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ABSTRACT. - We study some lower semicontinuity properties of

polyconvex integrals of the form In f(M(Vu)) dx, where SZ c I~n,
u: SZ --~ and M(Vu) denotes the family of the determinants of all
minors of the gradient matrix Vu. In particular, we study the lower

semicontinuity along sequences converging strongly in when

the integrand depends only on the minors of Vu up to a given order, and
the lower semicontinuity along sequences converging strongly in 
and bounded in W ~ ~ n -1 ( SZ , l~ n ) in the special case m = n.
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Nous etudions la semicontinuite inferieure d’ integrales
polyconvexes de la forme In dx, of SZ C u: SZ --~ 
et M(Vu) désigne le vecteur des determinants de tous les mineurs de
la matrice gradient Vu. En particulier, nous etudions la semicontinuite
inferieure sur les suites convergentes fortement en L 1 ( SZ, lorsque
l’integrande depend seulement des mineurs de Vu jusqu’ a un certain ordre
et la semicontinuite inferieure sur les suites convergentes fortement en

et bornées en dans le cas special m = n.
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662 P. CELADA AND G. DAL MASO

INTRODUCTION

In this paper we study some lower semicontinuity properties of the
polyconvex functional

where H is a bounded open set in IRn, u: SZ --~ varies in a suitable

Sobolev space, Vu is the gradient matrix of u, is the vector

composed of the determinants of all minors of of order less than or

equal to .~, and f is non-negative, convex, and lower semicontinuous, with
/(0)  oo.

We prove (Theorem 2.2) that, if f (~) > for a suitable constant

ci > 0, then F is lower semicontinuous on along sequences
converging strongly in L1 ( SZ, In the case .~ = m n n our theorem

provides a new proof of a result of [I], while in the case 1  .~  m A n
the result is new. We prove also (Corollary 2.3) that, even if the condition
f {~) > is not satisfied, the functional F is lower semicontinuous on

W 1 e { SZ, along sequences converging strongly in L 1 ( SZ, 
and such that is bounded in L1(0). The latter condition
is satisfied, in particular, when is bounded in 

In the special case m = n = .~ we can replace the boundedness

in with the boundedness in W 1 ~n-1 (SZ, ~n ) . We prove
(Theorem 4.1) that, in this case, the functional F is lower semicontinuous
on W 1 ~’~ {S~, along sequences converging strongly in L1 (S~, and

bounded in p > n - 1. This result was proved in [5]
when p > n - 1. The borderline case p = n - 1 was proved in [6], if

cl ( det for some constant c1 > 0, and is new in the
other cases, which require a completely different proof. A counterexample
in [12] shows that the result is not true if p  n - 1.

. To simplify the exposition, we consider first (Theorem 3.1) the case
where f depends only on the determinant of and then (Theorem 4.1)
we study the general case.
We remark that in all the previous results the space W 1 ~n { SZ, (~n ) can

not be replaced by for n - 1  p  n, as shown by a

counterexample in [2]. For the same reason, the space W 1 e ( SZ, f~’n ) in

Theorem 2.2 can not be replaced by W 1 ~P {SZ, for p  .~.

Our results are based on the following property (Lemma 1.2,

Corollary 1.3, and Remark 1.4), obtained by M. Giaquinta, L. Modica,
J. Soucek in [8] by using methods of geometric measure theory: if 
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663POLYCONVEX INTEGRALS

is a sequence in bounded in L°° (SZ, converging to ~c in
and such that is bounded in then

there exist a vector-valued Radon measure ~c on H and a subsequence,
still denoted by such that ~c weakly in the sense
of Radon measures on H and such that Mi(Vu) is the (density of the)
absolutely continuous part of the measure ~c.

In the case of Theorem 2.2, the lower semicontinuity along sequences in
bounded in L°° (SZ, and converging in follows

easily from this property and from a classical lower semicontinuity result
in the space of Radon measures, for which we refer to [3], [ 11 ], [13].
The hypothesis of boundedness in L°° { SZ, is dropped by adapting a
sophisticated truncation argument introduced by E. De Giorgi in the theory
of minimal surfaces. The assumption u~ E is replaced with

by a standard approximation argument.
The proofs of Theorems 3.1 and 4.1 follow essentially the same lines, with

a new difficulty in the first step: since there is no coerciveness assumption,
the hypotheses guarantee only that is bounded in L1(0)
for the sequences considered in these theorems. Using some ideas
from convex analysis, we obtain also the boundedness of (det 
and hence we prove that is bounded in L1(0). Then we
can continue along the lines of the proof of Theorem 2.2, adapting the
truncation lemma and the approximation argument to the new cases.

1. DEFINITIONS AND PRELIMINARY RESULTS

The aim of this section is to introduce the notation and to recall some
basic definitions and results which will be used in the sequel.
We begin with some algebraic notation.
Given two integer numbers m, n, with 2, let be the

linear space of all mxn matrices with real entries. For A E we

write A = (a~), 1  i  m, 1  j  n, where upper and lower indices
correspond to rows and columns respectively. The euclidean norm of any
m x n matrix A (defined as the square root of the trace of AA* E M 
will be denoted by Moreover, given 0  .~  m n n = mini m, n ~, let

be the number of all minors up to the order f of any m x n matrix, and
let M((A) be the vector in

T = whose components are given by the

Vol. 11, n° 6-1994. 
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664 P. CELADA AND G. DAL MASO

determinants of all minors of A whose order k satisfies h  ~  .~, taken
with the appropriate sign, for which we refer to [1] and [9]. We point out,
however, that the choice of this sign is irrelevant for most of our proofs.

