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ABSTRACT. - We consider the Cauchy problem for general partial
differential equations of first order. It is well known that it admits locally
a smooth solution. When we extend a solution of class C~, what kinds of
phenomena may appear ? The aim of this paper is to see what may happen
in this extension. Our method depends principally on the analysis of
characteristic curves.
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Nous considerons le probleme de Cauchy pour les equations
aux derivees partielles du premier ordre. Nous savons bien qu’il admet
localement une solution reguliere. Qu’est ce qui se passe quand on prolonge
la solution de classe C~ ? Le but de cet article est d’etudier les phenomenes
qui apparaissent dans cette extension. Notre methode depend principale-
ment de l’analyse des courbes caracteristiques.
Mots cles : Solutions classiques, Ie temps de vie, solutions generalisees, singularites.
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1. INTRODUCTION

We consider the Cauchy problem for general partial differential equa-
tions of first order as follows:

where f (t, x, u, p) E C2 (R x Rn x R1 x R") and cp (x) E C2 (Rn). A vector
p = (pl, ... , pn) is corresponding to (au/axl, ..., We are interested
in the global theory for the Cauchy problem ( 1.1 )-( 1. 2). It is well known
that it admits uniquely a solution of class C~ in a neighborhood of the
origin. A "classical solution" of ( 1.1 ) means a solution of class C~ which
may not be of class C2. From now on, we write a solution of class Ck as
Ck-solution. Our aim is to see what kinds of phenomena may appear when
we extend the classical solutions. In this extension, we need the uniqueness
of classical solutions for the Cauchy problem ( 1. 1 )-( 1. 2) which will be
treated in 2. In 3, we will discuss the life span of classical solutions. When
we can not extend the classical solutions, we must introduce the notion
of generalized solutions which are the solutions with singularities. The
properties of singularities depend on the behavior of characteristic curves
which are determined by the type of equations. For example, generalized
solutions of Hamilton-Jacobi equations are continuous, though they are
not differentiable. On the other hand, weak solutions of equations of
conservation law are not continuous. The principal aim of 4 and 5 is to

discuss the reason why the property of singularities may depend on the
type of equations. The central problem of 5 is to solve Rankine-Hugoniot’s
equation (5.7). Though this has been well studied, there remains the

problem of the uniqueness of solutions of the equation (5 . 7), because the
right hand side of (5 . 7) is not Lipschitz continuous. One of the aims of 5
is to solve this problem which is necessary to construct shocks.

2. UNIQUENESS OF CLASSICAL SOLUTIONS

It is well known that the Cauchy problem ( 1 . 1 )-( 1 . 2) has a C2-solution
in a neighborhood of t = 0, and that the solution is unique in C2-space.
Ck-space is a set of functions of class Ck. But, as ( 1.1 ) is the partial
differential equation of first order, we should consider C1-solutions, i. e.,

classical solutions. Our first question is whether or not it admits another
C1-solution which is not of class C2. Moreover, when we prolong the
classical solutions of ( 1.1 ), we need the uniqueness of solutions in C1-
space. Concerning this problem, we have nice results obtained by
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A. Haar [5] and T. Wazewski [16]. As it seems to us that their results
are not so familiar today, we present them here without proofs. Let

T=~ (t, x)ER1 X Rn; Ota, (i=1,2, ...,n)}
where cj  dt and (i =1, 2, ... , n), and K be any
compact set in ( (u, p) ; u E R1, ..
THEOREM 1. - Suppose that f (t, x, u, p) is in C° (T X K), and that it

satisfies a Lipschitz condition as follows:

where (t, x, u, p) and (t, x, v, q) both are in T X K. Let x) (i = 1, 2)
be in C 1 (T) and (ui (t, x), (aui/ax) (t, x)) E K for any (t, x) E T. If
ui (t, x) (i =1, 2) satisfy the equation ( 1 . 1 ) in the domain T with

u l (0, x) = u 2 (0, x), then u l ( t, x) = u 2 ( t, x) in T.

