Ko, for every x E ]b, xl [U] x2, 1- b[.

Moreover,
(III) f u’ (x) > Ko [resp. u’ (x)  - Ko] in ~~, x 1 [, th.en - u is concave (resp :

convex) in ]b; xl [,

Vol. 8, n° 2-1991.
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(IV) (x) > Ko [resp. u’ (x)  - ]x2, 1- ~[, then u is convex (resp.
concave) in ]x2, 1- ~[.
We shall first achieve the proof of theorem 3 . 2 and then we shall prove

lemma 3.4. Let us use the statement of lemma 3.4 with 8 replaced by
b/2 and r). 1- x2 ~, then ]b, 1- ~[ ~ ]xl, x2[;
thus, with assertion (I) of lemma 3.4, there is nothing more to prove,
since ( u’ (x) _ Ko, for every x E] b, 1 - b[. If b  max ~ x 1; 1- x2 ~, then it
remains to be proved the pointwise a priori estimate (3. 8) on the set

]b, xl [U] x2, 1- b[. Let us assume, for example, that 03B4x1 and let us
prove the estimate in the interval ]b, xi [ (the case 1- ~ > x2 being similar).
With assertion (II) of lemma 3 . 4, u’ (x) is either larger than Ko or smaller
than - Ko in ]b/2, since u’ is continuous. If for example u’ (x)  - Ko
in ]b/2, xl [, then with (III) of lemma 3 . 4, u is convex in ]~/2, x1[ and thus,
like in the proof of theorem 3.1, from the left handside of (3 . 10) with
y = b/2, we have

and hence (3 . 8), since x > b, which concludes the proof of
theorem 3 .2. D

Proof of lemma 3 . 4. - Like in the proof of theorem 3 .1, since now
f E C3, then u E C3; differentiating (3 . 9) we get:

for every x E] 0,1 [, where cp and 03C8 are respectively defined by (3 . 5) and
(3 . 7).

Let 8 E 0, - be fixed. Let us define the following subset of 8, ~ 1 - 8 [:

where Ko is given by (3.7). If ~J is empty, the lemma is proved by
choosing xl = 5 and x2 = 1 - ~. Suppose then that qy is not empty and
define the subset iT of ~J:

If iT is not empty, consider x E!Z. From (3 . 9), cp (x, u (x), u’ (x)) = 0
and with (3 . 7), (x, u (x), u’ (x)) > 0. From (3 . 4) and (3.12), u’ (x),

u (x), u’ (x)) and u"’ (x) have the same sign. Hence if x one of
the two following assertions is verified:

(i) u’ (x) > Ko, u" (x) = 0, u"’ (x) > 0 and then u’ has a strict local mini-
mum at x,

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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(ii) u’ (x)  - Ko, u" (x) = 0, u"’ (x)  0 and then u’ has a strict local max-
imum at x.

Suppose that = ] b, 1 - 8 [ and let us analyze only the case of a point
satisfying (i) [therefore u’ (x) > Ko], the case (it) being similar. The

point x must then be a strict global minimum of u’, since, if it were a strict
local (but not global) minimum, it would imply the existence elsewhere of
an interior local maximum. For the same reason, x is the unique minimum
point of u’ in ] ~, 1- ~ [. Thus, we can choose x = x2 = x and u’ is decreas-
ing in ] b, xi [ (i.. u is concave) and u’ is increasing in ] x2, 1 - 6 [ (i. e. u is
convex) and the lemma is satisfied.

Suppose now that ~J ~ ] ~, 1- b [. The set of points xe]8, 1- b [ such
that I u’ (x) _- Ko is an interval, since, if not, there would exist either a
local maximum point x of u’, with u’ (x) > Ko, or a local minimum point x
of u’, with u’ (x)  - Ko, which is in contradiction with (i) or (ii). Let us
define

and

In this case, ~J = ] ~, 1- ~ [ and (I) and (II) of the lemma are
satisfied. Since ~ is empty, then u" has a definite sign; if ] b, xl [ is not

empty, then u’ is decreasing [if u’ (xl) = Ko] or increasing [if u’ (xl) _ - Ko]
in ] ~, xi [ and (III) and (IV) are satisfied. This concludes the proof of the
lemma, since a similar analysis holds for x2, 1 - 8 [. 0

Remark 3.5. - In the proof of lemma 3.4, in particular in (3.12), it
is sufficient to assume that the third derivative f~~~ exists almost everywhere
and is locally bounded in R, instead of being continuous. We shall use
this remark in the proof of theorem 6.1.