For future purposes we notice also that the norm of the vector of the

minors of the product of two matrices can be easily estimated. Indeed,
let A E and B E Then, ]  ] for
1  h  m A n and hence

Moreover, (1.1) reduces to

as soon as B ~ > 1.

Next, recall that for a square matrix A E its adjugate matrix
adj A is defined as the transpose of the cofactors of A (see [4]). Hence,
adj A satisfies (adj A) A = where In denotes the
identity matrix of 
We survey now some elementary properties of convex functions for

which we refer to [14].
Let -~ ( - oo, oo] be any proper, convex function and let

f*: (~n -~ (-oo, oo] be the Young-Fenchel conjugate (or polar) of f
defined by

where ( ~ , ~ ) stands for the inner product of It is well known that f *
is proper, convex, and lower semicontinuous. Moreover, the conjugate of
f * (called bipolar of f and denoted by f * * ) coincides with f as soon as f
itself is lower semicontinuous. Then, recall that the recession function

foo: ~ of a proper, convex, and lower semicontinuous

function f is defined by

where dom ( f ) == {( E Rn : f(03B6)  ~} is the effective domain of f and
~n is any point of it. Then, f °° turns out to be a proper, convex,
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665POLYCONVEX INTEGRALS

lower semicontinuous, and positively homogeneous function of degree 1

(see [14], Theorem 8.5). The relationship between f * and foo is given by

(see again [14], Theorem 13.3) where xA denotes the indicator function
of the set A defined by

We now turn to the function spaces and to the measures considered in

this paper.
Let H be any bounded open subset of f~n and let ,Cn be the Lebesgue

measure on H. Denote by the a-algebra of all Borel subsets of

H and by the 8-ring of all relatively compact Borel subsets of
H whose closure is contained in H. For 1  p  oo, we denote by
W 1 ~P (SZ, ~"~ ) the Sobolev space of all functions (ul, ..., in 

whose distributional gradient can be identified with a function in

Then, let D ( SZ ) be the space of all infinitely differentiable functions with
compact support in H and write D’(S~) for the space of distributions on
H. Furthermore, let ~m ) be the space consisting of all continuous,
(~"2-valued functions with compact support in H endowed with its usual

topology. The dual space of is denoted by and

we simply write and when m = 1. The elements of

M(03A9, Rm) are called Radon measures on Q. Each Rm-valued
Radon measure ~c E will be identified with the corresponding
countably additive, Rm-valued set function defined on Hence, the

duality pairing between ~m ) and is given by integration:

Furthermore, we write for the total variation of ~c E Recall

also that can be extended to a unique non-negative Borel measure on
S2 and that is finite if and only if the range of ~c as a set function is
bounded. If this is the case, ~C is called a bounded Radon measure and we
write for the subspace of all bounded Radon measures on Q.
Moreover, given ~c E we denote by the Lebesgue
decomposition of ~ with respect to with ~ca absolutely continuous
and ~c~ singular with respect to We agree also that every function

Vol. 11, n° 6-1994.



666 P. CELADA AND G. DAL MASO

u e ( SZ, will be identified with the £n-absolutely continuous Radon
measure with density u and, accordingly, every £n-absolutely continuous
Radon measure will be identified with its Radon-Nikodym derivative with
respect to 

Throughout this paper, is endowed with its weak*

topology. Therefore, all topological concepts concerning Radon measures
(convergence in primis) are to be referred to the weak* topology of

and in particular we agree that for a sequence of functions
convergence in the sense of Radon measures

means that the Radon measures defined by = u~ are convergent
in Furthermore, Banach-Alaoglu’s theorem provides a useful
criterion of compactness in Indeed, let /C be a bounded subset
of that is, ~c E  oo for all compact sets
K C H. Then, 1C is relatively compact and also sequentially relatively
compact.
We now recall a well known lower semicontinuity theorem for functionals

defined on U~’n ) . To this purpose, let f : --~ [0, oo~ be any proper,
convex, and lower semicontinuous function and let F: --~ [0, oo~
be defined by

for all ?L E M (SZ, where is the Lebesgue decomposition of

and is the Radon-Nikodym derivative of with respect to 

Then, we have the following theorem, whose proof can be found in [3],
[11] and [13].

THEOREM 1.1. - Let f : ~~ --~ [0,00] be a proper, convex, and lower
semicontinuous function and let F be the functional defined by (1.5). Then,
F is sequentially lower semicontinuous on 

Next, we end this quick survey of the function spaces considered in this
paper with BY(SZ, and the spaces of all Rm-valued

functions of bounded and locally bounded variation on H respectively. The
former consists of all functions u E L1(0, whose distributional gradient
Du can be identified with an M n-valued bounded Radon measure on SZ,
while the latter consists of all Rm-valued, locally integrable functions on 0
whose distributional gradient is now a possibly unbounded 
Radon measure on H. For each u E the Radon-Nikodym
derivative of the absolutely continuous part of Du with respect to ,Cn will
be denoted by Vu E N/0 while the £n-singular part of Du will
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667POLYCONVEX INTEGRALS

be denoted by Dsu E .JVI ( SZ, In particular, Vu E L 1 ( SZ, mxn)
and Dsu E provided u E B Y ( SZ, Hence, given any
u E we have

for all sets B in and

for all Borel subsets B of H. It is plain that the first formula holds true for
all Borel subsets B of H as well, provided u E BV (SZ, 
We point out that throughout this paper we consider BV (SZ, 

and as subspaces of and 

respectively endowed with the relative topologies. Hence, BV { SZ, 
and are not complete with respect to and

(~"2)-convergence. However, it is easy to check that whenever

converges in to a function ~c and

the gradients Duk are bounded in then u E (see
[10], Theorem 1.9). Of course, the same result holds true for BV (SZ, 
provided ~~ 1 converges to u in L1 (S2, and the gradients Du~ have
uniformly bounded total variation.

