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ABSTRACT. - We prove that under a holonomy decay condition; with
L 1 growth of curvature and integral growth bounds on the Higgs field
(depending on the sign of the coupling constant) that isolated point
singularities of the Yang-Mills-Higgs equations on a vector bundle over a
2-dimensional manifold are removable by a smooth gauge transformation.
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RESUME. - Sujet a la condition d’une holonomie asymptotiquement
triviale, avec croissance de courbure dans L 1 et des bornes sur 1 a croiss-
ance du champ de Higgs (qui dependent du signe de la constante de

couplage), donnees par des integrales, nous prouvons que les points singuli-
ers isoles des equations de Yang-Mills-Higgs d’un espace fibre vectoriel
sur une variete de dimension 2 peuvent être enleves par une transformation
de jauge lisse.
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1. INTRODUCTION

In this paper we prove a removable singularities theorem for the coupled
Yang-Mills-Higgs equations over a two dimensional base manifold M.
This problem is local so at no loss of generality we assume that
M = B4 - ~ 0 ~, where B4 - ~ 0 ~ is the punctured 2-ball of radius 4 centered
at the origin. We also assume that every connection has some gauge in
which it is C 1 over the punctured ball.

Let M be a domain in R 2 and 11 be a vector bundle over M with
compact structure group G c O (n) and Lie algebra (8. Let the metric on G
be induced by the trace inner product on O (n) and let 11 have a metric
compatible with the action of G. Let d be exterior differentiation, 8 its

adjoint, and let [ , ] denote the Lie bracket in (~.
A connection determines a covariant derivative D which within a local

trivialization defines a Lie algebra valued 1-form A by D = d+ A. On
p-forms we have locally *co], where D*
is the adjoint of D. We denote the curvature 2-form by F and have

F=dA+1 2[A, A] in this local trivialization.
Gauge transformations are sections of Aut q which act on connections

and curvature forms according to the transformations:

The pair (A, F) is gauge equivalent to (A, F) iff there is a gauge
transformation g such that and F=pg.

We now follow [Sb2] exactly and define the Higgs field cp using the
determinant bundle. We denote by L the determinant bundle of 11 raised

to the -power. 2 Sections of this bundle are constant in a fixed co-ordinate
system but have weight 1 under scale transformations.
The Higgs field cp is a section of ~ (8) L. Therefore, in a fixed co-ordinate

system cp may be regarded as a matrix-valued function. Under scale char-

The Yang-Mills-Higgs equations are:

where À is a fixed real constant and where m is a section of L constant in

a fixed co-ordinate system but having weight 1 under scale changes. Thus
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under the transformation y = rx we have m’ = m/r. The equations (YMH 1,
2) are thus invariant under the scale transformation y = rx.

Certain norms are invariant under scale transformations. For example
is invariant and ifB)/ is any is invariant. We also

have an important fact used in [Ul].

Let B)/ be a p-form and suppose ~r E with )) invariant. Then,
given a domain D in R2 and y>0 there is a metric go conformally
equivalent to the Euclidean metric in which on bounded sets in R2; .

This fact follows from conformal invariance and the continuity of the
LP-norms. See [UF] for details.

l.b. Statement of the Main Theorem

Now we state our Main Theorem:

THEOREM M. - Let M = B4 - ~ 0 ~ and let 11 be as above. Let A be a
connection on ~ that satisfies condition H, defined in section 1 . c. Let F be

the curvature form of A and let F be over M. Let (F, cp) satisfy (YMH1)
and (YMH2) over M. Let FE L (B4).

lim B Bt |03C6| |x|2 log2(1/t) = 0. Then, , there exists a continuous gauge

transformation such that (F, tp) is gauge equivalent to a C~-pair over B4
and the bundle extends continuously to a bundle over B4.
A theorem of this type was first proved by K. Uhlenbeck for the pure

Yang-Mills equations over R4 in [Ul]. Later Parker [P] extended the result
to the coupled Yang-Mills-Higgs equations over R4. Papers of L. M. and
R. J. Sibner [SBI], [SB2], [SB3] proved similar theorems for dimension 3
and for all higher dimensions. This paper fills the two-dimensional gap in
the literature.

