
Persistent homoclinic tangencies
and the unfolding of cycles

Lorenzo J. DÍAZ (1) and Raúl URES (2)
Departamento de Matematica,

PUC-RJ, Brazil
and

IMERL, Facultad de Ingieneria,
Universidad de la Republica, Uruguay

Ann. Inst. Henri Poincaré,

Vol. 11, n° 6, 1994, p. 643-659. Analyse non linéaire

ABSTRACT. - We describe a new mechanism implying the persistence
of homoclinic tangencies after the unfolding of a bifurcating cycle. The
cycles we consider are heterodimensional: the index of the hyperbolic
points involved in the cycle are different.
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Nous decrivons un nouveau mecanisme impliquant la

persistance de tangences homocliniques apres le deploiement d’un cycle.
Les cycles que l’on considere sont heterodimensionnels : 1’ index des points
hyperboliques impliques dans le cycle sont differents.

1. INTRODUCTION

In this paper we are concerned with the problem of describing generic
(in an open set) bifurcations of one-parameter families of diffeomorphisms
leading to the phenomenon of persistence of homoclinic tangencies.
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644 L. J. DIAZ AND R. URES

Since Newhouse ([8]-[9], see [13] for a new proof) it is known that
the generic unfolding of a homoclinic (or heteroclinic) tangency in arcs
of surface diffeomorphisms implies persistence of homoclinic tangencies
in intervals in the parameter line. This result was extended to higher
dimensions first by Palis-Viana [14], who treated the codimension 1 case.
The generalization to any codimension was more recently obtained by
Romero [16].

In the unfolding of homoclinic tangencies on surfaces there are,

essentially, three different possibilities according to the fractional dimension
(Hausdorff dimension and thickness) of the hyperbolic set involved in the
creation of the tangency:

1. if the Hausdorff dimension of the hyperbolic set is less than one, the
family of intervals of persistent tangencies has density zero (in the

Lebesgue sense) at the bifurcation value. More precisely, hyperbolicity
corresponds to a set of density one at this parameter value, see

Palis-Takens [12],

2. if the Hausdorff dimension of the hyperbolic set is bigger than one,
the parameter values corresponding to hyperbolic diffeomorphisms
is not of density one at the initial bifurcation value. Indeed there
are "plenty" of parameter values corresponding to diffeomorphisms
exhibiting homoclinic tangencies, see Palis-Yoccoz [15],

3. if the hyperbolic set is a thick set, i. e. the product of its stable and unstable
thickness is bigger than one, the bifurcation value is in the boundary of an
interval of persistence of homoclinic tangencies, see Newhouse ([8]-[9]).

For heteroclinic tangencies in surfaces the results are similar. See [13]
for a comprehensive information on the subject above.

In the cases quoted above ([8]-[9], [14], [16]) the concept of thick
horseshoe plays a key role to get persistence of tangencies: there are

parameter values arbitrarely close to the bifurcating one having a thick
horseshoe with a homoclinic tangency, from which the persistence of
tangencies is obtained.

We also mention that in these cases the creation of a homocli-
nic/heteroclinic tangency implies the appearence of a cycle in which the
index of the hyperbolic sets (i. e. dimension of the stable bundle) are

equal. Such cycles are called equidimensional. Otherwise the cycle is

heterodimensional, i. e. there is a pair P, Q of hyperbolic periodic points
in the cycle with Notice that on surfaces

every cycle is equidimensional.
Here we deal with heterodimensional cycles. We say that an arc of
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645PERSISTENT HOMOCLINIC CYCLES

diffeomorphisms defined on a n-dimensional manifold has a

heterodimensional cycle at t = b if there are hyperbolic saddle points Pt and
Qt with different index so that WU (Pb) meets WS ( Qb) quasitransversely
along the orbit of a point and intersects transversely.

If WS(Pb) rh has a connected component being it-invariant
we say that the cycle is connected. When rh W u ( Qb ) contains a
connected component so that for every i 7~ 0 the cycle is
named nonconnected. Observe that there are cycles being simultaneously
connected and nonconnected. The weak expanding eigenvalue of Qb and
the weak contracting eigenvalue of Pb are called the connexion eigenvalues.