4. EXISTENCE THEOREMS

In theorem 4.1, we shall assume the following growth conditions on f,
stronger than (2. 6) :
(4 . 1 ) there exist L, K ~ 0, p >_ 1, a convex function h = h (~), and continu-
ous functions a = a (x, s), b = b (x, s) such that, for every
(x, s, ~) E [0, 

(a) a (x, s) h (~) - K -_ f (x, s, ~)  a (x, s) h (~) + b (x, s),
(b) 
(c) either a = a (x, s) is bounded from below by a positive constant, or

a = a (s) is independent of x and is positive a. e. in (~.
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THEOREM 4 . 1 (Existence in the unconstrained case). - Let f = f (x, s, ~)
be a convex function with respect to ~, satisfying (4. 1) and (3.3). Let us
assume that either f E C2 and (3. 5) holds or f E C3 and (3. 7) holds. Then
the variational problem related to the function F in (2. 9):

admits a solution, which belongs to (0, 1 ).
Remark 4 . 2. - Instead of (4 . 1 b) [and also of (2 . 6 b)], we could assume

that there exist exponents p >_ r >__ 1 such that

In this case, we should simply change in the proof (4. 12) [and similarly
(2.24)] with

where B (s) = [a dt; (4 . 4) is a consequence of Holder inequality.
so

A similar result holds under the constraint v (x) >_ 0 for x E [0, 1]:

THEOREM 4. 3 (Existence for the constrained problem v > o). - Let

f= f (x, s, ~) be defined in [0, 1] x [0, + o~o [ x f~ and let it satisfy the same
assumptions of theorem 4 . 1 for every x E [0, 1], ~ E ~, but only for s >_ o. if
(4. 5) f (x, s, ~) = f (x, s - ~), for every (x, s, ~) E [0, 1 ] X [0, + oo [ x f~,
then the variational problem related to the functional F in (2.9), with So,

0 :

admits a solution, which belongs to (0, 1 ).
We state a third existence theorem with the constraint v’ (x) >_ 0 a. e. in

[0, 1] under the following growth conditions of f, more general than (4 .1 ):
(4. 7) there exist L, K ~ 0, p >_ 1, a convex function h = h (~), and continu-
ous functions a = a (x, s), b = b (x, s) such that, for every

THEOREM 4.4 (Existence for the constrained problem v’ >_ 0). - Let

f= f (x, s, ~) be a convex function with respect to ~, satisfying (4 . 7) and
(3. 3). Let us assume either that f E C2 and (3. 5) holds or f E C3 and (3. 7)
holds. Then the variational problem related to the functional F in (2.9),
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with So  Sl’

admits a solution u E (0, 1 ) which satisfies the estimate

[Ko = Ko (b/2, r) is given by (3 . 7) with |S0 |; I 

Remark 4. 5. - Instead of the constraint v’ (x) >_ 0, one could consider
v’ (x) >_- a or v’ (x) -- b for some a, b E R and apply theorem 4 . 4 after change
of variable. Of course, the existence theorem in the case of a constraint

a _ v’ (x) _- b is trivial.

Remark 4. 6 (Example of non-existence). - The Weierstrass functional

has no minimizer in the class (A  B given):

This is well-known and can be proved by observing that for every
v E ~2 and that F (vk) - 0 as k - + oo, where vk is constantly equal to A
in [- 1, 0], is equal to B in [ 1 /k, 1] ] and whose derivative is equal to

k (B - A) in ] 0, 1 /k [. Since h = + oo, then F = F if the boundary values are
satisfied and F = + oo if not. Then, neither the variational problem

has a solution. Note that the main assumptions of theorem 4.4 [either
(3 . 5) or (3 . 7)] are not satisfied, since cp = - 4 x ç 4 ç.
Proof of theorem 4 . 1. - We shall add a coercive ~-term of f to apply

one of the a priori estimates’ theorems of section 3. Let us fix E E 0, 1 ]
and let us define, for (x, s, ç) E [0, 1] x R x R:

where q = p if p> 1 or q is any number strictly greater than one, if p = 1.
We have that