This theorem was first proved by A. Haar [5] for the case n =1, and
next by T. Wazewski [16] for the general case. This theorem can be easily
rewritten in the following form:

THEOREM 2. - Suppose that f (t, x, u, p) is continuous with respect to

(t, x, u, p) and locally Lipschitz continuous with respect to (u, p). If u (t, x)
and v (t, x) are C1-solutions of ( 1. 1 ) in a neighborhood of the origin with
u (0, x) = v (0, x), then there exists Q, a neighborhood of the origin, such that
u ( t, x) = v ( t, x) in Q.

3. LIFE SPANS OF CLASSICAL SOLUTIONS

We consider at first a quasi-linear partial differential equation of first
order as follows:

where and 
The characteristic equations for (3 .1 )-(3 . 2) are written in the following
form:

Vol. 7, n° 6-1990.
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We write the solution of(3.3)-(3.4) as x = x (t, y) and v = v (t, y)- In
this case v = v (t, y) is the value of the solution of (3.1) restricted on the
curve x = x (t, y), i. e., v (t, y)=u(t, x(t, Here we assume the following
condition:

(A) The Cauchy problem (3. 3)-(~ . 4j has a unique global solution

x = x (t, y) and v = v (t, y) for anyyeR".
There exist several contributions which give the sufficient conditions to

guarantee the above condition (A), for example B. Doubnov [3]. The
seminal idea of the results which assures the condition (A) comes from the
following examples: The Cauchy problem (d/dt) x (t) = x with x (0) = y is
globally solvable for any y e R~ if and only if cx __ 1.
When we assume the condition (A), we get a smooth mapping x = x ~(t, y)

from Rn to Rn for each Here {Dx/Dy) (t, y) means the Jacobian of
the mapping x = x (t, y). Concerning the life spans of classical solutions of
(3.1)-(3.2), we get the following

THEOREM 3. - Under the condition (A), suppose that (Dx/Dy) {t°, yO)=O
and (Dx/D y) (t, 0 for t  to. Then the first derivative (t, x) of
the solution u = u (t, x) tends to infinity when t goes to t° - 0 along the curve
x=x(t,yO).
Proof - This is almost a corollary of Theorem 4 in Tsuji-Li [14]. Let

us put L={(~);0~~} and Co = ~ {t, x) ; x = x {t, y°), o  t  t° ~ .
By the assumption, we can get an open neighborhood V of L so that the
Jacobian (Dx/Dy) {t, y) does not vanish on V = ~ ~ ~ t  and we

def

write U = ~ (t, xj ; x=x(t, y). By the theorem of inverses
functions, we can uniquely solve the equation x = x {t, y) with respect to y
for any and write it as y=y(t, x). If we define

u (t, x)=v(t, y(t, x)), x) is a C1-solution of (3.1)-(3.2) in the domain
U. Moreover by Theorem 2, u (t, x) is the unique C1-solution of {3 . 1 j_
(3 . 2) in U. Here we have

On the other hand, from (3.3), and ~i, ~ = l, ~, ..., n)
satisfy the following system of linear ordinary differential equations:
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509PROLONGATION OF SOLUTIONS AND SINGULARITIES

with the initial data

As the system (3.6) is linear with respect to and 

(i, J =1, 2, ..., n), we get .

Assume that all the components of au/ax remain bounded in U, then
we can pick up a sequence ( such that

and

From (3.5)’, we have

As (Dx/Dy) (to, y°) = 0, (3 . 8) contradicts to (3.7). This means that at least
one component of (au/ax) (t, x (t, yO)) tends to infinity when t --~ t°.

Q.E.D.