We would like to thank L. M. Sibner for suggesting this problem and
C. Taubes for a useful abelian example suggesting that holonomy would
be important.
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l.c. Auxiliary Gauges

Condition H

We wish to introduce a condition on the connection A that insures that
the bundle is trivial over the punctured disk M above. This condition is a
"holonomy" condition. We call it condition H.
We use the conventions of [KN1], Vol. 1, pp. 71-72. We first define

some useful paths.

DEFINITION. - Let [0, 1] --~ SR be given by t-(R cos 2x t,
R sin 203C0t) with We say that lR is the standard

loop for SR. Let be given by Le : 8). We call La the
standard ray.
For each R, let g (R) be the holonomy of A around the loop lR.

DEFINITION 1 . 1. - The map CR : (0,4] --~ G given by R -~ g (R) is a

path denoted by CR.
Now, we define condition H.

DEFINITION 1. 2 (condition H). - If as R 1 0 the elements g (R) consi-
dered as points on the carrier of the path CR approach the identity element
we say the connection satisfies condition H.

THEOREM 1. l. - The following is equivalent to condition H: There exists
a trivialization over a small ball 0 ~, 0  Ro  4 centered at the
origin, in which the connection defines a local co-variant derivative

with

and with lim Ao (r, 8) = 0, with the limit taken in the sup-norm topology

on (S.

Proof (1 -~ 2). - Choose an orthonormal framing ( vi (r, 8) ~ of rl over
the Extend this to a by parallel
translation around the circles lR. Then, Vo vi = 0, and holonomy appears.
Thus, vi (r, 2 x) = vi (r, 0) . g (r) for some g (r) = g (r, 2 x) E G. The hypothesis
implies that for small 8, the element g (r) is close to the identity so

that g (r) = exp (h (r)) for some h (r) E (~ . Let cp : [0,2 ~] -~ [o,1 ] be a smooth
function which vanishes near 0 and is 1 near 2 71:. Then

Wi (r, 0) = vi (r, 6) . exp ( - cp (8) h (r)) is a smooth orthonormal framing of ~
over B2 - ~ 0 ~. In this framing the connection form is:

(A8) j -  Ve wi~ w,) = ( [v8 (Vi. exp ( - (p (8) h (r))], = - (p~ (6) h (r) 6i j.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Hence as (2 --~ 1 ). This follows from standard

O.D.E. estimates on integrating the parallel transport equation for each
horizontal lift of lR.

Q.E.D.

Remark 1. l. - Thus condition H implies that the bundle 11 is trivial

Remark 1 2. - Condition H is not implied by any LP-condition on F,
but, in Corollary 1. 1 it is shown that an bound on F for any r > 0

implies the existence of a unique limit o. We give an example
of a bundle, trivial over the punctured ball with zero curvature form F.
We consider the rank-2 bundle over with G = SO (2, R),

Assume that condition H holds, then there exists, by Theorem 1.1, a
new trivialization in which the connection form becomes

where lim Ae (r, 8) = 0 with the limit taken in the supremum topology

on ~. The gauge transformation equation gives:

for some g (r, 9) E SO (2, R). Let

since g (r, 8) and Aa (r, 8) commute we have

Let Direct computation now gives

Vol. 7, n° 6-1990.



566 P. D. SMITH

Let e = 0, we see that P (r) = f(r, 0).
Note that since lim Ae (r, 8) = 0 we have lim b (r, e) = 0 and thus

f (r, 0) ~ f (r, 2 ~) (Mod 2 ~c).