Finally, we prove a lemma concerning the convergence as Radon

measures of the minors of a sequence of smooth functions. Roughly
speaking, it states that, whenever a bounded sequence of continuously
differentiable functions converges to a function u in L1 { SZ, and the

sequence of all their minors converges to a measure ~c in the sense of

Radon measures, then u is of locally bounded variation and the absolutely
continuous part of  with respect to ,Cn coincides with the vector of all
minors of This result is actually the cornerstone for the subsequent
sections of this paper. Its proof relies on some techniques of geometric
measure theory introduced by Giaquinta, Modica, and Soucek in [8] for the
study of vectorial problems in the calculus of variations. See, in particular,
Theorem 3 in [8] or Theorem 1.5 in [I], where some results of Giaquinta,
Modica, and Soucek are summarized. We refer to [7] and [16] for the

notation and the results of geometric measure theory needed in the proof.

LEMMA 1.2. - Set l = m A n and let the functions u, SZ -~ 

~ > 1 satisfy
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(b) is bounded in L°° (SZ, (~’n);
(c) L1 (S2, 
(d) there exists  E R03C3), 03C3 = a(m, n, l), such that 

in the sense of Radon measures on Q.

Then, ~c E and = 

Proof. - As is bounded in it is clear that

U E I~~ ) (see [10], Theorem 1.9).
The remaining part of the proof can be carried out by a localization

argument. Indeed, choose an open set n’ E and, for each k > 1,
let Tk be the n-rectifiable current of integer multiplicity on U’ = 0’ x 
defined as integration over the graph _ ~ (x, E U’ : x E SZ’ ~,
which is an oriented, boundaryless n-manifold of class C 1 in U’. The
n-current Tk belongs to the space Cart (SZ’, ff~"2) of cartesian currents on
0’ introduced by Giaquinta, Modica, and Soucek (see again [8]). It is

well known that for each n-form cv with smooth and compactly supported
coefficients in U’ we have

where (. , .) denotes the duality pairing between n-vectors and n-covectors
of IRn+m and where, for each matrix A E is defined as

the n-vector of whose components (with respect to the standard
basis of simple n-vectors of are the same as those of the vector

Ml (A). Similarly, let  be the Radon measure on S2 with values in the
space of n-vectors of IRn+m whose components are the same as those of ~c.
Hence, the sense of Radon measures on SL’ and the
n-currents Tk turn out to have uniformly bounded mass in U’. Therefore,
(c) and the compactness properties of the space of cartesian currents yield
a subsequence, still denoted by which converges to a current

T E Cart (SZ’, in the weak sense of cartesian n-currents on SZ’ (see
again [8]). Identifying each Tk and T with a bounded Radon measure on U’
with values in the space of the n-vectors of it follows that T

as Radon measures on U’. Now, let p: U’ --~ n’ be the canonical projection
of U’ onto S2’ and denote by p*Tk and p*T the image measures of Tk
and T. It is plain that

for all n-forms c~ on 0’. Moreover, since, by (b), the graphs of the
restrictions to 0’ of the functions u~ lie in a bounded subset of U’, the
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669POLYCONVEX INTEGRALS

same is true for the supports of the measures Tk. Hence, it follows that

p*T in the sense of Radon measures on S2’. Thus, p*T = ~c. Finally,
an appeal either to Theorem 3 in [8] or Theorems 1.5 and 1.6 in [1] yields
that = and hence = Mi(Vu) on 0’. The arbitrariness of
the open set 0’ E shows that the equation = holds

in ~((f~R~). N
In the previous lemma, it was explicitly assumed that all minors converge

in the sense of measures. This is not actually needed; the convergence of
all minors up to a given order f  m A n is enough. Indeed, we have
the following result.

COROLLARY 1.3. - The result of Lemma 1.2 remains true if 1  .~  m l~ n.

Proof. - If f  m A n, choose any increasing f-tuple ( i 1, ... , out of

{1,..., m} and set Vk == (ui1k,...., uilk), for k > 1, and v = {uil , ... , 
Each one of the minors of order less than or equal to £ of the functions

uk converges, oo, to a component of Let fi be the 
valued Radon measure whose components are given by the components of 
which are limit of minors of the functions ~c~ involving only the components
(u~ , ... , of each By definition, fi in 
Now, Lemma 1.2 with m = .~ applies to yielding fia = 
Since the f-tuple (i ~ , ... , is arbitrary, the conclusion follows..

Remark 1.4. - As a particular case of Corollary 1.3, by the compactness
criterion in the space of Radon measures previously recalled, it is easy to
check that, whenever 1  .~  m A n and the functions U and 

satisfy the hypotheses (a), (b), (c) of Lemma 1.2 and 
-

(e) is bounded in L 1 ( S2 ) ,
then u E BY ( SZ, and there exist a bounded Radon measure ~c E

with a _ and a subsequence such that

in the sense of Radon measures on S2 and such that

2. POLY CONVEX FUNCTIONALS
NOT DEPENDING ON ALL MINORS

Throughout this section, we consider polyconvex integral functionals
which depend on all minors up to a given order f and we investigate their
lower semicontinuity properties with respect to convergence in 
In the case f = m A n, we give a new proof of the semicontinuity result
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670 P. CELADA AND G. DAL MASO

proved in [ 1 ], Theorem 2.5, and in the case f  m A n we prove the same
lower semicontinuity result under weaker hypotheses.