Next we consider general partial differential equation of first order as
follows:

where f (t, x, u, p) E C2 (R x Rn x R x Rn) and cp (x) E Cz (Rn). The charac-
teristic equations for (3 . 9)-(3 .10) are written down as

Vol. 7, n° 6-1990.
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Here we assume the condition (A)’:
(A)’ The Cauchy problem (3.11)-(3.12) has a unique global solution
x = x (t, y), v = v (t, y) and p = p (t, y) for any y E Rn.
As (Dx/Dy) (0, y) = 1 for all y e Rn, the Jacobian does not vanish in a

neighborhood of t=0. Therefore we can uniquely solve the equation
x = x (t, y) with respect to y, and write it as y = y (t, x). Define

u (t, x) = v (t, y (t, x)), then u = u (t, x) is a C2-solution of (3 . 9)-(3 10) in a
neighborhood of t= 0. Moreover, we can see by Theorem 2 that there
does not exist another C1-solution of (3.9)-(3.10) in a neighborhood of
t = o. When we extend this solution for large t, we get the following

THEOREM 4. - Under the condition (A)’, suppose that (Dx/Dy) (t°, yO)=O
n

and (Dx/Dy) (t, for tto. Then 03A3|~2 u/~xi~xj) (t, x) ‘ tends to

infinity when t goes to t° - 0 along the curve x = x (t, y°).
This is almost a corollary of Theorem 5 in Tsuji-Li [14]. Moreover, as

the idea of the proof was already developed in the above Theorem 3, we
omit the proof of this theorem. Theorem 4 says that, if the Jacobian
vanishes at a point (to, yO), then the second derivatives of the solution
blow up at the point But this does not prevent the existence of
C1-solutions even if the Jacobian may vanish. To consider this situation,
we need to know the behavior of characteristic curves in a neighborhood
of the point where the Jacobian vanishes. We define smooth mappings Ht
and H by x=x(t,y)=Ht(y) and H (t, y) _ (t, Ht(y)). From the results of
[15], we get the following two cases:
(C .1 ) Though the Jacobian of the mapping x = Ht (y) vanishes at a point
(t, yO), the mapping H is bijective from an open neighborhood of
(to, y°) to the one of (to, x°) where XO=x(tO, yo).
(C. 2) For t>tO where (Dx/Dy) (to, the characteristic curves meet

in a neighborhood of the point (to, x°).

THEOREM 5. - Under the hypothesis (A)’, suppose the condition (C . 1 ).
Then the solution u (t, x) = v (t, y (t, x)) remains a C1-solution of (3. 9) in a
neighborhood of (t°, x°), though it is not of class C2.

Proof. - Let V and U be open neighborhoods of (to, y°) and (to, x°)
respectively such that the mapping H is bijective from V to U. As H is
bijective, we can uniquely solve the equation x = x (t, y) with respect to y
and denote it by y = y (t, x) which is continuous in the domain U. As usual,
we write u (t, x) = v (t, y (t, x)). Put S={ (t, y) E V; (Dx/Dy) (t, y) = 0 ~ and
H (S) = { H (t, y) ; (t, y) E S }. By Sard’s theorem, Lebesgue measure of
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H (S) is zero. Hence U - H (S) is dense in U. For any (t, x) E U - H (S),
there exists a unique point (t, )EV satisfying (Dx/Dy) (t, y) ~ 0 where x
= x (t, y). Therefore H is a diffeomorphism from certain open neigh-
borhhod of (t, y) to the one of (t, x). This guarantees that u = u (t, x) is of
class C2 in a neighborhood of (t, x). It is obvious that it satisfies the

equation (3 . 9). Next we show that u (t, x) is of class C1 in the domain U.
We pick up arbitrarily a point (t~’, in H (S). Then we can choose a

sequence of points {(tm, xm)}m=1,2, ... in U - H (S) such that, when m
goes to infinity, (tm, xm) is convergent to (?, As the mapping H is

bijective from V to U, there exists uniquely a point (tm, ym) satisfying
H (tm, ym) = (tm, xm) for each m. As u (t, x) is continuously differentiable at

(tm, xm), we have

As p = p (t, y) is continuously differentiable for all (t, y), we get

Therefore, if we define the derivative of u (t, x) at the point (to, x°) by

then (au/ax) (t, x) = p (t, y (t, x)) is continuous in U, that is to say, u (t, x)
is continuously differentiable in U. Moreover Theorem 2 guarantees that
u (t, x) is the unique classical solution of (3 . 9)-(3 .10) in U.