In the present paper we describe a new mechanism leading to persistence
of homoclinic tangencies after the unfolding of a cycle. We prove that for a
large open class of arcs of diffeomorphisms ( ft)te I unfolding a connected
heterodimensional cycle having a complex connexion eigenvalue, there is
an open interval in the parameter line containing the bifurcation value b
in its interior where the parameter values corresponding to homoclinic
tangencies are dense. In such a case we say that the persistence of
homoclinic tangencies is a persistent phenomenon.
We point out that in this paper we do not use concepts related to fractional

dimensions (namely Hausdorff dimension and thickness). The main novelty
of our proof of the persistence of tangencies is that it only involves the
two hyperbolic periodic points in the cycle. Let us recall that in [8] to

get persistence of tangencies it is considered a thick hyperbolic set with
a homoclinic tangency.
Here to get persistence of homoclinic tangencies we analize the growth

of the homoclinic points of Pt. In rough terms we prove the following: for
t nearby b there is a subset it of the tranversal homoclinic points of Pt
being dense in a center-stable manifold of Pt, see Proposition. The set At
plays a similar role of the thick hyperbolic set in [8], see Section 3.2.

Heterodimensional cycles were introduced by Newhouse and Palis in
the seventies, see [10]. In ([2]-[4]) the connected and nonconnected cases
with real connexion eigenvalues in any dimension were studied. Connected
heterodimensional cycles with complex connexion eigenvalues remain so
far unexplored and here we give a contribution to the understanding of
the dynamics in this case.
The unfolding of homoclinic/heteroclinic tangencies leads to the relevant

dynamical phenomenon of abundance of Henon-like attractors/repellors ( [ 1 ],
[7], [18]). On the other hand, the unique known geometric configurations
leading to prevalence of parameter values with Henon-like attractors are
the dissipative critical saddle-node cycles studied in [ 11 ], see [6]. We think
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that in the sectionally dissipative cases considered in this paper our proof
suggests that the heterodimensional cycles considered in this paper may
be a good place to search for Henon-like attractors with positive density
at the bifurcation value.

2. STATEMENT OF RESULTS

Throughout this paper M denotes a compact n-dimensional (n > 3)
boundaryless manifold and the space of arcs of C°°

diffeomorphisms equipped with the usual C°° topology.
We say that exhibits a heterodimensional cycle at t = b if there

are hyperbolic periodic points Pt and Qt such that

Condition (2) means that xb is a quasitranversal heteroclinic point and
dim(W8(Pt)) +dim(Wu(Qt)) = n+1. We lose no generality by assuming
that rb = some ko and that b = 0.

We say that ( ft)tEl unfolds generically the cycle above if there are a

C1 curve (rt)t~I and a C1 map C:I --> R+ with rt E and

C(0) ~ 0 such that

space spanned by 
We proceed to describe the set of arcs of diffeomorphisms we consider

here. Let H(M) be the subset of P°°(M) consisting of arcs that unfolds
generically a heterodimensional cycle. From now on, for simplicity, we
assume that Pt and Qt are fixed. We consider arcs ( ft)tEr satisfying:

(CI) Linearizing coordinates : Let {.~i(t)}i-1,...,n and {,~2(t)}z_1,...,~
be the eigenvalues of D ft(Pt) and D ft(Qt), respectively. Assume that

...    1  pn(o>I and ... 

]  1  ~~n-y0)~ _ ] where E (C B R).
From now on write ~S = Àn-2’ ~~ _ Àn-1 and An.

(1) is C1-linearizable at Pt and Qt
and
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FIG. 1. - Heterodimensional cycle with a complex connexion eigenvalue.

or

By (CI) there is strong stable foliation in WS(Pt) with 
= 1. From now on Ft S (x) denotes the leave of containing x.

We say that a curve at C WS(Pt) does not have s-criticalities if

at ~h~ in for every x E at.
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(CII) There is an f t-invariant connected component 03B3t of WS(Pt) rh

depending continuously on t such that qt has not neither
s-criticalities nor radial criticalities, see definition below.

Let C(M) be the subset of 1t(M) consisting of arcs ( ft)tEI satisfying
(CI-II).

THEOREM. - There is an open and dense subset T (M) of C(M) so that
for every T(M) there is e = > 0 and a dense subset
T~ in [-~, ~] such that f s has a homoclinic tangency for every s E T~.
We point out that our arguments give that (ft)tEI unfolds generically a

homoclinic tangency for every s E T~.

