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ABSTRACT. - We prove that the exterior harmonic maps, from 

(n >_ 3) to a bounded strictly convex geodesic ball of some Riemannian
manifolds, have finite conformal invariant energy. A consequence of this
estimate is a Liouville theorem which states that harmonic maps between

Euclidean space go ) and Riemannian manifolds are constant maps
provided their image at infinity falls into a bounded strictly convex geodesic
ball.

RESUME. - Nous demontrons que des applications harmoniques
exterieures, de (n > 3) vers une boule geodesique donnee strictement
convexe d’une variete riemannienne, ont une energie invariante conforme
finie. Une consequence de ce resultat est un theoreme de Liouville qui
montre qu’une application harmonique, entre un espace euclidien ( Rn , go )
et des varietes riemanniennes, est constante des que son image a l’infini est
continue dans une boule geodesique bornee strictement convexe.
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1. INTRODUCTION

In this paper, we study the finiteness of the conformal invariant energy
of an exterior boundary value problem of harmonic maps on go )
to a bounded, strictly convex, domain of a Riemannian manifold (N, h)
where H c Rn is a bounded domain. A domain of a Riemannian manifold
is strictly convex if there exists a strictly convex function 4J defined on it
such that its Hessian tensor has a positive lower bound. In particular, when
the domain is a geodesic ball Br ( p) centered at p of radius r  7r/(2 ~)
where ~ is a upper bound for the sectional curvature of N, we choose
$ (q) = d2 (q) where d (q) is the distance between q e K and the center
p (see [H-J-W] and [Cho]). A general existence theorem of this kind of
boundry value problem has been proved by Hildebrandt, Kaul and Widman
[H-K-W]. Although their results are for compact manifolds with boundary,
they are also true for complete manifolds with boundary without any
alteration while the solution is of finite energy. As an application of this
estimate, we prove a Liouville theorem which states that harmonic maps
between Euclidiean space ( Rn , go ) and Riemannian manifolds are constant
maps provided their image at infinity falls into a bounded, strictly convex,
domain.

The classical theorem of Liouville ensures that a non-constant entire
harmonic function on R2 cannot be bounded. A well known generalization
of this theorem states that a non-constant harmonic function on Rn must be
unbounded. In 1975, Yau [Ya] proved that any bounded harmonic function
on a complete Riemannian manifold of non-negative Ricci curvature is
a constant function. On the other hand, there do exist many bounded
harmonic functions on simply connected and negatively curved manifolds
which were proved by Anderson [An] and Sullivan [Su]. In the study
of Liouville type theorems of harmonic maps, mathematicians naturally
chose to study problems with domain manifolds M of non-negative Ricci
curvature. Schoen and Yau [S-Y] showed that a harmonic map of finite
energy, from M to a manifold of non-positive sectional curvature, must be
a constant map. Later, Cheng [Che] proved that Liouville’ s theorem is true
for harmonic maps from M to a simply-connected complete manifold of
sectional curvature I~ _ 0 provided its growth at infinity is slower than
the linear rate. Choi [Cho] showed that a harmonic map U is a constant
map if U (M) falls into a strictly convex domain of the target manifold.
Assuming finiteness of the energy, Hildebrandt [Hi] and Sealey [Se] studied
harmonic maps from Rn with certain globally conformal flat metrics f go
to a Riemannian manifold.
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Jin [Ji], following the works of Hildebrandt [Hi] and Sealey [Se], obtained
a Liouville type of result for harmonic maps on Rn with the assumption
of certain asymptotic behavior, namely, constant or almost boundary value
at infinity. There are two kinds of assumptions in the Liouville type of
theorems for harmonic maps, i. e., either the finiteness of the energy of the
smallnesss of the whole image and is interested in finding other kinds of
conditions. For further information about this subject, we refer readers to a
new report on harmonic maps by Eells and Lemaire [E-L].
The monotonicity formula implies (see [Hi] and [Se]) that a non-constant

harmonic map from (Rn, 9 = f 90) must have infinite energy and provides
a lower bound for the energy growth when the energy is infinite. We shall
call the following integral

the conformal invariant energy of U. Instead of estimating the energy growth
directly as in [Ji], we first study the finiteness of the conformal invariant
energy of the exterior problem for harmonic maps equation. Under the
assumption that their image at infinity falls into a bounded strictly convex
domain, we prove that the solution has finite conformal invariant energy.
Aplying the above estimate to the harmonic maps on Rn whose image at
infinity falls into a bounded strictly convex domain, we are able to show
that, in fact, they have finite energy, i. e. ,

where O E Rn is the origin. Then, the uniqueness and a Liouville type
of result follows.

THEOREM 1. - Suppose U : go) ~ ( N, h) is a weak W1,2loc (Rn, N)
harmonic map (n > 3) and let K ~ N be a bounded strictly ’convex
geodesic ball. If

for some large r, then U has finite energy and is a constant map.
We will show that the above result is true on Rn with certain globally

conformal flat metrics, i.e., f go) as in [Hi] and [Se].