Q.E.D.

Exemple 1. - This is the example which satisfies the condition (C . 1 ).
We consider the Cauchy problem

where f (t, u, p) = a’ (t) e - + ~3’ (t) e - 3t p4 _ u and the functions

~ a (t), ~3 (t) } have the following properties:
1. u (t) and ~3 (t) are in C~ (R~),
2. a (o) =1 /2, t >_ K > o,
3. ~i (o) = o, and (3 (t) ~ 0 for any t >_ K,
4. 
Then the characteristic curves are written as

Vol. 7, n° 6-1990.
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Therefore the Jacobian (t, y) = 2 a (t) + 12 ~i (t) y2 vanishes on

L = { (t, y) ; t >_ K and y = 0 }. But x = x (t, y) is a bijective mapping defined
in a neighborhood of y=O for i. e., the condition (C. 1) is satisfied.
In this case the solution u (t, x) = v (t, y (t, x)) = in a

neighborhood of L. This means that u (t, x) is of class CI, but not of
class C2, in a neighborhood of L.

4. EQUATIONS OF HAMILTON-JACOBI TYPE

In this section we will consider the Cauchy problem for general partial
differential equations of first order (3.9)-(3. 10) which satisfies the condi-
tion (A)’. We have seen in 3 that, even if the Jacobian of the mapping H
may vanish at some points, the bijectivity of H guarantees that the Cauchy
problem (3.9)-(3.10) can keep the C’-solution in the neighborhoods of
them. Therefore we will discuss here the case (C. 2) in which the charac-
teristic curves meet after the Jacobian vanishes. In this case, as the

Cauchy problem (3 . 9)-(3 .10) can not have the classical solutions, we must
introduce generalized solutions which contain singularities. Our interests
are focused on the properties of their singularities.
One of the examples satisfying the condition (A)’ is classical Hamilton-

Jacobi equations. Convex Hamilton-Jacobi equations have been extensively
studied, and the global existence and uniqueness of generalized solutions
have been proved. For detailed bibliography, refer to S. Benton [1] ] and
P.-L. Lions [9]. Recently, M. G. Grandall, L. C. Evans and P.-

L. Lions ([2], [9], ... ) have considered general Hamilton-Jacobi equations
without convexity condition, and they have established the notion of

viscosity solutions. The generalized solutions of convex Hamilton-Jacobi
equations are Lipschitz continuous, and the viscosity solutions are continu-
ous. On the other hand, though the equations of conservation law are
also of first order, their weak solutions are generally not continuous. One
of our aims of the following discussions is to consider the reason.
We consider the Cauchy problem (3.9)-(3.10) in one space dimension,

i. e.,

where f (t, x, u, (R x R 1 X R 1 x R~) and cp (X)ECOO (R 1 ). For the
construction of singularities of generalized solutions, we need a little

strong assumptions on the regularity of f (t, x, u, p) and cp (x). Then the
characteristic curves of (4 .1 )-(4 . 2) are defined as the solution curves of
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(3.11)-(3.12) for We write them by x = x (t, y), v = v (t, y) and
p -p (t~ y).

Suppose the condition (A)’ and consider (4 .1 )-(4 . 2) under the following
situation: (I) (ax/ay) (to, yO)=O and (II) for ttO and y ~ I
where I is an open neighborhood of y = yO. As written in the above, we
will consider the case (C. 2) where the characteristic curves meet after the
time t°. Here we assume the following condition (4.3) which guarantees
the situation (C. 2) (see Tsuji-Li [14]):

where x° = x (to, yO), v° = v (t°, y°) and p° = p (to, yO). If the condition (4 . 3)
is not satisfied, we can construct an example in which the situation (C. 2)
does not happen. See Example 1 given after Theorem 5 in 3.
From now on, we will construct the singularities of generalized solutions

for t>tO where t-tO is small. First we solve the equation (ax/ay) (t, y) = 0
with respect to t. As (t, y) is positive for t  t° and y E I, it holds

