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ABSTRACT. - We prove the existence of periodic solutions with prescribed
energy for a class of N-body type problems with Keplerian like interaction.
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Nous prouvons 1’ existence de solutions periodiques d’ énergie
prescrite pour une classe de problemes a N corps avec interaction de type
keplerien.

1. INTRODUCTION

In this paper we seek for periodic solutions of
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where x = (xl , ~ ~ ~ , xN ), x~ E R~ and

Roughly, we deal with potentials like

When ~~ (~) is as in (1.3) and a = 1, (1.2) is the interaction potential of
N-bodies of masses ml = ~ ~ ~ = mN = 1, and (1.1) is nothing but the
Kepler N-body problem.

Periodic solutions of (1.1) with N = 2 have been widely investigated.
See [3] and references therein.

When N > 2, the problem is more difficult because the lack of

compactness arises in a stronger form. The breakdown of the Palais-

Smale condition has been bypassed either assuming = V~2 (~),
(cf. [5]) or using critical point at infinity and Morse theory in [4, 9], or
employing critical point theory with boundary condition in [7]. Using this
latter tool, solutions with fixed energy have been found in [8] for a class of

Vij ( ~ ) ^_~ - ‘~ ~ - a , a > 2 and h > 0. However this does not cover the Kepler
N-body problem, where, among other things, the natural value of energy is
negative. When V 3 (~) (~), V ~ (~) ^_~ - (~~-a, 0  a  2 and h  0,
the existence of periodic solutions of (1.1) has been proved in [2], but no
results dealing with the general case, are known. In the present paper we
address this situation and prove the existence of (generalized) solutions of
(1.1) for a class of Keplerian-like K-body problem.
The usual functional framework to study (1.1) is to look for critical

points of the Maupertuis-like functional:

defined on

Our approach consists of 4 steps:
lOIn order to control the behavior of I on 8A, we consider the perturbed

potentials ~ = V 2014 - - c ’~ and the corresponding functional 7~.~ 
~’
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2° In constrast with [8], Ie is not bounded from below on A, because
h  0. To bypass this difficulty we use a device like in [1]. Namely we
consider the manifold

and a suitable, related functional J~ (u) (see section 3) which is bounded
below on M and such that the critical points of J~ (u) constrained on M
correspond to critical points of Ie (u).

3° We show that the arguments used in [7, 8] to overcome the lack of
Palais-Smale condition can be adapted here to obtain approximate solutions
xe (t) of (1.1) with ~ instead of V.

4° We show that x~ (t) -, x (t) , a weak solution of (1.1) in the sense
of [3]. See also Definition 3.1 below.
We point out that the regularity of weak solutions will not be studied

here. For this kind of results, when N = 2 3, see [10].

2. MAIN RESULT

We assume that the potential V (~) = 1 (xi - satisfies the

i~j
following conditions:

(V3) There exists an a E (0, 2) such that

(V4) There exist /~ E (0, 2) and ri > 0 such that

(V6) There exist B E [0, 7r/2) and r2 > 0 such that

Here
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Remark 2.1. - Without loss of generality, we can assume that

Otherwise, consider Vij (~) = 2 (Vij (~) (-~)) instead of Vij (~).

Remark 2.2. - From (V1)-(V4), it follows that

(i) Vi~ () > 0 for 0, (2.1)

(ii) For some a > 0,

To state our result, we need to introduce the concept of weak periodic
solutions of (1.1) as in Definition 10.1 of [3]. Roughly, it is a special class

of generalized solutions which are found as limits of non-collision 
solutions

of approximate problems. Since we need some notations to give 
a precise

definition of weak solutions, we will give it in the next section.

Remark 2.3. - It is shown in [3] that every weak T-periodic solution

x (t) satisfies

(i) meas C (x) = 0, where

In the sequel, a solution x (t) will be called a noncollision solutions 
of

(1.1) if C (x) = 0.
Now we can state our main result.

THEOREM 2.1. - Suppose that (v 1 )-(V6) hold. Then for all h  0, the

problem (1.1) has a weak periodic solution.

In the following sections, we will give a proof to Theorem 2.1.

3. VARIATIONAL FORMULATION

Throughout this paper, we use the following notation:
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NOTATION:

= the duality product of f E E* and u E E.