Thus, g (r, 
(r, 8) (r, 8) ]is not well-defined as an ele-- sin f (r, 8) cos f (r, 8)

ment of SO (2, R). We have obtained a contradiction that shows that
condition H is not satisfied although F = 0.

Q.E.D.

The Auxiliary Gauge

We will give in Section 3 a gauge-independant proof that under the
conditions of Theorem M, the curvature F is actually in Lp (BR) for
1 p  oo if R is small enough, in any smooth gauge over BR - ~ 0 }. This
estimate, coupled with the existence of an "auxillary" gauge in which the
connection form A is Lp-norm close to zero (flat connection), will enable
us to use a new gauge-fixing argument [U3] of Uhlenbeck to build a
Coulomb gauge over BR - ~ 0 ~, bypassing the original broken Hodge gauge
argument of [Ul]. Thus this paper is much simplified compared to the
author’s Max-Planck preprint [S] which preceded it.

In this section we construct the "auxillary" gauge and show that the
Lp-norm of the induced connection form is small.

LEMMA 1. l. - Under the conditions of Theorem 1. l, let the connexion
satisfy condition H. Then, there exists a local trivialization in which the
connection induces the local co-variant derivative D = d + A,
A : = Ar (r, e) dr + Ae (r, 0) de and we have:

Proof - We start with the orthonormal framing vi over the standard
ray La used in the beginning of the proof or Theorem 1.1. We use this
framing to give a local trivialization for the bundle restricted to have the
standard ray as a base space. The connection restricts and we denote the
restricted connection by This connection defines

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Now we define (r) E G as the solution to:

Now 0) : = vi (r, 0) . s (r).
Note that

and thus; lim {Ar (r, 0)}ij = 0 = lim ~rvi (r, 0), vj (r, 0) ).

Now carry out the proof of Theorem 1. 1 with ( replaced by ~ v~ ~ .
Note that in the gauge constructed for which lim A8 (r, 8) = 0 we have

Now we show that, in fact Condition H and F E L 1 imply

We apply the argument [Karch] p. 92, line 12-15; p. 93, line 8-15 to the
bundle 11 with our fiber norm as above and to the curves given in Figure 1.
On page 93, line 9, we do not pull the norm of curvature through the
integral sign. See our Figure 1.

The homotopy between cl (S) and c2 (S) is given by: (o _ S __ 2 ~,
any E with 

where ( - , - ) is the polar coordinate of the image in R2.
Geometrically ct goes linearly in S from p to Jl along when 0 ~ S ~ E,

linearly in S clockwise around the circle of radius t when E - S _ 2 ~ - E,
then linearly in S from, ~ to p along when 2 ~ - E _ S -- 2 ~c.

Vol. 7, n° 6-1990.
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Remark. - Note that when applying the argument of [Karch] to this
homotopy, in Karcher’s Notation, we have [Karch, p. 93, line 15];

( Here in Karcher’s notation c and  are tangent vector fields to theB as at

homotopy, because the wedge product vanishes when either 0  or

2~-8~S~2~~
Thus, since R is Karcher’s notation for vector bundle curvature we

obtain:

transport of a vector W, in our lifted frame above p, around c~ 1 and v2 is
any parallel transport of the same vector W around the path c2. Here

Y  r2  T  Ro with Ro as in Theorem 1. 1.
Since the action of G carries parallel transport in 11 we have: (with

slight change of notation to conform to the usual conventions for matrix
representations of leftwise multiplication). Thus

and we have:

(here [g] carries parallel transport over the line segment p a (This makes
sense since h is trivial over p a and our framing gives a canonical meaning
to this construction.); and [ ] refers to a matrix representation of the
group action. Thus:

Thus:

Now using theorem (19) p. 73, line 8-10 [Bell] (the largest eigenvalue ~,1
of a real symmetric matrix A is given by: max ( x, A x ) we obtain:

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Now, we will estimate )) M from above and below.
We denote the group element that carries parallel transport over the

line segment p, (r, 0) by g (r), here 0) and 
This makes sense because 11 is trivial over this line segment (even over the
punctured disk), hence our framing gives a canonical meaning to this

construction. Using the parallel transport equation:

and since lim Ar (r, 0) = 0.