(a2 (to, (to, yo)  o, we have (ax/ay) (to, y)O for
y>yo. As x=x(tO, y) is monotonously increasing with respect to y, this
is a contradiction. Therefore we get (a2 (to, We assume here

(a3 (to, This assumption is natural from the generic point of
view. In this case, it turns to be

If (4.4) is negative, we have y)  0 for y> yO, i. e.,

(ax/ay) (t°, y)O for y>yO which also contradicts the monotony of

x = x (t, y) with respect to y. Let us draw a figure of the curve

We will explain the reason why it is drawn as Figure 1. Taking the
derivative of (3.11) with respect to y, we get a system of ordinary
differential equations concerning ax/ay, av/ay and ap/ay, just like (3.6).
For example, the equation concerning ax/ay is written as

Then this system of equations is linear concerning and 
As y), y), ap/ay (o, y)) = ( 1, ~’ ~ Cv)) ~ (o, o, o), we
get (t, y), ~t, y), ap/ay ~t, y)) ~ ~o, o, o) for any (t, ~a) E R2. ° we

Vol. 7, n° 6-1990.
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FiG.l 1

recall here

because, putting Z (1, y) = p (t, y) (ax/ay) (t, y) - (av/ay) (t, y), we have

As (ax/ay) (to, y°) = o, it holds (av/ay) (to, y°) = o. Therefore we have
(ap/ay) (to, y°) ~ 0. On the other hand, as (ax/ay) (to, y°) = 0 and

(ax/ay) (t, y»O for ttO and y E I, the left hand side of (4 . 5) must be
non-positive at (t°, yO). Using these results in (4. 5), we get

Therefore we can uniquely solve the equation (ox/oy) (t, y) = 0 with respect
to t in a neighborhood of (to, yO), and write it by t = p (y) which is of
class Coo. Then we have
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As (~2 x/~y2) (t0, y0)=0 and (~2 x/~t ~y) (t0, y0)0, it follows p’ = o.

Similarly we have

which induces immediately p" > o. As p’ = 0, it holds p’ (y) > 0 for

Y>Yo and for yyo. Therefore, as p (y) is strictly increasing for
y>yO and strictly decreasing for yyO, the equation t = p (y) has two
solutions and for t> to where t - t° is small.

Summing up these results, we get the following.

LEMMA 6. - The equation (ax/ay) (t, y)=O (t>tO) has two solutions
neighborhood of y = yO. The solutions y = yi (t) (i = 1 , 2)

are continuous on ~ t >_ t° ~ , and of class C°° for t > t°.
The proof will be obvious by the above discussions. Here we put

(i =1, 2), then xl Next we solve the equation
x=x-(t, y) with respect to y for x~(x1 (t), x2 (t)). Then we get three

solutions y = gi (t, x)  g2 (t, x)  g3 (t, x), and define u~ (t, x) = v (t, gi (t, x))
(i = 1,2,3). This means that the solution constructed by the characteristic
method takes three values in the interval (xl, x2). By the assumption
(4. 3), we assume in this section

Then we get the following

LEMMA 7. - (i) For any x2), we have

(ii) There exists uniquely x = y (t) E (xl, x2) satisfying

Proof. - (i) By (4.7) and (4.8), it holds (ap/ay) (t°, y°)  o, i. e.,

(ap/ay) (t, y)  0 in a small neighborhood of (t°, yo).
As gi (t, x)  g2 (t, x)  g3 (t, x), it follows

Using these inequalities, we have

Hence we get x) - u2 (t, x)  0 for x2). We obtain similarly
the another inequality.
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516 M. TSUJI

(ii) Using the results of (i), we have

Therefore there exists uniquely x2) satisfying

Q.E.D.
As we are looking for single-valued and continuous solution, we define

the solution u = u (t, x) in the interval (xl, x2) as follows:

Moreover we can easily prove that, when (4. 8) is satisfied, this solution
u (t, x) is semi-concave in a neighborhood U of (to, XO), L e., there exists
a constant K such that

for any (t, x + y) and (t, x - y) in U. Therefore the solution u (t, x) con-
structed as above is reasonable.
Remark. - The above construction of singularities is local. In some

cases we can extend the solution for large t by the same method. But, if
(a2 f/ap2) changes the sign, the solution may generally lose the property
of simi-concavity or semi-convexity.