Let m, n, and £ be positive integers such that m, n > 2 and

and n are kept fixed throughout this section,
we shortly write ~(.~) = o-(m, n, .~) for the number of the minors of order
up to I! of any mxn matrix. Then, let F: BV (SZ, --~ ~0, oo] be the
polyconvex integral functional defined by

where f : -> [0, oo] is a function satisfying the following properties:
(i) f is a convex function such that f (0)  oo;

(ii) f is lower semicontinuous on 

(iii) there exists ci > 0 such that f(~) > for all £ E 

Occasionally, we will assume also that

(iv) there exists c2 > 0 such that f (~)  c2(1 + ~~~) for all ~ E ~°~~>.
As far as lower semicontinuity is concerned, it is not restrictive to assume

(iv), as pointed out by the following remark.

Remark 2.1. - Any function f satisfying (i), (ii), (iii) can be approximated
by an increasing sequence of functions fh: -~ ~0, oo), h > l, such
that (i), (ii), (iii), (iv) hold for h large enough. Indeed, it is enough to define

Then, turns out to be an increasing sequence of proper, convex,
and lower semicontinuous (actually continuous) functions such that fh / f
pointwise on Moreover, the definition of f * yields f * (z) > - f (0)
for all z E ~°~~~ and hence

Thus, (iv) holds for f h with a suitable constant c2 (depending on h). Finally,
as f (~) > for all ~ E I~~~~~, its conjugate function satisfies

where B(0, ci) denotes the closed ball of ~~t~~ of radius ci centered at the
origin. Therefore, for h > ci and £ E 1~~~~~ we get

so that ( f h ) h> 1 satisfies (iii) for h > ci.
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Now, the main result of this section reads as follows.

THEOREM 2.2. - Let f : -~ ~0, oo~ satisfy conditions (i), (ii), (iii)
and let F be the functional defined by (2.1 ). Assume that the functions
~c E BV (SZ, and satisfy

(a) ~c~ E > 1;

(b) ~c in 

Then, F(u) ~ lim inf 
We notice that the lower semicontinuity of F along sequences of functions

in W 1~~{SZ, converging in can be established even if the

integrand f does not fulfill the growth condition (iii), provided we require
the boundedness in of the sequence of all minors up to order £.

This statement is easily seen to be completely equivalent to Theorem 2.2.
Indeed, we have the following corollary.

COROLLARY 2.3. - Let f : --~ ~0, oo~ satisfy conditions (i), (ii). Assume
that the functions u E and satisfy

(a) u~ E W1~~(SZ, > 1~

(b) is bounded in 

(c) u in 

Then, F{u)  lim inf 

Proof. - Let E > 0 be given. Set ~ [0, ~], f~(03BE) = f(03BE) + ,

so that f E satisfies (i), (ii), (iii), and define FE: BY (S2, --~ [0, oo~ by
replacing f with f E in (2.1 ). Then, Theorem 2.2 yields

As E > 0 is arbitrary, the conclusion follows..
The proof of Theorem 2.2 will be accomplished through a chain of partial

results. The main steps are the following. First, we prove Theorem 2.2 under
the additional hypothesis that the functions u~ are smooth and uniformly
bounded. Then, we drop the boundedness requirement by a suitable

truncation argument. Finally, we weaken the smoothness assumption on
the sequence 
The first step is given by the following proposition.

PROPOSITION 2.4. - Let f : 2014~ [0, oo] satisfy conditions (i), (ii), (iii)
and let w, wk E 1. Assume that

(a) wk E C1 (~~ ~~)~ ~ ~ 1;
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672 P. CELADA AND G. DAL MASO

(b) bounded in L°°(S2; ~"’ ;

Then, F(w)  liminf F(wk).

Proof. -Let lim inf F(03C9k) = c. We may assume that c  oo, otherwise

nothing is left to prove. Then, choose a subsequence (still denoted by
such that c. Thus, is a bounded sequence

and this, together with (iii), yields is bounded in

L1 (SZ). Hence, by Remark 1.4, there exist a bounded Radon measure

/~ E P~°~P~) and a subsequence that we denote again by such

that converges to /~ in the sense of Radon measures on H.

Moreover, = Mf (~w). Therefore, recalling that the recession function
foo of f is non-negative and vanishes at zero, we get by Theorem 1.1

This completes the proof..
Before going on with the second step in order to drop the boundedness

requirement, we describe in the subsequent remark the truncating functions
needed for the proof.
Remark 2.5. - Let 03C8 E C1((0, oo)) be such that is equal to t for

0  t G 1 and vanishes for t > 2, and denote by its Lipschitz
constant. Notice that > 1. Then, the mapping ~ E 
defined by

turns out to be a Lipschitz continuous function whose Lipschitz constant
is just Notice also that = y for all y E with Iyl  1

and that ~ maps the complement of the open ball of radius 2 centered at
0 onto the singleton {0~.

For all p > 0, let WP E be defined by

so that
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Notice again that 03A803C1 reduces to the identity map on the closed ball of
of radius p centered at 0, and maps the complement of the open ball

of radius 2 p centered at 0 onto (0).

Next, we prove the second step.