for every (x, s, ç) E [0, 1] x R where
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is increasing. Since furthermore f ’~~ > 0, the following functional

admits a minimizer UE E if"q is defined by (2 . 3)]. Let A (x,y) be defined
by (2. 7). As in (2. 24), with (4 .1 ), we obtain, for jce] ] 0, 1 [:

in the case where a = a (s) is independent of x or an expression similar to
(2 . 25) if a = a (x, s). F (Ut) is bounded uniformly in E (since ~ _ 1 and u£
minimizes F~) and with (4 . 1 ), A (x, ~ ) is strictly increasing. Hence with
(4.12), the sequence (Ut) is bounded in L °° (o, 1) uniformly with respect
to E: there exists C 1 > 0 such for every ~~]0, 1].

Since the definitions of cp in (3.5) and of B)/ in (3. 7) are the same for f
and ft, with (4 . 11 ), we can apply one of the two a priori estimates’

theorems 3 .1 or 3 . 2 to /’. With (4.12), we get that for 8 E 0 2 1 fixed,

where C2 = C2 (Ko, Cl, ~). Then (uE) is weakly* relatively compact in

(0, 1): there exists such that, up to a subsequence if

necessary, UE weakly* converges to u in °°, as E -~ 0.
Let v E ~’q. By the definition (2. 2) of F and since UE minimizes F~ in

~q, we have that:

(4.14) F (u) _ lim inf F (u£)  lim inf F£ u£) _ lim inf F£ (v) = F (v).

Let us now consider any w E ~p. Since is dense in P (recall that
q >__,~), there exists a sequence (Vk) c with vk -~ w in 

P and since F

is strongly continuous in by (4 . 1 b), then F(vk)  F (w). Thus, by
(4.14), F (u) _ F (w). Let us finally consider any 1). By
the definition (2 . 2) of F, there exists a sequence (vk) c that weakly
converges to v in such that F(vk)  F (v). We hence get that

F (u)  F (v), for v E P, which concludes the proof of theorem 4.1. D

Proof of theorem 4 . 3. - We extend f for sO by defining

(4.15) f (x, s, ç) = f (x, - s, ~), for every (x, s, ç) E [0, 1] x [R - x ~.

Let us note that f is a Caratheodory function in [0, 1] x R x R (in general
only continuous with respect to s at s= 0). We define s, ç) as in
(4.10) and, like in the proof of theorem 4.1, we denote by UE a solution
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of the variational problem

By (4 . 5), we have ~) _, f ’£ (x, s, - ~) and by (4 . 15), we have
also ~) = f £ (x, - s, ~). It follows that

and thus, since So, S 1 >_- o, ~ is a minimizer of (4.16) too. By changing UE
with if necessary, we have that u£ (x) >_ 0 for every x E [0, 1]. Repeating
the argument of theorem 3 .1 (or 3. 2), since the integrand f E is smooth in
[0, 1] x [0, oo [ x R, we can show that uE is a smooth function and we can
then conclude as in theorem 4.1. 0

Proof of theorem 4.4. - Like in the proof of theorem 4.1, we shall add
a coercive E-term to f to apply one of the a priori estimates’ theorems.
With a penalization type method (see e. g. [23]), we shall furthermore
handle the constraint by adding a k-term. Let us fix E E ] o, 1] ] and
k >_ o. Let us then define, for (x, s, ~) E [o, 1] x f~8 x R:

where q = max ~ p; 4} and ~ - - - min ~ ~; 0 ~ denotes the negative part of
ç. Since q >_ 4, then f~, k is either of class C2 (if f E C2) or of class C3 (if
f E C3). Since f (x, s, ~ ) is convex, f ~~ k > 0 and

for every (x, s, ç) E [0, 1] x R where

Then, the functional

admits a minimizer uE, k belonging to ’~’q [’~q is defined by (2 . 3)]. In
particular, k) is uniformly bounded with respect to E and k. Indeed,
for v affine belonging to ’~’q (i. e. v’ = Sl - So), we have that:

since [v’] - = 0 and E __ 1. If we denote by C the right hand side, we then
have that