5. QUASI-LINEAR PARTIAL DIFFERENTIAL EQUATIONS
OF FIRST ORDER

In this section we consider the Cauchy problem for quasi-linear equa-
tions of first order as follows:

where and Then

the characteristic curves for (5.1)-(5.2) are the solution curves x = x (t, y)
and v = v (t, y) of (3 . 3)-(3 . 4) for n = 1. As in 4, we assume the condition
(A), stated in 3, which assures the global existence of characteristic curves.
We have seen by Theorem 3 that, if the Jacobian of the mapping x = x (t, y)
vanishes at a point (to, yO), then the classical solution blows up at a point
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(to, x°) where xO=x(tO, Therefore we must introduce weak solutions
for the equation (5.1). To define it, we rewrite the equation (5.1) as
follows:

where

and

If g (t, x, u) = 0, then the equation (5.1) is of conservation law. Let w (t, x)
be locally integrable in RA The function w ~(t, x) is called to be a weak
solution of ~~ .1 ) if it satisfies ~5 . ~ ) in distribution sense, i. e.,

for all K ~t, Co (R2).
From now on, we will consider the Cauchy problem (5 .1 )-(5 . 2) in a

neighborhood of x°) under the following assumptions (I) and (II):
(I) and (II) for ttO and ye l where I
is an open neighborhood of y = yO. Our problem is to see what kinds of
phenomena may appear for Before we proceed to this problem, we
give an important property of the equation (5.1) which is the point
different from the equations satisfying the condition (A)’.

Consider the Cauchy problem for an ordinary differential equation
concerningp=p(t, y) as follows:

where x = x (t, y) y) are the solutions of (3.3)-(3.4) for n =1.
The equation (5.3) corresponds to the last one of (3.11). More concretely,
when u = u (t, x) is a C2-solution of (5.1), we get

LEMMA 8. - Assume {t°, and (t, .Y°) ~ 0 for 
Then the solution p = p (t, y°) of (5 . 3)-(5 . 4) tends to infinity when t goes
to t° - o.

Proof - As and av/ay satisfy the system of linear differential
equations (3 . 6), we get (0, 0) for all {~, R2. Therefore,
if {t°, y°) = 0, then {w/ay) {t°, y°j ~ 0. As (4. 6) is also true for the
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above x = x (t, y), v = v (t, y) and p = p (t, y), we have

Hence we can easily get the conclusion of this lemma.
Q.E.D.

This lemma says that, for the quasi-linear equations, the condition (A)’
is not compatible with the property that the Jacobian vanishes somewhere.

In the case (C . 1 ) where the mapping H (t, y) = (t, x (t, y)) is the bijective
one defined in a neighborhood of (to, yO), we can get the similar result
like Theorem 5. That is to say, though the solution of (5.1) is continuous
in a neighborhood of (to, XO), it is not Lipschitz continuous. Because
Lemma 8 means that, if the Jacobian of x = x (t, y) vanishes somewhere,
then (au/ax) (t, x) == P (t, Y (t, x)) can not remain bounded where
y = y (t, x) is the inverse function of x = x (t, y).