PROPOSITION 2.6. - Let f : I~~~~~ -~ ~0 , oo) satisfy conditions (i), (it ), (Ui),

(iv) and let E 1~ > l. Assume that

Proof. - We may and do assume that c  oo. It follows by
(iii) that

for some positive constant co. Now, let E > 0 be given and choose s E N+
such that coc2Ll  56, where L is the constant defined by (2.3). Then,
for any ro > 0, set ri = 2iro, 0  i  s. By the choice of s and by
the inequalities

we see that there exist io E (0, ... , s - 1~ and a subsequence 
such that

Now, set r = rio and define

where is the mapping defined by (2.2) for p = r. It is plain that
wr is of bounded variation on H, that wk E for k > 1, and

that bounded in Moreover, as is Lipschitz
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continuous, converges to wr in Now, recalling (iv)
and the properties of we get for each I~ > 1

-- Then, taking (1.2) and (2.3) into account, we see that

pointwise on 0 for 1. Hence, (2.6) and (2.7) together with (2.5) yield

Now, notice that for every 1] > 0 we have

and that > r~ ~ ) --~ 0 as l~ --~ oo, since converges to v
in £n-measure on H. Thus, letting first k ~ oo and 0, we get

Therefore, applying Proposition 2.4 to the sequence and taking
(2.8) and (2.9) into account, we get 

-

Finally, recalling that v E L1 (SZ, and noticing that the left hand side
of the previous inequality converges monotonically to F(v) as ro / oo,
we get F(v)  lim inf + E. As E > 0 was arbitratily chosen, the
proof is complete..

Finally, we are left to prove the last step. This is done in the following
proposition.

PROPOSITION 2.7. - Let f : (~~W --~ ~p , oo) satisfy conditions (i), (it ), (Ui),
(iv). Assume that the functions u E and satisfy

(a) ~c~ E W 1 ~.e (SZ, k > 1; 
_
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Proof. - The mapping w E W1~~(SZ, I~’n) -~ E is

continuous and F is finite on W 1 ~~ { SZ, by (iv). Hence, Caratheodory’s
continuity theorem shows that F restricted to is continuous

with respect to the strong topology of W 1 ~ ~ ( SZ, (~’n ) . This, together with
Meyers-Serrin’s approximation theorem, yields a sequence of functions

in n W1~~(SZ, such that

for every k ~ 1. Thus, vk ~ u in Applying Proposition 2.6
to the sequence we get

The proof of Theorem 2.2 reduces now to an easy consequence of the
previous results.

Proof of Theorem 2.2. - Let be the sequence of functions

associated with f by Remark 2.1 and let Fh: BV (SZ, V~"’ ) -~ ~0, oo~, h > 1,
be the functionals defined by (2.1) with fh in place of f. On account of
Proposition 2.7, we get

Since f h  f for all h > 1, the right hand side of (2.10) is not greater
than lim inf while the left hand side converges monotonically to

F ( u) as h -> oo. Thus, F is lower semicontinuous along the sequence

3. CONVEX INTEGRAL FUNCTIONALS OF THE DETERMINANT

This section is devoted to the study of the lower semicontinuity properties
with respect to Rn)-convergence of integral functionals depending
only on the determinant. We aim at proving that, as soon as the integrand is
proper, convex, and lower semicontinuous, the corresponding functional
is lower semicontinuous on the space along sequences
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converging in and bounded in p > n - 1. This

result cannot be improved by allowing p  n - 1 as shown in [12].
In order to state our result, denote by [0, oo~ the

polyconvex integral functional defined by

where g : [0, oo] is a function satisfying the following properties:
(i) 9 is a convex function such that g(0)  oo;

(it) g is lower semicontinuous on R.

We shall prove the following lower semicontinuity result.

THEOREM 3.1. - Let g : (~ --~ satisfy conditions (i) and (ii). Assume
that the functions u E and satisfy
(a) e W~(~R~ ~ > 1;
(b) bounded in Wl~n-1(~~ 
(c) uk - u in 

Then, G( u)  lim inf 

This theorem provides the lower semicontinuity result of [6] without any
growth assumption on the integrand, at least in the case of an integrand
independent of x and u.
We begin by noticing that, if g satisfies (i) and (ii), then either g is

constant, so that Theorem 3.1 becomes trivial, or there exist ci > 0 and
a > 0 such that g satisfies at least one of the following growth conditions:

where t+ and t- denote the positive and the negative part of t respectively.
Notice also that, as soon as g satisfies (i), (ii), and both (iii+) and (iii-),
then Theorem 3.1 reduces to the case considered in [6].

After these preliminaries, the proof of Theorem 3.1 can be carried

out through the same steps described in Section 2. The only remarkable
difference lies in the fact that the truncation argument of Section 2 is now
to be performed by an orientation preserving mapping W E 
such that 0  det ~03A8  1 on 

We begin by proving a lemma concerning the relationship between
convergence in the sense of distributions and in the sense of Radon

measures. To this purpose, let be the cone of non-negative elements
of M ( SZ ) and .denote by ( tc+ , ,u - ) the Jordan decomposition of tc E M ( SL ) .
Then, we have the following basic lemma.
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LEMMA 3 . 2. - Let be a sequence in .J1 it ( SZ ) . Assume that

(a) there exists T E D’ (S2) such that T in the sense of distributions
on SZ;

(b) there exists v E .J1~I + ( SZ ) such that v in the sense of Radon
measures on Q.

Then, there exists ~ E such that ~c = T on D ( SZ ) and ~c in

the sense of Radon measures on 03A9.