From (4 .18), for every fixed E E ]0, 1], the sequence k) is then bounded
in W 1 ~ q (o, 1 ) uniformly with respect to There exists then
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1), such that, up to a subsequence if necessary,
(4 . 20) converges to uE weakly in (0, 1)

and strongly in L°° (0, 1), as k - oo .
With (4. 7) and (4.17), we have that:

Thus, with (4.19), we have that:

We obtain that a. e. in ] 0, 1 [, since, by (4 . 21 ), it is the weak
limit of the sequence of non-negative functions:

k] + - u£, k + [u£, k] , that weakly converges to uE in Lq (0, 1 ), as k -~ oo .
Since u£ (x) >_ 0 a. e. we also have an L°° bound for uniform with respect
to E E ] 0, 1]:

We can now use one of the a priori estimates’ theorems 3.1 or 3.2 for
uE, k [we consider here explicitly the case of theorem 3 . 2 and the estimate
(3 . 8)]; with (4. 20), we get:

We can then conclude in a similar way as in the proof of theorem 4.1
from (4.13) D

5. APPLICATIONS TO CLASSICAL EXAMPLES

In this section, we apply the existence results of section 4 to the classical
examples (i) to (iii) and then to the example (iv) described in the introduc-
tion.

THEOREM 5. 1 (Appliation to classical examples). - Let
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where a E C2 ( ] 0, 1 [ x [0, + oo [) (~ C° ([0, 1] x [0, + oo [) satifies at least one
of the following conditions:
(5 . 2) a = a (s) > 0, for s > 0, independent of x, is monotone;
(5 . 3) independent of x, is such that, if a’ (s) = 0 for some s
>_ 0, then a" (s) > 0;
(5 . 4) independent of s, is such that, if a’ (ac) = 0 for some
x E [0, 1 ], then a" (x)  0;
(5 . 5) 1 [ X [0, + oo [.
Then, the extended functional F is given by (2 9) with h =1 and the
variational problem

has a solution which belongs to (0, 1).
Theorem 5 .1 contains the functionals described in the introduction (ii)

and (iii), i. e. the surface of minimal revolution area (a (s) = s) and Fermat’s
principle [since where c is the velocity of light in the

vacuum].
Remark 5 .2 (Application to the brachistocrone problem). - To treat the

brachistocrone problem (i), we need a further approximation argument.
In fact, if a (s) = s -1 ~2, we can consider, for every a function ak(s)
that is equal to a (s) for s >_ and that is extended as an affine C~ (~)
function for Then, we repeat the proof of theorem 4.1 in this
case. We consider first a minimizer with

(0) = 0, uE, k ( 1 ) = S l, of the functional

By posing Ak ( y) = y0ak (s) ds (note that Ak is increasing with respect to k),
0

as in (4.12), we obtain

To get an L~ bound for uE, k (uniform with respect to E and k), since
is strictly increasing, we have to show that k) is bounded.

By posing v (x) = S 1 x, we have [since ak (s) __ a (s) and 8~1] ]

since a (v (x)) _ (S 1 x) -1 ~2 is an L 1 (o, 1) function. As in (4.13), we then
get an estimate (uniform with respect to E and k)
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We can then proceed in the same way as in theorem 4.1.

Remark 5. 3. - Similarly to theorem 5. l, we can also treat some other
integrands f. For example, we can assume that f (x, s, ~) = a (s) h (~) is of
class C3, where h (ç) is convex and a > 0 a. e. in R, that there exist p >_ 1,
L > 0 such that h (~) - ~ h’ (~) > 0 (resp. 0)
for every 03BE~R and that if for some then 
(resp.  0). Then, the representation formula (2 . 10) [or (2. 9) if h + =/L] ]
holds for F and problem (4 . 2) admits a solution which belongs it 

Proof of theorem 5 . 1. - For cp and ~r
defined by (3 . 5) and (3. 7) are

Theorem 5.1 is then obtained as a corollary of theorems 2.1 and 4. 3. In
fact, under (5 . 2) cp has a definite sign and (3 . 5) holds; under either (5. 3)
or (5 . 4), if (p=0, then ~~ > 0 and (3. 7) holds. Finally, under (5. 5), for

every 8e 0 and Y _ ~ >_ 0 there exist C1, C 2 > 0 such that I as (x, s) ( -  C1
and s) ~ >_ C2, for (x, s) E [b, 1- b] x [0, r]; this implies that for