3. PERSISTENCE OF TANGENCIES:
PROOF OF THE THEOREM

From now on we assume that C(M).
We begin by remarking that up to a finite number of nonresonance

conditions on the eigenvalues of f o at Po and Qo the linearizations of
f t at Pt and Qt, say 03C6Pt and can be taken, and we do, to depend
differentially on the parameter, (see [17]), and defined on neighbourhoods
Up and UQ of Pt and Qt independent of t.
We take a metric in M so that d(x, y) = e(03C6Rt (x), 03C6Rt (y)) for every

x, y E UR, (R = P, Q), where e denotes the euclidean metric. From now
on given a curve I, III means its lenght.

Given a set A and x E A, C(x, A) denotes the connected component
of A containing x. Let z = s, ~c,
R = P, Q. We suppose that E IRn-2,
xc E {(O,... xu E 

E and E

By (CI-II) we can choose 03C6Pt so that n 

E 

Let H(Pt) denote the set of transversal homoclinic points related with
Pt. We say that 6’i and S2 are ~-transverse at x, denoted by Sl fix S’2, if
S’1 rh S2 and S2 ) > ~, where L denotes the angle. Define Hç(Pt) as
the subset of H(Pt) consisting of points x so that WS(Pt) 
We say that -yt has no radial criticalities (see CII) if (~yt ) is transverse

to the pencil of straighlines through (0,..., 0). This definition does not
depend on 
The Theorem follows from the arguments in the proof of the next

Proposition.
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PROPOSITION. - Suppose that ,Qu(0) _ where B E (8~ ~ Q), ,Q~ E R

# 0.and 
dt Àc(O) i= O.

Fixed T > 0 there is to > 0 such that for every t E (-to, to) 
is dense in where 03C0sst denotes the projection from to 03B3t along
the leaves of the strong stable foliation of WS(Pt).

3.1. Proof of the Proposition

The main tool to proof the proposition is the following result that
extends a previous lemma in [3].
LEMMA 1. - Let m ~ N and ~ R so that 

... xl [ x~. For any I = (Z1, ..., in), 2~ E ~~, 1, ... , n > 0, (if n = 0,
I = ~ , and J = ... ) jk > 1 consider the sequences 
r, s E ~ 0,1, ... , so that 

~ 

Proof. - Take x E If x E ~ there is nothing to prove.
Otherwise either xi+1  x  xi for some i E {I,..., m - 1 ~ or

 x  Let us assume that the first case occurs, the other
one follows similarly. By (1) and (2) there j’i so that  x  

Inductively we get a sequence {jn} with  x  

Now (3) implies that zn = x~’"’’"2’i - x as n - oo. This ends the proof
of the lemma. D 

Now our target is, roughly speaking, the following:
Denote by « the natural ordering in qo so that Po. Fixed T > 0

we construct a family of sequences of T-tranverse points (x5) related with
Po so that satisfies the hypotheses in Lemma 1.
To prove the proposition we need some technical definitions and

constructions. Without loss of generality we can assume that ~~ (o) > 0,
otherwise it is enough to replace ,~~ by and C(0) > 0. From now on
we write Ai instead of Ai(0).

Let B = ,~o ° (?~l~ ) . Consider the extension of to the whole
B, ~, ., defined by = ,~o ° (cp po (~(~1, ... , a~_l, x~, x E R})). Write

UQ). 
Vol. 11, n° 6-1994.
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We extend to the whole By (CI-II),

for every x E where the convergence turns out to be C1 on compacta.
Now consider a cl-extension of to say Let ~ro be the projection
along the leaves of from UQ to 

Define pi = n E ~Z~))~ i =

+,-. We can choose 03C6P0 in such a way that is tangent to
(0,..., 0, xu) at (0,..., 0). For simplicity let us suppose that 
(0, ... , 0, xu).

Let us assume that ~yo spirals anti-clockwise. Let F+ n ~yo = U Xi,
i>o

where d(xi+1, Qo)  d(xi, Qo). Otherwise the proof follows similarly by
considering the intersections between F- and ,0.