Proof - Set S = v - T so that S E D’(SZ) and S in

D’ (SZ) . Thus, S is a positive distribution on SZ and therefore it is actually the
restriction to D ( SZ ) of a positive Radon measure on SZ that we still denote
by S (see [15], Chapter l, Theorem 5). Moreover, ~c = v - S belongs to

and agrees with T on D ( SZ ) . In order to see that ~c as Radon

measures on SZ, let K be any compact subset of SZ and let {} E D ( SZ ) be
any function such that 0  ~9  1 on SZ and {} = 1 on K. Then, choose

any subsequence and notice that

As S, 03B8~ as b ~ ~, we see that is bounded

for all compact sets K c S2. Thus, h>1 
has a convergent subsequence

in whose limit is S itself. It follows that the whole sequence

converges to S in J1~1 ( ~ ) . Therefore, ~c in the sense of

Radon measure on S2. .

As in Section 2, for 1  h  n, write a(h) = a(n, n, h) for the number
of all minors up to order h of any n x n matrix. Then, as a consequence of
Lemma 3.2 and Lemma 1.2, we get the following corollary.

COROLLARY 3.3. - Let the functions w, l~ > 1, satisfy
(a) w~ E C1 (~~ 1~

(b) is bounded in ~n);
(c) is bounded in L°° (SZ, 

(d) sup (det  oo.in
Then, there exists E and a subsequence the

property that ~c as h -~ oo in the sense of Radon measures
on Q. If in addition,

(e) w in L1 (S2, 
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then w E and = 

Proof. - First, notice that (b) implies that there exists a subsequence,
still denoted by such that ( Ml -1 ( ~ w~ ) ) ~ ~ 1 converges in

~ ( ~ ~ ~~ (n -1 ) ) , Then, by (a), the equation 
-

holds in the sense of distributions and (b) and (c) together yield that the
sequence (wl(adj k>1 is bounded in L1(S2) for 1  j  n. Hence,
by passing to a subsequence we get that

as k - oo, so that D’ ( SZ ) . Moreover, (d)
implies that, passing once more to a subsequence the positive
parts of the determinants of the gradients of the functions wk converge
in Thus, Lemma 3.2 yields that (det is convergent in

.Jl~t ( SZ ) . Since we have already proved that converges
in I~~tn-1) ), it follows that there exist ~ E I~~~n) ) and a
subsequence which satisfy the first part of the conclusions of
the corollary. Finally, the second part follows immediately from (e) and
Lemma 1.2..

Applying Corollary 3.3, we derive the lower semicontinuity of G along
bounded sequences of continuously differentiable functions on H.

PROPOSITION 3.4. - Let g : [0, oo] satisfy conditions (I), (it), and either
(iii+) or (iii-). Assume that the functions w E BY(SZ, and 

satisfy 
-

(a) wk E IfBn), k > 1;

(b) is bounded in 

(c) bounded in L°° ( SZ, 
(d) L1(52, 
Then, G(w)  liminf G(wk).

Proof. - We give the proof in the case (iii+). Assume that 
c  oo so that the positive parts of the determinants of the functions wk
are bounded in L 1 ( SZ ) . Now, all hypotheses of Corollary 3.3 are fulfilled.
Hence, there exist a subsequence, still denoted by and a Radon

measure p E ~~~n) ), with = such ~c
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in the sense of Radon measures on Q. In particular, denoting by ~c’ the last
component of we get that det ~w~ --~ ~’ in with ~ca = det Vw.
Therefore, applying Theorem 1.1 and recalling that is non-negative and
vanishes at zero, we derive that G(w)  lim inf by the very same

argument of Proposition 2.4..
Next, we remove the requirement of boundedness in L°°(SZ, by

a truncation argument. In order to do this, choose a non-negative, non-

decreasing function ~ E C1 (~0 , oo)), with 0   1, such that is

equal to t on the interval [0,1] and is constant on the interval ~2, oo). Then,
let W E be defined by

The function W is Lipschitz continuous on Rn with Lip( W) =  1

and W is the identity map on the closed unit ball of Moreover,
0  det ~03A8  1 on R" and det ~03A8 vanishes on the complement of the
closed ball of radius 2 centered at zero. Finally, for all p > 0, set

so that 03A803C1 E WP(y) = y for all |y|  p and 

y E 

Then, we can prove the counterpart of Proposition 2.6 for the functional
G.

PROPOSITION 3.5. - Let g: [0, ~] satisfy conditions (i), (ii), and either
(iii+) or (iii-). Assume that the functions v E BV (SZ, ff$n) and 
satisfy

(a) vk E (f8n), 1~ >- 1~

(b) is bounded in 

(c) vk ~ v in L1 (S2, 
Then, G(v)  lim inf G(vk).

Proof. - Assume once more that (iii+) holds and that c  oo.

Then, choose r > 1 and set

where WT is defined by (3.2) with p = r. It is plain that wT and 
satisfy all the hypotheses previously fulfilled by v and and
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in addition a bounded sequence in Thus, 
Proposition 3.4. Then, recalling that 0 ~ det ~03A8r ~ 1

on the convexity of g yields

pointwise on S2 for all k ~ 1 and hence

by the properties It follows that

Finally, letting r --~ oo, the lower semicontinuity of G along 
follows.. -

We are now left to drop the smoothness assumption on the sequence.
This is done in the following proposition.

PROPOSITION 3.6. - Let g : ~0 , oo) satisfy conditions (i), (ii), either
(iii+ ) or (iii-), and in addition:

(iv) there exists c2 such that g (t)  c2 ( 1 + for all t E R.
Assume that the functions u E and satisfy

E ~~(H,R~ ~ > 1;
(b) is bounded in W l~’~-1 (SZ, 
(c) u,~ --~ 

Then, G(u)  liminfG(uk).
Proof. - Just repeat the proof of Proposition 2.7..
Finally, we give the proof of Theorem 3.1.