For a sequence C E, we write

to indicate that un converges to u° weakly in E and uniformly on [0, 1].
We consider the following functional, I : A - R,

It is well-known that critical point of I (u) on A, such that I (u) > 0, would
give a rise-after a suitable time scaling-to a non-collision periodic solution
of (1.1). However unfortunately, it is difficult to deal with I (u) directly and
we need to introduce a modified functional IE (u) for e E (0, 1], by setting

Vol. 11, n° 6-1994.
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The main different feature of ~ is that: for every sequence (un ) C A such
that un  u E 8A, we have

that is, for E E (0, 1]

We remark here that if v~ E A satisfies I~ (vê) = 0 and I~ (vê) > 0, then

is a periodic solution of the perturbed problem:

Now we can give a precise definition of a weak periodic solution x (t)
of (1.1).

DEFINITION 3.1. - (cf Definition 10.1 of [3]). x (t) is said to be a weak

periodic solution of ( 1.1 ) if there exist sequences (vn) C A and 0
such that

1° vn E A is a critical point of I~n such that I~n (vn) > 0, that is, if we
set xn (t) as in (3.3), xn (t) is a periodic solution of (3.4).

2° There exists a constant a > 0 such that

4° There exists a to E (0, 1/c~~ ] such that

As anticipated before, it has been proved in Theorem 10.7 of [3] that
any weak periodic solution satisfies the properties (i)-(iv) of Remark 2.3.
Next we define for u E A with u ~ 0 a positive number p = p (u) > 0 by

LEMMA 3.1. - For any u E A with ic fl 0, the equation (3.5) has a unique
solution p = p (u) > 0, which is independent of ~ E (0, 1] and satisfies

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Proof. - For u E A, a direct calculation gives us

Thus, for u E A, with ic fl 0, (3.5) is equivalent to (3.6). We set for
u E A, and p > 0

From (V2), (V5) and (2.3), it follows

Thus there is a unique p = p (u) > 0 such that ~u (p) = h for all u E A

Remark 3.1. - In what follows, we define p (u) > 0 for all u E A by (3.6).
We state some properties of p (u).
LEMMA 3.2. - (i) p (u) E Cl (A, R);

E A, then p(u);
(iii) For all u E A,

Proof. - Properties (i) and (ii) easily follow from the implicit function
theorem, using (3.6) and (3.7).

(iii) From (3.6) and (V3), we have

and (3.8) follows.

Vol. 1 l, n° 6-1994.
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We set

and

We remark that p (u) > 0 and (3.8) imply

We also remark here that M is a submanifold of E of codimension 1 and

In particular, all constant functions belong to Tu M for all u E M.
In what follows, for a functional F ( u ) E C 1 ( l~, R), we denote by

F’ ( u ) its gradient in A, and for u E M we denote by VM F (u) its

gradient constrained on M, i. e., VM F (u) E E* is a vector satisfying

More precisely, it is given by

Here we state some properties of IE (u) and J~ (u).
1° It follow from (3.5) that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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2° For u E A and cp E E,

that is,

3° For u E E, define f u E E* by

Then VM J~ (m) can be written as

with v = (u)~u - (u~ ).
4° Assume = 0 for u E M. By 1° and 3°, we have

Hence = 0.

Thus we have

LEMMA 3.3. - Let u~ E M be a critical point of ~T~ on M, that is,
~M ~T~ (uê) = 0. Then

noncollision solution of (3.4)..

Remark 3.2. - Since p~ > 0 and (3.10) holds, is well-defined and
cv~ > 0.

In the following sections, we shall find a critical point ~zE of ~~ on M.

Vol. 11, nO 6-1994.
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4. A CRITICAL POINT LEMMA

It is known that J~ (u) does not satisfy the Palais-Smale condition on M
(cf [4, 7, 8]). To overcome this difficulty, we follow the procedure of [7, 8]
(see also [6]). We set

The following is nothing but Lemma 2.1 of [8] in our setting.
LEMMA 4.1. - Assume that there are constants c and c with c  c and

b E R such that

(H 1 ) If (un) C M satisfies u° E 8A and g is bounded, then

(H2) V M g (u) ~ 0 for all g (u) = b, J~ (u) = c.
(H3) If (un) C M satisfies J~ (un) --~ c, lim sup g (un )  band

V M J~ --~ 0, then possesses a convergent subsequence.
(H4) If C M satisfies J~ -~ c, g -~ band

for some 0, then (un) possesses a convergent subsequence.
(H5) (~) 7~ A VM g (u) for all u E M with J~ (u) = c, g( u) = b

and for all A > 0.