Vol. 11, n° 6-1994.
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2. THE EXTERIOR PROBLEM

A map U : Mn  Nm between two Riemannian manifolds g ) and
(N"2, h) is a harmonic map if it is a critical point of the energy functional

where e (U) = Tr (g) (U* h) is the energy density of the map U. e (U) can
be written in terms of a local coordinate as follows

where (ga~ ) _ (g~~ ) -1, ~ and u are local coordinates in Mn and N’n
respectively,

and u(x) is a local representation of U. Or, equivalently, a map
U (x) E (M, N) is harmonic if it satisfies the corresponding system
of Euler equations

where = [det c03B1 f (det (g03B103B2)]1/2 g03B103B2 dr3} is the Laplace-
Beltrami operator on g) and denote the Christoffel symbols of
( Nm, h)

In this section, we study the solutions of the exterior Dirichlet problem
for harmonic maps from f go ) to a bounded, strictly convex domain
K of a Riemannian manifold (N, h) where f2 c Rn is a bounded domain.
We will prove that these solutions have finite conformal invariant energy.
As in [Hi], [Ji] and [Se], we only consider the case of M = R’~ and
g = f go where f will be satisfying some of the following conditions

(i) f E C1 (Rn) is positive and

(ii) there exist constant a > 0 and ro > 1 such that

(iii) for some c > 0
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(ii) implies a lower bound for f, i. e., for some c’ > 0

In the case of Euclidiean space, we have f - 1 and a = n - 2.
Our objective is to study the solutions of the following exterior Dirichlet

problem,

where K c N is a bounded strictly convex domain. By our assumption,
K possesses a strictly convex function ~ E CZ (K). We will show that
the solutions of the exterior Dirichlet problem (*) have finite conformal
invariant energy. From (ii)’ and (iii), we have

at the infinity where O E Rn is the origin. Therefore, the conformal

invariant energy can be written as the following,

THEOREM 2. - Suppose that f satisfies (ii) and (iii), U is a solution of
the exterior Dirichlet problem (*) . Then, U has finite conformal invariant
energy, i.e.,

Proof. - We shall prove our theorem by contradiction. Let U E
be a solution of (*) for some Uo. From now on, we will

embed K into a Euclidiean space isometrically. e ( U) can be written as
I v U|2g.
Suppose the above integral is not finite. By the assumption K G N

is bounded and strictly convex, there exists a positive, strictly convex,
function &#x26; E C2 (I~). Let A > 0 denote a lower bound of the eigenvalues
of Hessian tensor on K, then, we have

The above inequality appeared in both [Cho] and [GH]. Choi used it to

study Liouville theorems for harmonic maps. Giaquinta and Hildebrandt
used it to study the regularity of harmonic maps. Let Br C Rn denote
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the ball centered at the origin of radius r. Without losing generality, we
may assume SZ C We will apply Green’s formula to 03A6 o U (x) over
the annulus Since f satisfies (ii), it easy to verify that function

is super harmonic, i. e. ,

Multiply the above inequality by and integrate it over the annulus
for some r > ro and we then have

The right hand side of the above inequality if of the form of our conformal
invariant energy. We shall control the right hand side of the above inequality.
Integrate the left side by part and we get

where Sr = 8Br and dw is the volume form of the unit sphere 6’i. From (4),
we know that the first term is not greater than zero. We may dismiss the
first term. Using the assumption that f satisfies (iii) and .K is bounded, it
is easy to see that the third term is bounded by a constant wich depends
only on a, c, n and K, in fact, the constant can be written as the following

The second term is dominated by
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The above integral over Sro may be controled by

which is a constant. To estimate the above integral over Sr , we first write
it as a integal over Apply Schwarz inequality, we have that the integral
over Sr is dominated by

where the first integral

is bounded. Since f satisfies (iii),

Therefore, the second integral is bounded by

Let Er denote

Then, Er is the second integral of (6), i. e.,

Combining the above estimates with (5) and (7), for some constant C, we
have the following

Since we assume that lim ET as r ~ oo is infinite, for some large ri > 0,
we have
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when r 3 ri. This inequality implies, for r > ri,

This contradiction finishes our proof. D

Remark 1. -- Technically, we only need and control of

when r is large.
A consequence of the above theorem is the following energy growth

estimate,

COROLLARY 1. - Suppose that f satisfies (it) and (iii), U is a solution o, f ’
the exterior Dirichlet problem (~j . Then,

Proof. - We write

as follows

for some big r2 > The second integral is less than

which is small when r2 is large by Theorem 2. We then fix r2 and let
r goes to infinity. D

3. A LIOUVILLE THEOREM FOR HARMONIC MAPS

In this section, we will apply our energy estimates obtained in the last
section for the exterior problems to the harmonic maps on f go) and
prove the following Liouville type theorem.
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THEOREM 1. - Suppose U : (Rn, f 90) ~ ( N, h) is a weak N)
harmonic map (n > 3) where f satisfies (i), (ii) and (iii). Let K ~ N be
a bounded, striclty convex, domain. If

for some large ro, then U is a constant map.

Proof. - We will prove this theorem by showing that E ( U) is finite.

Because f satisfies (i), Corollary 1 of [Se] says that U is a constant map.
Let’s assume E (U) = oo. We have (see [Hi] and [Se]) the monotonicity

formula, i. e.,

is a non-decreasing function of r. Therefore, we have

for some positive constant c which depends on cr, ro and U when r is

large. The above inequality contradicts the conclusion of our Corollary.
Therefore, U has finite Dirichlet energy. D

Remark 2. - The following examples indicate the complexity of this
kind of problem.

(1) Let Sn c be the unit sphere, the following map

is harmonic and has infinite conformal invariant energy. Its image is the
boundary of the convex set, i. e., semisphere.

(2) Let p be the stereographic projection from R2 to S2. The map

is harmonic.

The following is a special case of our Remark 1 after theorem 2 of
N = ~1 and is probability known, but since we do not know of any
literature with this result, we state it here as a corollary.
COROLLARY 2. - Suppose u E (Rn) is a harmonic function and for

some large c > 0

is a bounded set. Then, u is a constant function.

Vol. 11, nO 6-1994.



642 D. ZHANG

Proof. - For the case of n > 3, we take ~ (u) = u2 and apply Remark 1.
When n = 2 and 1, the proof is trivial. D
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