Proof of Theorem 3.1. - Assume that g is not constant. By the
argument described in Remark 2.1, an increasing sequence of functions

~0 , oo ), h > 1, can be found with the properties that 
converges to g pointwise on R and each gh satisfies (i), (ii), either (iii+)
or (iii-), and (iv). The conclusion follows now from Proposition 3.6 and
from the approximation argument used in the proof of Theorem 2.2..
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4. POLYCONVEX FUNCTIONALS: THE CASE m = n

The arguments developed in Sections 2 and 3 team up yielding
a lower semicontinuity result for polyconvex integral functionals on

BY ( SZ, with respect to L1(03A9, Rn)-convergence. We point out that
in this case the polyconvex functionals may depend either on all or only
on some of the minors. Indeed, we prove that every polyconvex integral
functional with convex, proper, and lower semicontinuous integrand is lower
semicontinuous on the space W 1 ~ n ( SZ, I~n ) along sequences converging in
L1(0, and bounded in W 1 ~~ (SZ, p > n - 1. Notice that the result

presented in [5] is contained in the previous statement and, as previously
remarked in Section 3, the counterexample in [12] shows that this result
is sharp.
To begin with, as n is kept fixed throughout this section, shortly write

a-(h) = a-(n, n, h) for 1  h  n. Then, denote by F: BY(SZ, [0, oo]
the polyconvex integral functional defined by

where f : -~ ~0, oo] satisfies the following properties:
(i) f is a convex function such that f(0)  oo;

(ii) f is lower semicontinuous on 1~~~’~>.
In the sequel, we identify RO"(n) with x (~, so that we regard f

either as a function of ~ E I~~~n~ or as a function of (~, r~) E 
In particular, we freely write either f(Mn1 (A)) or f det A) for
any matrix A E Mnxn.
We shall sometimes assume also that