(We have used equivalence of finite dimensional norms.) Here ]) I II M is
the matrix norm given by the largest absolute value of an entry of the
matrix. Cf [H] lemma 4.1, p. 54 with/==().
Now by (standard) Gronwalls inequality we have:

where and  ~ 0 as 
Thus, we have:
upper bound:

where as 

Now we obtain the lower bound. Since,

we have:

Vol. 7, n° 6-1990.
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Thus

where and as 

Now let

since 

Integration gives:

since Ar (S, 0) and [~(S)] are continuous on ~J so is ~~~~~~ . . Thus
dS

is bounded above on [r~ ~~]. Thus [~(S)] is Lipshitz continuous
on in the ~ ~M norm with Lipshitz constant L. L satisfies as

since

by our upper Gronwall estimate on ~ I [g (S)] 11M above.
Thus, since

(for some S, r  S  r2) we have:
lower bound

where 0 as T 1 0 (if T is small enough).
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At no loss of generality we choose our matrix representation of

G c (9 (n) so that each [g] in the component of the identity is given by a
matrix in block form with 2x2 blocks given as rotations like

[ cos 03B8 sin 03B8 - sin 03B8 cos 03B8 ] or [ cos 03C6 sin 03C6 - sin 03C6 cos 03C6 ], and I x I blocks given as [ I ] or

[-1]. If [g] is close to the identity matrix we use (standard) a two term
taylor approximation in the angular parameters, with a third term as the
remainder, for the matrix elements. This is often called the "infinitesimal
rotation representation" for elements close to the identity. From the above
estimates it follows that (by direct elementary calculations)

Now since

Now using estimate (*) and the "infinitesimal" form of [g] as above we
see that:

where $ (r) >_ 0 and lim (~ (r) = 0. Thus:

where 

Using Holder’s inequality on the first right hand term we get:

Now, letting and letting r 1- r2 tend to zero we
obtain

with and y 1 0 as so that

Vol. 7, n° 6-1990.
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thus

(we have used equivalence of finite dimensional norms).

Now note that

Since this follows from the formula for cp))~. [line 8 of the
Proof (1-2)] in the proof of Theorem 1 .1.

Q.E.D.

Remark. - Although Remark 1. 2 shows that condition H is not implied
by F in any LP ; 1 _ P _ oo we show that if then holonomy limits
(not necessarily the identity element) exist as r 1 0.

COROLLARY 1 . 1. - Let some ~ > 0, then lim g (r)
r - o

exists.

Proof - We estimate the quantity I g (rl) - g (Y2) trace inner product norm.
First we assume the bundle is trivial over 0 ~ ; we will remove this
assumption at the end of the proof. Since this norm is O (n)-invariant we
can, at no loss of generality, choose to evaluate it in a gauge where
lim A (Y, 0) = 0. This gauge is constructed exactly as in the proof of
rO

Lemma 1 . 1, lines 1-11. Now the proof of Lemma 1 . 1 lines 23-140 fol-
lowed exactly gives that

where
Since we have by Holder that

where Q (Y 1- r2) ,[ 0 uniformly as r1 - r2! 0.
Thus g (r) is uniformly continuous on (0, T) and has a unique limit and

extension to [0, T]. Hence lim g (r) exists.