I ç large and again (3. 7) is satisfied (see remark 3. 3) D
We mention at last the application of theorem 2.4 and 4.4 to a recent

problem appearing in an adiabatic model prodicting a finite height ho to
the atmosphere:

where the positive constants po, ro, y > 1, g and h stand respectively for
the atmosphere’s pressure and density in the reference configuration, the
adiabatic and gravity constants and the height of the atmosphere. It has
been shown by Ball in [6] that (5 . 8) has a solution (satisfying the boundary
conditions) for h __ ho and a generalised solution [verifying v(O)=O and
lim v (x) = ho] for Applying our results to (5 . 8) [as in remark 5 . 2,

JC -~ 1

we must first approximate h (~) _ ~ 1- Y by the increasing sequence hk (~) of
convex functions which are equal to h (~) for ~ _> 1 /k and which are
extended as C2 (IR) functions for since h=O and

we obtain by theorem 2.4 that F=F and by
theorem 4 . 4 that there exists a solution v which belongs to for the
problem (4 . 8) associated to (5 . 8). In this case, by the convexity of v (x),
it is easy to show that v (0) = 0.
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6. APPLICATION IN BEHAVIOURAL ECOLOGY

A fundamental question appearing in behavioural ecology (see e. g. [7],
[8], [20]), in particular in the study of behaviour of animals while foraging
(i. e. search and acquisition of food), is the following. An animal is going _

each day around in its habitat to find food. Imagine that the food resource
is renewed each day with the same distribution and that some regions of ,

the habitat are more risky to exploit, for example because of the presence
of predators. Assuming that the animal has learnt the food and risk

distributions, what is the optimal way to exploit the habitat in order to
balance the needs of maximizing the food gained and of minimizing the
risks incurred ?

In the past few years, optimal foraging theory has developed to answer
such theoretical questions (see reviews in [21], [29]). There have been many
attempts to formalize the above problem and partial answer (without
presence of predators) has been given by the well-known "patch model"
of Charnov [13] for some particular type of food distribution, by
Andersson [1] ] for uniform food distributions or by many others (see
references in [8], [20]). More recently, Arditi and Dacorogna ([2], [3], [4])
and Botteron and Arditi [9] have proposed models formalizing that ques-
tion, generalizing the results of Charnov [13] to arbitrary food distributions
and introducing in [9] arbitrary risk densities. The mathematical problem
in [9] turns out to be the minimization of a non-coerciive functional of
the calculus of variations:

[a relevant example is ~o (~) = e - ~ and G (s) _ ( 1 + s)P, for p >__ 1] where for

We quickly recall the meaning of the notations used in (6.1) and (6 . 2)
(see e. g. [8] for more details). The animal is described by its schedule
v = v (x) (i. e. time against position), for x E [0, 1]. The interval [0, 1] ] rep-
resents a one-dimensional habitat or a closed curve in a two-dimensional
domain with x = 0 and x = 1 corresponding to the central place (i. e. nest
or cache). The animal covers its habitat during the "foraging period" S
(v (o) = o, v ( 1 ) = S) with an upper bound on its velocity [equivalent after
change of variable to v’ (x) _>_ 0 a. e.]. The food distribution in the habitat
is arbitrary (i. e. neither necessarily "patchy" as in [13] nor uniform as in
[1]). It is described by a given food density p = p (x). The function h = h (x)
is related to a given risk density c = c (x) [more precisely, h (x) = - c’ (x)].
The "foraging presence" v’ (x) represents the time (in some convenient
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unit) during which the animal consumes the resource available at point x.
The function ~o results from the dynamics of food acquisition; typically,
the local renewal rate of food resource is assumed to be slow, so that as
the animal stays in the same place, the rate at which it acquires food
drops (e. g. Co (ç) = e - ç with a Lotka-Volterra functional response, see [2]).
The term p (x) ~o (v’) in (6 .1 ) represents the density of food remaining at
point x after the passage of the animal and the term h (x) G (v) the density
of risk cost. Food gains and risk costs are accounted for in common units
of fitness. Fitness (see e. g. [7], [8], [31]) is a measure of the survival
and reproductive success of the animal. In the evolutionary approach, a
behaviour is called "optimal" if it maximizes fitness. This maximization
is equivalent in these models to (6.1).