Pick the fundamental domain D of ~yo in Up so that 

f (~~ ... , 0, x, 0), x E ~-l, -~~~~~ .
Given x and a curve a let

Let E be the fundamental domain of ~yo bounded by ~o and 
Without loss of generality we can assume, and we do, that = D.
Write n(xo) = k1.

Define 03BA(i) by the natural number so that ( fo 1(xo), x0] C ’Yo.
Remark that ~ is strictly increasing.

Let 03B3i be the arc in 03B30 bounded by xi and There are A and 8 so that

C ~yo by the curve of length 28 centered at x and

03A3i(03B4) = 03A3(xi,03B2-03BA(i)u03B4). Remark that there is $o such that 03A3i(03B4) is 03C4 2-
transversal to Fv for every 0  b  80, here is the foliation given by
vertical lines in the linerizing coordinates.

Take a small neighbourhood V of ~yo containing ro. Fixed A c V)
let AS == U C(x, n V) .

xEA

Let xi == Wu = u and

ri (8) = ~i (b) n For each i > 0 define projections along
the leaves of 
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FIG. 2.

Notice that sii = (recall the choice of F+) and that there are
constants Ki and K2 with

Let TIi(8) = C TO n Up be the maximal segment in TO where
the function ~ri i bellow is well defined, see Figure 3,

Remark that xi = and that there are constants Ki and K’2 with

In the sequel we take ~ _  4 S . From (2.2) and (2.0) there are C1 and C2

Let = ni(ê) + 2, where ni(ê) is defined by

Let D_1 = fo 1(D). Define Di(ê) by the convex hull of

Vol. 11, n° 6-1994.
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FIG. 3.

and

From the definition of mi(c), U C Hence we can

define every y E D-l U D and j > 0.
By the definition of - ~~ i (~)+1. On the other hand, from

(2.3) Cl,~u’~~2~~  (C2~3~’~~2~~. Now, from (2.4)

From (2.2-5)
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Let

From (2.6), (2.0) and the definitions of A and 8

Take

The choice of ~ and (2.7) imply that

for every y E D-i U D and i E I ( ~ ) . Since by the definition 
and DS (recall the definition of As) the last inequality
gives E u Ds for every y E D_1 U D

and j > 0.

We have proved the following
Remark. - Given y E D-i U D1 and j > 1 let ~~ - 

{~i (~i (.~o Z ~~~+~’ (~) ) ) ) ~ Then
(1) y; is well defined for every i > 0 and j > 1,

(2) yj E Ds-1 u Ds.
Take

Since 0 E (~8 ~ Q) there is a finite subset I (~) _ il, ... , ie(~~ ~, io = 0,
ik  of Z such that

(1) is 03BD 2-dense in D, where yk = 

(2) yik+1  yik, where « means the natural ordering in 03B30 satisfying
Po.

Now we are ready to construct the sequences ~~ J;~’’’ ~~ > i in the Lemma 1.
Let ~~o(xJI’T ,~ )~~>m where is defined as

follows. For i E take xi = For every k E and

j > 1 let

Vol. 11, nO 6-1994.
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By construction for every k, i E 
Given I = (i1, i2, ..., im) write ~I) = m. Suppose already defined

for every (I~  n + l,  n, (I~ _ + 1 and that --~ xJ
as j --~ oo for every k E I ( ~ ) . Let 

Again by construction Z --~ Z 

as j ~ oo for every r E 
Now we claim

Claim: The sequences (z = x, y) are well defined and

satisfies the hypotheses in Lemma l.

Proof of the Claim. - Given x, y C write x --~ y meaning
~r s ( x ) -~ Notice that ~ri i preserves the ordering «.
We say that (a,H) is a pair if a is a curve in and

H is a family of 1-disks depending differentially on x
with H(x) x Ws(Po). A pair (a’, H’) is a subpair of (03B1, H) if a’ C a
and H’(x) = H(x) for every x C a’.
Remark that there is J-l > 0 such that for every pair (a, H)

close to a subpair of (where the Cl-proximity is
defined in the obvious way) we can define the projection p(a,x) as follows

By shrinking e  b we can assume that preserves the ordering «
and by (2.1-2)

where ~ri denotes the projection along the leaves of from ~i (b) to
~i (b) .
A pair (c~, H) is called £-pair if
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For i > 0 define (ai, ~-LZ) by ai = fo(a) and ~-l2 = {~l2( fo(~))}, where
n B).