Now we drop the condition of triviality.
If the bundle is non-trivial we note that although the curvature on the

bundle pulls down to several curvature forms over 0 } and similarly
for the connection form, the global definition of the curvature integral in
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[Karcher] (see the Remark in our proof of Lemma 1.1 this paper), the
gauge invariance of the of F, preserve the estimate

The topology of bundles over BRa - { © ~ is very simple since the base
is homotopic to S 1. These bundles are classified by maps from the point
(Ro, 0) into G.
We can choose the Iocal trivializations inducing pulled-down

connection forms such that when 0 _ 8  ~a  ~ we have
and when 2 ~c - (3 ~  8  ~ ~c we have

A2 (r, 8} = A; (r, 8} dr + As (r, ~#} d~. The only change in our argument is that
in the proof of Lemma I . ~ (see line 53) we have v2 = ~ ~r2}~ [g~ . w
where carries the parallel transport along the line segment 03C3 P when
8 = 2 ~. To estimate and we carry out the

previous argument given in this remark for A2 (r, e} exactly as we did
before for A (r, 8) in the trivial bundle case. We obtain the same uniform
estimate ~~r2~~ ~~~race inner product norm hence ~’ exists.

r - 0

Q.E.D.

DEFINITION 1.3. - We call the gauge defined by Lemma 1.1 the

auxiliary gauge.

LEMMA 1. 2. - Let the conditions of hold. Let the connec-
tion satisfy condition H. Let the curvature be in (BR0) 1  P  ~. Then

in the auxiliary gauge we have: Ro |Ar (r, 03B8) |P rdr ~, 0  R  Ro.

Proof - In the auxiliary gauge we have:

and

Vol. 7, n° 6-1990.



574 P. D. SMITH

Fix S, 0  S _ Ro and integrate:

Thus:

0SRo.
Thus, by Lemma 1.1 and since FeLp, 1 __ P  oo . We obtain (by elemen-

tary computations):

0  R  Ro, with K independent of R.
Now, apply Gronwall’s inequality, p. 189 [AMR], to get:

with K and K independent of R, since lim |A03B8 (S, t) = 0.
s -~ o

Now applying ( * ) with R replaced by R/2m, m =1, 2, ... and summing
we obtain:

Q.E.D.

LEMMA 1.3. - Under the hypothesis of Lemma 1.2 in the auxilliary
gauge we have 

Proof - Apply Lemma 1.1 to estimate and
Lemma 1. 2 to estimate We note that for each E > 0 ~~with such that:
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First letting 0 and then dividing by r, we obtain:

by Lemma 1.1.

_ 

Q.E.D.

2. SOME IMPROVEMENTS ON MORREY’S THEOREM

In this section we state some improved versions of Morrey’s theorem
in 2-dimensions that will be used later.

First we state Morrey’s theorem in 2-dimensions.

THEOREM 2.1 (Morrey’s theorem in 2-dimensions) [MO]. - Let

with u >- 0 and suppose that: Q is a locally Lipshitz domain in

R2, and L V u V ç + f . u dx __ 0 for all non-negative 03BE ~ C~0 (03A9). Let f satisfy
Jn

the Morrey Condition:

for all BR c Q and some E, fi > 0 then

for all B (xo, p) c B (xo, p + a) c Q.
Proof - Identical to the proof of Theorem 5 . 3 .1 of [MO], p. 137,

except that we need our somewhat stronger Morrey condition because the
inequality

fails in 2-dimensions due to critical Sobolov exponents.
We would now like to note that if (Q) we can state an improve-

ment of Morrey’s estimate involving K a2 B(x0, 03C1+03C3) |(y)|dy. This improve-

ment follows from an iteration argument of E. Bombieri. See [BO], p. 66.

Vol. 7, n° 6-1990.
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THEOREM 2 . 2 Let Q be compact. Let u ~ C °° in Q and let
u >_ 0. Let u satisfy:

for all concentric BR, Bp c Q, OpR. Then sup u(x)~c  u dx
Bp 

where B~ and Bp are as above.

Proof. - Use the iteration at the top of p. 66 of [BO].
Q.E.D.

3. A REGULARITY THEOREM FOR THE HIGGS FIELD

In this section we assume that the Higgs field is a C~ solution of the
field equation:

in the punctured unit ball B2 - ~ ~ ~ . As in [Sb 2] the assumptions 
near the origin depend on the sign of ~,.