Next we consider the case (C. 2). The suffisient condition which guaran-
tees the situation (C. 2) is written as

If (5.5) is not satisfied, we can construct an example in which the
characteristic curves do not meet though the Jacobian vanishes. See the
example iri Tsuji-Li [15]. Therefore we suppose the condition (5. 5). Since
(a2 (t°, y°) = 0, we assume, as in 4, (a3 (t°, y°) ~ 0. This
assumption is natural from the generic point of view. To represent the
solution v = v (t, y) as a function of (t, x), we solve the equation x = x (t, y)
with respect to y in a neighborhood of y = yO for t> to. This calculation is
almost same to the one developed in 4. Especially, the graph of the curve
x = x (t, y) is drawn just as Figure 1 in 4. Therefore we use the same
notations introduced in 4. The functions y = yl (t) and y2 (t) (y2  yl) are
the solutions of (ax/ay) (t, y) = 0 and we put xi (t) = x (t, yi (t)) (i =1, 2).
When we solve the equation x = x (t, y) with respect to y for x2),
we get three solutions y=g1(t, x)  g2 (t, x)  g3 (t, x) and define
Ui (t, x) = v (t, gi (t, x)) (i =1, 2,3). As we are looking for single-valued
solution, we must choose only one velue from {ui (t, x); i = l, 2, 3} so
that it is weak solution of (5.1). In this case we can not get the result as
Lemma 7 in 4. Therefore we try to obtain the weak solution which is
piecewise smooth. If w (t, x) is a weak solution of (5.1) which has jump
discontinuity along a curve x = y (t), we get Rankine-Hugoniot’s jump
condition which is familiar for equations of conservation law:
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where w+ (t) = w (t, y M+0) and w _ (t) = w (t, y (t) - o). This suggests us
that we jump from a branch (t, x) to the other u = u3 (t, x) along a
curve x = y (1) on which the condition (5 . 6) is satisfied. Therefore our

problem is to get the curve which is a solution of the Cauchy problem of
the following ordinary differential equation:

The function j (t, x) is differentiable in

and continuous on U. But it is not Lipschitz continuous at the point
(to, x°), because (t, x) tends to infinity when t goes to to + 0. The
proof will be given in Lemma 10. As j (t, x) is continuous in U, there is
no problem on the existence of solutions. But we can not get the uniqueness
of solutions. In the works done up to now on the construction of shocks,
for example in J. Guckenheimer [6] and G. Jennings [7], they did not pay
attention to this point. This is the problem which we would like to consider
in this section.
As we have put the hypothesis (5 . 5), we assume here more concretely

As j (t, x) is in C~ (U) where U does not contain the point (t°, XO), we
will restrict our discussions in a small neighborhood of (t°, x°).
LEMMA 9. - (i) (av/ay)  o.

(ii) For ( t, x) E U, we get

and

(iii) When (t, x) goes to (t°, x°) in U, then (t, x) (i = 1 , 2, 3) tend
to infinity.

Proof. - (i) As (ax/ay) (t°, yO)=O and (ax/ay) (t, yO»O for ttO, we
have

Since (t, y), ~v/~y (t, y))~(0, 0) for all (t, y), it holds

y°) ~ 0. Hence we get (i) by (5.8).
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(it) By the definition, we have g~ (t, x)  g~ (t, x)  g~ {t, x) and
u~ (t, x) = v (t, gi (t, x)) (i =1, 2, 3). Using the property {ij, we get the first
half of (ii). As g~ {t, x) .Y2 {t) g2 {t, (t) g3 {t, x) where
x {t)  x  x2 {t), we have

As {t, x) = ~ {w/ay) (t, .Y)/(t~x/~.Y) {t~ Y) ~ ~3’=9i t~, x>> we get the
second part of (ii), and also (iii).

Q.E.D,

LEMMA 10. - (i) Though j {t, x)) is in ~C (U) (~ ~° (0) where

it is not Lipschitz continuous at a point (t°, x°).
(ii) For t > t°, j {t, x) is decreasing with respect to x.

Proof - The first part of {i) is obvious. Taking the derivative of j (t, x)
with respect to x, we have

When (t, x) goes to (t°, x°) in U, the first term of (5.9) is convergent
to {a2_ au) {t°, xo, uo) where u° = u {t°, XO). Therefore it is bounded in
a neighborhood of XO). When (t, jc) -~ x°) in U, the coefficient of
(au 1 /ax) tends to

The coefficient of (au3/ax) (t, x) has the same property as (t, x).
Here we use (ii) and (iii) of Lemma 9 for (5.9), then we see that, when
(t, x) goes to (to, x°) in U, (oj/ax) (t, x) tends to - 00. This means that
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j (t, x) is not Lipschitz continuous at (t°, x°), and that it is monotonously
decreasing with respect to x in U.