Now let us suppose that (CI(2a)) occurs, the case (CI(2b)) follows

analogously, so we omit the details.

linearizing coordinates one gets that (c~,~) is to a

subpair of ([-~~o],{~(~)Le[ArB~b]~ does not depend
on j. In particular, is to a subpair
of From (2.4) and |03BBs|  |03BBc|2 [see CI(2a)],

By shrinking c, then increasing m,(c), 
03B2-03BA(i)u~ , where  is defined as above. The choice of  allow us to define,
for every z G 7(c) and j ~ 0, the projection

where { p{a,x) )~ satisfies (2.8).
We define the i- j-sucessor of (a, ?-~), denoted by (a~ , ~h ), as follows

The choice of c implies straighforwardly that a~ C U DS.

From (2.8), (2.4) and the definitions of A and L

By shrinking c one gets

By hypothesis, fixi ~i (~), for every i E I (~) . Hence there
is C6 so that fo ~2~+~1 (D1 U D)s.

Consider any C67-pair ( a, ~ ) . From the arguments above, by shrinking
e, we can assume that the i-j-sucessor of (03B1, H) is also a C6T-
pair. Arguing inductively, suppose that for every I = (il, i2, ... , in),
ik E and J = (~1, ~2, ... , jn), j~ > 1, is a C6T-pair.
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We define as the in+1-jn+1-sucessor of (03B1IJ, HIJ). From

the construction above, is a C6T-pair and 

satisfies (2.8)  2 1 I I  (1 2) |I||03B1|. 
1

Now we are ready to finish the proof of the Claim. For simplicity let
us assume that I(~) _ ~0, l, 2; ... , e~. Take the C6T-pair (c~, ~C), where
a is a curve joining xi’2 and H(xi’2) = n V) and

= n 1>). From the arguments above

FIG. 4.
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where xi;~’T -~ Now the inductive pattern to get (2) in Lemma 1
is obvious, so we omit the details.

Finally, --~ 0 as III 2014~ oo follows from the arguments in the
proof of (2.9) by reduzing e. Now the proof of our claim is complete. D

Now we prove the Proposition. Our construction allow us to define 
z = x, y, for every I = (il, ... , in, E ~0, ... , e} and n > 0, and
J = ( jl , ... , ~n ), j~ > 1, n > 0 in the natural way for every t E [-to , to],
to is small. Moreover these sequences satisfy Lemma 1.

Fix I and J, now the definition of = x, y, only involves compact
parts of the invariant manifolds of Pt, hence zIJ : [-to , to] ~ M, t ~ z J (t)
depends C1 on t. Moreover, by construction, contains a
fundamental domain of 03B3t for every t E [-to, to].
From the A-lemma estimates with eigenvalue depending differentially on

t one gets that if e is taken small enough

Let = U C(x , Observe that 

x~03B3t~uP

contains a family of curves (,(0) as in Figure 5. Fixed i there is t(i) E (0, to]

FIG. 5.
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such that we can define the continuation ~~(t) of (,(0) depending
differentially on t for every t E (-t(i),t(i)). Let wi(t) be the point of
quadratic contact between ~2(t,) and the .~’t u. Write = 

see Figure 5.

Since (yie(0), yo(~)) contains a fundamental domain of ~y~ there is Ni
so that E (yi~(0), yO(O)). Observe that oo as i - oc. By
shrinking t(i), E yO(t)) for every t E (-t(i), t(i)).
Let 0 follows

where Cg does not depend on t and i.
Take i so that C7 for every t E (-t(i), t(i)). Given

V > 0 we get I and J as above and s E (t - + V) such that
_ ~ J ( s ) . Now it is not hard to see that fixed t E ( - t ( i ) , t ( i ) )

and V > 0 there is s E ( t - ~ , t + V) such that is tangent to
C (x J ( s ) , Up). Now the proof of the Proposition is complete. D

3.2 Proof of the Theorem

To get the Theorem just observe that in the proof of the Proposition the
hypothesis (9 E (R B Q) is only used to obtain the --dense 
in D for suitable v. However, if 9 E R is close enough to 03B8 we can
define continuations ... , being a 03BD-dense subset of D. Now the
Theorem follows from the arguments in the proof of the Proposition. . D
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