Because of the criticality of the Sobolov exponent 2n n - 2 for L2 functions

in 2-dimensions, we require several technical changes from the argument
in [SB2]. This is where we use the estimates of section 2.
The main result of this section is:

THEOREM 3.1. - Let (p be a C~ solution of in B2 - ~ o~ ~ in

R2. We 
(a) 

and

m~p6L~(B~-{0}).
Remark 3.1. 2014 That condition (c) is natural follows by considering

the case when the structure group is commutative (I. e., the real numbers)
and looking at the scalar inequality

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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then, u = - In r + r is an unbounded function satisfying the above inequality
and - In r + r is in all LP 1 _p  oo . Also note that, if r is small enough,
the function - J -In r + r = u also satisfies the above inequality and is in

Also note that our condition (c) is weaker than and

that cp E O { ~ log ~x ~~ ~~~) is weaker than (c).
Similarly, we see that conditions (b) and (a) are natural by considering

A u = 0 in B22 - { 0 }. Then u = is an unbounded solution of

0394u + u3 - 0 with H2 (B2).
To prove 7.1 we make strong use of the fact that ] is a weak

solution in B2 - 0 of: (A ] 03C6 |~03BB 2 ( |03C6 2 - m2 ] 03C6| where A is the ordi-

nary Laplacian on functions. This follows from Weitzenblock - like identi-
ties and details may be found in [Sb2] (formula 2 and Lemma 1.2).
At no loss of generality we assume u > 1.
For example, in case (b) the function ] is subharmonic. We dispose

of case (b).

Proof [case {b)]. - First we show that u is a weak solution of

B2 ~u.~~dx~0 for all Let 03C8~ be in

(B2) with ), on BE, t]rE = 0 on 03C8~ monotone

decreasing in |x|, |~03C8~|~K ~. We multiply by to obtain:

Let E ,~ 0 and note that the right hand side tends to zero. By Lebesques
dominated convergence theorem we have:

Now, we apply the argument of [Giaq] p. 119 and the "reverse" Sobolov
estimate [Giaq], p. 122, or equivalently apply Theorem 2 .1 p. 136 of

[Giaq] to Since u E H~ (B2) c R2 Sobolov’s embedding
theorem gives u E L2 +E Now extend u to u where u is defined in Bi
with compact support and with

Vol. 7, n° 6-1990.
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Thus, by the Sobolov embedding theorem and the inequality of [GT]
p. 155 we have:

Since u is bounded in we see that u is bounded in B~.
Q.E.D.

We now dispose of case (a).
Proof [case (a)]. - In case (a) we have that that u= ] solves

with ~>0. Thus: AM~-(M~2014~)M. Now consider the
two sets.

These sets are pairwise disjoint. Now, because u ~ C~ on B2 - { 0 } , the
set B is open.
Cover B by a countable collection of small balls, each contained in B.

Then on any such small ball in B we have 0394u~0 and by the estimate
above used in the proof of case (b) we obtain:

Now on A, u is bounded above by m. Hence u is bounded on B2 - { 0 ~ .
Q.E.D.

We now prove case (c). This requires some work because the proof of
Proposition 2. 3 of [Sb2] fails in 2-dimensions. The main problem is that

when n = 2 inequality (1.14), p. 7 of [Sb2], fails since 2n = oo and cn = 00
n-2

when n = 2. Nevertheless we establish the same estimate as in the conclusion
of Proposition 2. 3 of [Sb2] using a modified technique.

First we prove the following proposition.

PROPOSITION 3 . 1 (cf Prop. 2. 3 of [Sb2]). - If condition (c) is satisfied,
either we have:

for all test functions 11 in Co (B2) or u is bounded.