Q.E.D.

LEMMA 11. - The functions x~ (t) = x (t, yL (t)) (i = 1 , 2) satisfy the follow-
ing properties:

Proof. - (i) As the functions y = y; (t) (y2 (t)  y 1 (t)) are the solutions
of (t, y)=O with respect to y for t>tO, we have

(ii) By the definition of j (t, x), we have

As (aal/au) (t°, x°, v°) > o, al (t, x, u) is strictly increasing with respect to
u in a neighborhood of (to, x°, UO). Moreover we have ui (t, x) > u3 (t, x)
for (t, and v (t, yi (t)) = u3 (t, xl (t)). Hence we get

The second inequality can be similarly proved.
Q.E.D.

Using the above lemmas, we can obtain the following
THEOREM 12. - The Cauchy problem (5.7) has a unique solution in the

domain U = ~ (t, x); (t) ).
Proof. - The existence of solution is obtained by Lemma 9. As this

has been proved in G. Jennings [7], we omit the proof. Our aim is to
show the uniqueness of solutions. Let x = yl (t)  y2 (t) be two solutions
of (5 . 7).
Then we have by Lemma 10

Hence we get yl (t) > y2 (t) for t> to. This contradicts the hypothesis.
Q.E.D.

Now we can define the weak solution of (5.1) in the interval
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Then we can prove that this weak solution satisfies locally the entropy
condition. Next we extend the weak solution for large t. If (aal/au) (t, x, u)
changes the sign, the solution may sometimes lose the entropy condition.
Then we must introduce another singularities, for example "contact dis-
continuity". This subjet will be treated in a forthcoming paper.
From the above discussions, we may say that the essential difference

between Hamilton-Jacobi equations and equations of conservation law is
the condition (A)’ which means the global solvability of ordinary differen-
tial equation (5. 3)-(5.4). Therefore we would like to call partial differen-
tial equations ( 1.1 ) with the condition (A)’ to be of Hamilton-Jacobi type.
We will give here some historical remarks on the subjects treated in this

section. For the construction of shocks, we must solve the ordinary
differential equation (5 . 7), though we do not need to do so for Hamilton-
Jacobi equations. For the equations of conservation law in one space
dimension, we can reduce the construction of shocks to Hamilton-Jacobi
equations. Suppose that u = u (t, x) satisfies the following conservation law

Put u (t, x) = (a/ax) w (t, x), then we have

For Hamilton-Jacobi equation (5 . 11 ), we can construct the singularities
of generalized solutions, as done in 4. Then (aw/ax) (t, x) is the weak
solution of (5.10) which has jump discontinuity satisfying locally the
entropy condition. B. Rozhestvenskii had written this idea a little in [11].
But we can not apply it to quasi-linear equations of first order which are
not of conservation law. Because the above transform
u (t, w (t, x) does not work well to get Hamilton-Jacobi equa-
tions. Moreover the equations treated in [6] and [7] does not depend on
(t, x), i. e., f= f (u). By these reasons, the discussions in 5 are necessary to
construct the singularities of shock type for general quasi-linear partial
differential equations of first order. Concerning the construction of singu-
larities for Hamilton-Jacobi equations in two space dimensions, see

M. Tsuji [13]. S. Nakane [10] has constructed the shocks for single conser-
vation law in several space dimensions. But his discussions also lack a
proof on the uniqueness of solutions of Rankine-Hugoniot’s equation.
This problem will be considered in our forthcoming paper by the method
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used here. The next problem is to consider the global behavior of singulari-
ties of generalized solutions. For single conservation law, see

D. G. Schaeffer [12] for n =1 and B. Gaveau [4] for n = 2 where n is the
space dimensions.
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