Mathematically, this problem has been solved in [2], [3] for the first
models in bounded and unbounded habitats without introduction of risk

[i. e. G --_ 0 in (6.1)], then in [10] for a generalised version in bounded
habitat. Risk costs have been introduced in [9] and (6 .1 ) has been solved
by showing the sufficiency of the necessary conditions given by the Euler
equation for the simple case G (v) = v. This last resolution has been
extended in [11] to more general G but with some restrictions on p and h
(more precisely, p increasing and h strictly positive). With rearrangement
techniques and without considering the Euler equation, solutions have
been shown to exist for small value of S (i. e. S _ For large values of
S (i. e. S > it has been shown that (6 . 1 ) has no solution (i. e. satisfying
the prescribed boundary values) but has a solution in the sense described
here [satisfying v (o) = o, lim v (x) = Sc].

JC -" 1

However, in the point of view of the relevance of the application, it
seemed interesting to handle the more general case where h (x) is not
restricted to be strictly positive [corresponding to a density of risk c (x)
strictly decreasing in [0, 1], since /~(x)= 2014c’(~)], but where h (x) can vary
from negative to positive values [corresponding to the more realistic
situation of a risk c (x) increasing with distance to the central place].

Obtained as a corollary of the results of the previous sections, the

following theorem 6. 1 handles this more realistic situation and gives a
new existence result under assumptions less restrictive than in [11] and
more relevant for the specific application (see remark 6. 2).

THEOREM6. 1 (Application to models in behavioural ecology). - Let F, F
and defined respectvely by (6 .1 ), (2. 2) and (6. 2), where

is of class C3. Assume that ~o ; ~ + -~ ~ + is convex and (~)  0, for
~ >_ 0, G : [0, S] -~ [0, + oo [, G’ (s) > 0 for s E [0, S], p >_ 0; assume also that
h (x) p’ (x) >_ 0 and that h’ (x) > 0 i. f’ h (x) = p’ (x) = 0. Then, F = F and it has
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a minimizer (belonging to in

Remark 6. 2. - The case where p if increasing and h is strictly positive,
as in the resolution of Botteron and Dacorogna [ 11 ], is contained in
theorem 6.1. The assumptions required in theorem 6.1 are satisfied in

many relevant cases. For example, in the situation of an animal crossing
a closed curve in a two-dimensional domain with x = 0 and x = 1 corre-

sponding to the central place, with risk density c increasing with distance
to the central place (this assumption is very natural, see [9] and the
references quoted there) with maximum risk at a point xo e] 0, 1 [ [i. e.
h (xo) = - c’ (xo) = 0, h’ (xo) _ - c" (xo) > o, and therefore without a definite
sign for h (x)] and with food density p decreasing with distance to the
central place, i. e. decreasing in [0, xo] and with food density p decreasing
with distance to the central place, i. e. decreasing in [0, xo] and increasing
in [xo, 1].

Proof of theorem 6 .1. - We first extend G from [0, S] to f~ so that it
is a positive bounded function of class C2 with G’ (s) >-- c = c (r) > 0 for
s E [ - r, r]. Then, since Co is convex and bounded in [0, + oo [,

Let us extend Co for §  0 by the Taylor polynomial:

Then, ~o is a convex function of class C2 satisfying (4 . 7) b) with p = 2.
Let us also extend f for §  0:

Then, f is of class C2 ([o,1 and satisfies the assumptions of
theorem 2 . 4. Hence, F (v) = F (v), for every v E if" p. The function cp defined
by (3 . 5) is

For § negative, (3. 7) is satisfied, since cp > 0 for I ç sufficiently large (see
remark 3. 3). For § positive, the function 03C8 defined by (3 . 7) is

Let us show that the condition (3. 7) is also satisfied for ~ >_ 0. In fact, if
cp (x, s, ç) = 0, since the two terms h (x) G’ (s) and p’ (x) ~o (ç) in (6 . 3) have
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the same sign, then necessarily h (x) = p’ (x) = 0. Let us denote by m = m (8)
the positive minimum of h’ (x) on the compact set

{ x E [8, 1- 8]: h (x) = p’ (x) = 0 ~ (note that this set contains at most one

point). Then, Since ~o (~) ~ 0 as
~ ~ + oo, there exists Ko = Ko (8, r) such that B)/ (x, s, ~) > 0 for § > Ko. D
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