Proof. - We use a sequence ~K of test functions that vanish for EK,

tend to 1 as EK tends to zero and such that as K --~ 00.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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These are defined cf. [G], p. 547 bottom, by:

Remark 3.2. - Note that our growth condition in case (c) is chosen

exactly to insure that B2 |u|2|~~K| ~ 0 as K ~ ~.
Now let 11 be C~0 and let rj be a Coo function vanishing in a neighbor-

hood of the origin. Use the test function as § in:

for all where

Now, I1 _ ~ and the first

term on the right may be absorbed into the left hand side. Also,

Note that fl V 2 dx - 0 if we set ~ = and let K ~ oo . Do this. Thus

in the limit as K -+ 00, ~ O r~ ~ 2 ~ u ( 2 dx. Now,

Since we have h = -03BB2(|03C6|2-m2)~ -03BB 2(|03C6|2).

Vol. 7, n° 6-1990.
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We now estimate J~:
Remark. - The estimate of 12 in the proof of Proposition 2. 3, p. 11

of [SB2], is based on the inequality: gw2 dx  Cn II g 2 dx which

is proved using Sobolev’s inequality. This inequality estimates 12 from
above by a sum of terms, the first of which is proportional 
Then use is made of conformal scaling to make )) LZ small.

In two dimensions however, the Sobolev estimate has a critical exponent
and constant cn corresponding to this exponent is infinite. Thus we need a
new argument. This new estimate is contained in the proof of the following
sublemma.

SUBLEMA 3 . 1. - Let B 2 - { 0 } ~ 03A9 ~ supp ~ ~ supp Then:

The idea of the proof is that V =) (p |2 is a weak sub-
solution (in fact a C~ solution) of an elliptic equation on

supp ~ ~ supp ~ =QQ. Thus by a Morrey-like estimate (Bombieri’s lemma)

we can estimate sup |(p | ~ C R [i . . The sublemma-!
then follows from a covering theorem. We do it now.

Let let all balls B (r) be contained in Q. Choose the balls BR
so that BR ~ B2R ~ B3R ~ 03A90. Then Do is covered by a finite number of such
balls. Since M is C~ in ~o we can at no loss of generality assume that
M~ 1 on Qo. (If no such Q~ exists then M is bounded.) Recall that M= j I
is a subsolution of 0394u~03BB2(|u |2 - m2)|u|~03BB 2(|u|2|u| in 03A90 since 03BB0.

Thus inQo. Now since onQo, we have:

Thus V=|u|2 is a C" subsolution inQo
of Note that is in [by our

growth assumption 03C6 ~ L2 + ~(B2)]. Now we apply Theorem 6.1 (Morrey’s
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Theorem in 2-dimensions) and Theorem 6. 2 (Bombieri’s lemma) to get

VB (R), B (2 R) concentric in Qo.
Thus

We now use the above inequality and Holder’s inequality to achieve

our estimate of J2. Using Holder’s inequality with p = 1 + ~ 2 , q = 2 + ~ ~ we
get:

Now extend ~~ u to B4R with the extension equal to zero on

B4R/B3R and We can do this by
Theorem 3.4. 3 p. 74 [MO]. Thus: 

Now use Sobolev’s inequality in the form:

for with u=O on B4R/B3R. We let and

t = (2 (2 + E))/~ to get:

and thus
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1/2Recall that supBR |03C6 I  (K/R) [ B2R|03C6| 2 dx ]1/2 . Thus combining all our

estimates we get:

Now using Besocovitch’s covering lemma and changing constants appro-
priately we have

This completes the proof of the Sublemma.
. 

Q.E,D. Sublemma
Now we return to the main proof and use the Sublemma. We have,

using the Sublemma and recalling that conformal invariance implies that

we may choose rr cp  y (where y may chosen small) that (II):

with c(y)!O if y - 0 and lim 
k ~ 00

Note that:
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so from (II) and (III) we obtain

Now choosing y small enough we absorb the term

2 V u I 2 dx in the left hand side of (IV) and we get:

Now using growth condition c, we have

where h (k) ,~ 0 as k - 00. Using this in (V) we obtain

with But
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Thus

[again with K (y)! 0 as y ! 0.]
Now choose y small enough and absorb the last right hand term on

the left hand side.