(H6) For any 8 > 0 with c + 8  c, the set

is not deformable in M into

Then ~I~ (u) has a least one critical point u E M such that J~ (u) = c
and g (~c)  b..
We are going to verify the conditions (H 1 )-(H6) for suitable c, c, b > 0.

First of all, we remark by (3.1 ) and (3.9) that if un  ~c° E 8A then

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Therefore (HI) holds. Moreover, since

for all g (u) = b > 0,

That is, (H2) holds for all b > 0 and c E R.
In Section 5, we verify (H3) and (H4) which are local versions of

Palais-Smale condition, and in Section 6 we will get (H5) and (H6).

5. PALAIS-SMALE CONDITION

To verify (H3), (H4), some lemmas are in order. First we need some
properties of p (u).
LEMMA 5.1. - For c > 0, there are ki = ki (c) > 0 and k2 = k2 (c) > 0

independent of e E (0, 1] such that for u E M
(i) J~ (v,)  c implies p (u) _ ki (c),
(ii) c implies p (u) >_ kz (c).
Proof. - (i) follows from (3.10) easily. We prove (ii) here. We argue

indirectly and assume there are sequences C M and (en) C (0, 1]
such that

We set wn = Since pn  0 and

it follows

In particular, for some i 7~ j, one has

On the other hand, = pn --~ 0 and hence

Vol. ll, n° 6-1994.
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Then 0 uniformly in [0, 1] and therefore, by (3.6) and (2.3)

This is a contradiction..
N

Recall that 03A3[ui] = 0 for u G E. Therefore Mb is a bounded set of
z=l

E for all b. Thus using also (4.1), we infer

LEMMA 5.2. -Fore E (0,1], suppose C M satisfiesforb > 0, c > 0

Then has a subsequence-still denoted by un-such that

Next we prove (H3) and (H4).

LEMMA 5.3. - Suppose ~ E ( 0, 1]. Then
(i) (H3) holds for all b > 0 and c > 0,

(ii) (H4) holds for all b > 0 and c > 0.

Proof - (i) We assume

Our goal is to prove there is a strongly convergent subsequence of (un ) such
that un --~ u° E M. By Lemma 5.2, (un) possesses a weakly convergent
subsequence u° E A. Thus it suffices to show the convergence is

strong, that is, -~ ~ = l .

First, by Lemma 5.1, we remark that

where k1, k2 > 0 are independent of n and hence p° = p (uO) 7~ 0 .

Since ~M -~ 0, by (3.13) there exists a sequence (vn) C R
such that

Taking a scalar product with we infer 0 by (3.11). Thus,
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In particular, we have

Then

On the other hand, by (3.11), = 0, i. e. ,

Taking a limit as n - oo, we have

Comparing (5.1) and (5.2) and recalling (3.8), we have = l, i. e.,
u° E A strongly in E.

(ii) Next we assume (un) C M satisfies

with 0.

By Lemma 5.2, we may assume un  ~° E A and again it suffices to
1. Again we note that

By the definition of ~~ and (5.5), there exists (vn) C R such that

Taking a product of (5.6) and we get from (3.11 )

Vol. 11, n 6-1994.
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Taking a product of (5.6) and [un], we also get

Since pn po A uniformly in [0, 1] and weakly in E, we can see
~ I~ ( pn stays bounded as n - oo. Thus by (5.3), (5.7), (5.8), ~cn
and vn stay bounded as ?~ 2014~ oo . Therefore we may assume ~c = lim /~~

and v = lim vn exist. Here we remark
?t 2014~ o0

As in the proof of (i), we take scalar products of (5.6) and un (resp. u°)
and take limits as n - oo . Then we have

and

Recalling (3.8) and (5.9), we get = 1..

6. SOLUTIONS OF (3.4)

Next we deal with (H5) and (H6). The arguments of the proofs are
similar to those of [8].