But, (we have already shown

Thus combining terms

we obtain

with m (k) ! 0 if k - oo .
Now, let k - oo and we get:

with K independent of u.
Q.E.D.

Now we prove Theorem 3.1.

Proof - Theorem 3 . 1 now follows from De-Georgi iteration, p. 76
[LU] which uses the estimate of Proposition 3.1 as its basic inequality.

Q.E.D.
We now conclude this section with a final corollary.

COROLLARY 3 . 1. - Under the hypothesis of Theorem 3. 1, is in
L2 B
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Proof - This is the same as the proof of Corollary 2. 4 of [Sb2].
Q.E.D.

4. A GROWTH ESTIMATION FOR F

We show F is actually in Lp for all in any smooth gauge
ORRo.

THEOREM 4.1. - Under the conditions of theorem M, F is in any 
1 ~ P  00, in any smooth gauge over BR - ~ ~ ~,  Ro.

Proo, f : - Since *F is a smooth function on the punctured ball it follows
from inequality 6.7, p. 269 of [JT] and from YMH1 that:

by our estimates on (p. Now, since 1 is follows that *F is in

V~~ ~BR - ~ o ~ ~. Thus by Sobolev’s theorem F is in L2 (BR - ~ 0 ~~. Now,
we have and Sobolev’s embedding theorem gives that

Q.E.D.

5. PROOF OF THE MAIN THEOREM

COROLLARY 5. L - (F, o) is a weak solution of the field equations in

the full ball B~, 0 ~ ~  ~.~.

Proof - Same as Corollary 5 . 3 of [Sb2].

Q.E.D.

Proof. = D(p ~ L~ (B~); apply Holder’s inequality.

THEOREM 5.L - Under the conditions of theorem M, there 
smooth gauge over { which the induced covariant derivative is
d+ A and A e H1q (BR0) with q> 2.
Proof. - By lemma 1.3 we have an auxiliary gauge in which the

induced covariant derivative is

and 

As in the proof of Corollary 4.3 of [U3] we solve (by now this
is standard): for g in the space
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if P > 2. Let P > 4. Note, in this
gauge, the connection form (again denoted by A), is in

Now, in this gauge, as in Proposition 5 . 4 [Sb2],
we have Since we

have V A E Thus A E Hq c C° with q > 2.

Q.E.D.

Remark. - Note that for clarity and consistency we have followed the
function space notation in [Sb2]. In more precise notation

would be (~ Q A1 * R2), 
would be A E H~ (BRO, (5 (8) A 1 * R2), etc. 

"

THEOREM 5.2. - Under the conditions of Theorem M, there exists a
smooth gauge over BRO in which the induced curvature form F and the
induced connection from A satisfy:

1. 8A=0.
2. A E Hq with q > 2.
3. 

Proof. - Using the gauge given by Theorem 5.1, apply Lemma 1. 3 of
[Ul]. Note that ken) as required in Lemma 1. 3, if Ro is small
enough, since F E Lp for all 1 _ P  oo (apply Holder’s inequality).

Q.E.D.
At this point, the proof of Thorem M follows exactly the proof on the

last two pages of [p. 15-16] of [Sb2].
Q.E.D.

We are finished.
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where ( - , - ) is the polar co-ordinate of the image in R2. E is arbitrary
such that 

Geometrically ci (S) holds constant equal to p for ci (S) goes
around the inner circle clockwise r linearly in S for E  S _ 2 ~ - E, then
C 1 (S) holds constant equal to q = p for 2 ~ - E - S _ 2 ~.

Geometrically c2 (S) goes linearly in S from p to a along p « when
then goes clockwise linearly in S around the outer circle when

then r goes linearly in S from a to p along 6p when
2~-E_S-2~.
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