LEMMA 6.1. - For any 0  ci  c2 there exists Bo = Bo (ci, c2 ) > 0
independent of ~ E (0, 1] such that

for all A > 0 and u E M with J~ (u) E [Cl, c2~, g (u) > Bo.
Proof. - Arguing indirectly, we assume that there exist (En) C (0, 1],

( ~cn ) C M and C ( 0, oo ) such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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We set zn = g (un)-1/2 ~un~. Clearly is a bounded sequence and we

may assume z0 = lim zn exists. We remark g (zO) = 1 and z° E Tun M
?~2014~ 00

for all n. We will show

for large n. Clearly they are incompatible with (6.1) and An > 0. By (6.2)
and Lemma 5.1, we have

Note that if z°, then I [ui] - [uj] ] -~ oo. For such i ~ j, we have
from (6.3)

as 7~ 2014~ oo uniformly in t. 
,

Thus from (6.6)-(6.7), we can see

as n - oo uniformly in t. Thus by (V6)

Vol. II, nO 6-1994.
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for large n. Thus we get (6.4). On the other hand,

Therefore we get (6.5). Thus (6.1) cannot take place..
As in [7, 8], we define admissible sets. Let }{ be the set of deformations

of A in E into the space of constant functions R~~ ;

We also use the notation, for i 

DEFINITION 6.1. - Let A be a closed subset of A. We say A is admissible
if for any ~ e H there exists u (E A such that for any i ~ j there exists a

sequence i1, ... , ~ { 1, - ... , N} satisfying

We denote by A the class of admissible sets.
It is shown in [7, 8] that there is a compact admissible set, which does

not contain constant functions, and

(Al) If A C B and A E A, then B E A,
(A2) If B is a deformation of A e A in A, then B e A.

We set

Plainly ~, indeed it contains any radial projection on M of A E A

The following property is important for our argument.

LEMMA 6.2. - There exists Bi > 0 such that

Proof. - It suffices to show for any A E AM there exists u E A such
that g (u~  2 N (N - 1)~.

Let 1i be a deformation such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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By the definition of admissible sets, there is a u E A such that for any
i ~ j there exists a sequence il, ~ ~ ~ , im satisfying the properties 1°-3° of
Definition 6.1. We remark that we may assume m ~ N.

By 3° of Definition 6.1, r~o ([0, 1] x { u ~) n Ti~ for all

k = 1, ~ ~ ~ , m - 1. Thus for some sk E [0, 1] and tk , we have

Thus

Therefore

Since the pair (i, j) with i is arbitrary, we have

We also have

LEMMA 6.3. - For any given b’ > 0 there is a q = ~y ( b’ ) > 0 independent
of ~ E (0, 1] such that

Proof. - We argue indirectly and assume there are sequences (un) C M
and (en) C (0, 1] such that

By (3.10), we have

Since Mb’ is bounded in E, we can see

But this is incompatible with (3.6) and (2.3)..

COROLLARY 6.4. - Let Bi > 0 be a number given in Lemma 6.2. Then

Vol. 11, n° 6-1994.
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Now we define minimax values c; by

By the definition of c~ , it is clear from (A1)-(A2) that for any 8 > 0

Thus we see from Corollary 6.4 that

Fix C* > c~ and let BZ = Bo (~y (Bl), C*) [let Bo (., .) be given in
Lemma 6.1] ] and set

LEMMA 6.5. - has a critical point u~ such that

Proof. - Set

Then clearly

From Corollary 6.4 it follows

Since {u E M; g (u) > AM, (Al) yields

Thus we have

Now it is easy to see all assumptions (H1)-(H6) of Lemma 4.1 are satisfied
with c = c~, c = C* and b = d..

Annales de l’Institut Henri Poincaré - Analyse non linéaire



631KEPLERIAN N-BODY PROBLEMS

7. LIMITING PROCESS

In previous sections, we have shown that for any c E (0, 1] there exists
a critical point ~c~ such that

We set

From the arguments of Sections 5 and 6 one deduces:

Since u~ E Md and Md is a bounded subset of E, then, up to a subsequence,

Moreover, by (7.2), it follows that

while, by (7.3), w. We set

LEMMA 7.1. - There exists a to E (0, 1] such that

Proof. - By (7.4) and (7.5), v :== p u. Since

Vol. 11, nO 6-1994.



632 A. AMBROSETTI, K. TANAKA AND E. VITILLARO

we have by (7.1) and (7.2)

for all c E (0, 1]. It is easy to see that, via the Fatou’s Lemma, this implies
the existence of to E (0, 1] satisfying (7.6)..

Proof of Theorem 2.1 completed. - It suffices to note that v~ - v, v = p ~c
and properties 1°-3° of Definition 3.1 are satisfied, while, property 4° is

nothing but Lemma 7.1..
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