(iii) there exists ci > 0 such that f (~, ~) > for all (~, r~) E
~~~n-1~ x ~.
We shall prove the following lower semicontinuity result.

THEOREM 4.1. - Let [0,00] satisfy conditions (i) and (ii).
Assume that the functions u E B Tl ( SZ, and satisfy

(a) Uk E W 1’~, (~, k > 1~ 
-

(b) bounded in W l~n-1 (S2, 
~C) 2L~ -~ u in .L1 t~, 
Then, F(u) ~ lim inf F(uk).
Remark 4.2. - Theorem 4.1 still remains true if we replace hypothesis

(b) with the weaker assumption of boundedness in of the sequence

~~Nli ~(~~c~)~)~>m °
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Moreover, as soon as f satisfies the growth condition (iii), the lower
semicontinuity of F can be established without any boundedness assumption
on the sequence 

COROLLARY 4.3. - Let f : --~ [0, oo] satisfy conditions (i), (ii), (iii).
Assume that the functions u E and satisfy

(a) 2Gk E W 1’n(~~ k > I;

(b) 2G in Ll(~~ 
Then, F(u)  lim inf 

Proof. - Assume as usual that c  oo and notice that
(iii) implies that the sequence is bounded in L 1 ( SZ ) .
Therefore, Theorem 4.1 and Remark 4.2 can be applied..

Notice that Corollary 4.3 generalizes Theorem 2.5 of [ 1 ], at least in the
case of an integrand independent of x and u.
The proof of Theorem 4.1 is based on the following lemma concerning

convex functions.

LEMMA 4.4. - Let [0, oo] be a proper, convex, and lower
semicontinuous function. Then, the following statements hold true:

(a) if foo (0, 1) = fCXJ(O, -1) = 0, then there exists a convex, proper, and
lower semicontinuous function f o : ~ ~ --~ [0, oo] such that f ( ~, r~) = f o ( ~~
for all (~, r~) E 

(b) if fCXJ(O, 1) > 0, then for all a  fOO(O, 1) there exist a, b > 0 such
that

n / u v v .. _ n .

(c) if fCXJ(O, -1 ) > 0, then for all a ~ fCXJ(O, -1 ) there exist a, b > 0
such that

(d) if f °° ( 0,1 ) > 0 and fCXJ(O, -1 ) > 0, then for all a  fCXJ(O, 1 ) n
fCXJ(O, -1) there exist a, b > 0 such that

Proof. - (a) Suppose that f °° (0,1) _ = 0. Thus,
f~(0,~) = 0 for all ~ E R by the positive 1-homogeneity of fCXJ. Then,
recalling that
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we see that f(03B6’,~’ + ~)  f(03B6’,~’) for all ~ ~ R and (03B6’,~’) E dom ( f ).
This shows that dom ( f ) contains the straight line (~’, ~’ + ??), ~ E R,
as soon as (~’, r~’~ E dom ( f ). Moreover, letting 1] == -r~’, we get
f (~’, 0)  f (~’~ ~’) for all (~’, ~7’) E dom ( f ). Replacing ~’ with 0 and
r~ with 1]’ we get the reverse inequality. Thus, f is actually independent
of its last variable.

(b) Choose a  fCXJ(0,1). It is enough to consider the case a > 0,
the other cases being trivial. Recalling (1.4) and the definition of Young-
Fenchel conjugate function, we see that there exists 
such that to > a. Choose b > I*(zo, to) and let a > Now, set

g((, r~) = + b, h((, r~) = for all ((, r~) E f~k X R, and notice that
we are left to prove that ( f + g)*  h *. In order to do this, recall that the

conjugate functions of g and h are given by

where B(0, a) stands for the closed ball of ~k with radius a centered at zero
and where [(03B61, ~1), (03B6z, ~2)] denotes the closed segment in Rk R whose

extreme points are (~1, and ((2 , r~2). Moreover, as f and g are convex,
proper, and lower semicontinuous, and as dom ( g) = ~~‘ x ~, it follows that

(see, for instance, [14], Theorem 16.4).
Now, the definition of a and b yields for all 0  t  o;:

and hence

for all 0  t  c~ . Therefore, ( f + g ) *  h * on and the proof
of (b) is complete.

(c) It is enough to repeat the proof of (b) with obvious modifications.
Property (d) follows immediately from (b) and (c)..

Now, the proof of Theorem 4.1 can be carried out through the same
steps described in Section 2. Therefore, we begin by proving the lower
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semicontinuity of F along bounded sequences of continuously differentiable
functions.

PROPOSITION 4.5. - Let f : (~~~n~ --~ [0, oo] satisfy conditions (i) and (ii).
Assume that the functions w E and satisfy

(a) wk E > 1;

(b) is bounded in 

(c) is bounded in L°° ( SZ, 

Then, F(w)  

Proof. - As usual, we may and do assume that 
Then, notice that either f °° ( o,1 ) = f °° ( o, -1 ) = 0 or at least one of
the values and f °° (o, -1) is positive. In the former case, f is
actually independent of its last variable by Lemma 4.4 and the statement
reduces to a particular case of Corollary 2.3. In the latter case, choose

0  a  f °° (o,1 ) V fCXJ (o, -1 ) and let a, b > 0 be so chosen as to satisfy
either (b) or (c) of Lemma 4.4. Therefore, as is bounded and

bounded in W 1 ~n-1 ( SZ, it follows that either the positive or
the negative parts of the determinants of the gradients of the functions wk
are bounded in L1(0). Hence, Corollary 3.3 yields p E I~ ~ ~n ~ ) such
that = and a subsequence, still denoted by such that

--~ ~C in the sense of Radon measures on H. Now, the conclusion
follows from Theorem 1.1 and from the argument of Proposition 2.4..

Next, we remove the requirement of boundedness in L°° (SZ, by the
combined action of an approximation and a truncation argument. Indeed,
unless f is independent of its last variable, f itself satisfies either (b), (c), or
possibly (d) of Lemma 4.4, for some positive constants a, b, and cx. Then,
f can be approximated by an increasing sequence of convex functions

satisfying one of the following growth conditions:

for some positive constant c~, according to the validity of either (b),
(c), or (d) of Lemma 4.4. Hence, it will be enough to prove the lower
semicontinuity of the functionals Fh defined by (4.1) with f replaced by
f h . This will be accomplished by truncating the functions of the sequence

along which the lower semicontinuity of Fh is investigated, by
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means of orientation preserving mappings (as in Section 3), which, in

addition, map a suitably chosen unbounded set onto a finite subset of f~n

(as in Section 2).
The approximation argument and the truncation mappings mentioned

above are described in detail in the following Lemma 4.6 and Remark 4.7.

LEMMA 4.6. - Let f : (f~~(n-1> ~0, oo~ satisfy conditions (i), (ii),
and let either f °° {0,1 ) or fCXJ (0, -1) be positive. Then, there exists an

increasing sequence of convex functions f h : L~~ (n -1 x ~0 , oo ), h > 1,

converging to f pointwise on R03C3(n-1) R as h ~ oo and satisfying the

following properties:
(a) if fCXJ ( 0,1 ) > 0 and fCXJ ( 0, -1 ) = 0, then f h° ( 0,1 ) > 0 and

f h (0, -1) = 0 for h large enough, and there exist ch > 0 such that
(4.2) holds for all h > l;

(b) if f °° { 0,1 ) = 0 and fCXJ(O, -1 ) > 0, then f h { 0,1 ) = 0 and
-1) > 0 for h large enough, and there exist ch > 0 such that

(4.3) holds for all h > 1;

(c) if fCXJ(O, 1) > 0 and fCXJ(O, -1) > 0, then f h ( 0,1 ) > 0 and

f h (0, -1) > 0 for h large enough, and there exist ch > 0 such that
(4.4) holds for all h > l.

Proof. - Assume that fCXJ(O, 1) > 0, f °° { 0, -1 ) = 0 and set

for all (~,r~) E and all h > 1. Then, turns out to

be an increasing sequence of convex and lower semicontinuous functions
such that fh  f for all h > 1. Each function fh is non-negative, since

f * (0, 0)  0 yields fh((, ~) > - f * (0, 0) > 0 for all ((, ~) E ~a~~ 1> x (~
and h > 1. Moreover, as fh(0,0) ~ -f*(z,t,) for all Izl ]  h, 0  t  h,
it follows that

Hence, fh satisfies (4.2) for some positive constant ch . Finally, in order to
see that fh / f pointwise on R~B notice that (1.4) implies that

which means that dom ( f *) C {( z, t) : t > 0~. Therefore, the value of each
fh at ((, r~) E x I~ can be also computed by
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and this yields f h / f pointwise on R03C3(n-1) R as h ~ ~. On account
of this result and the definition of recession function (1.3), it is easy to

check that also fh / fCXJ pointwise on R03C3(n-1) R as h ~ ~. Thus,
f h ( 0, -1 ) = 0 for all h > 1 and f h ( 0,1 ) > 0 for h large enough.

Finally, the case fCXJ(O, 1) = 0, > 0 can be treated similarly,
while in the case f °° (o,1 ) > 0 and f °° (o, -1) > 0 we can argue as in
Remark 2.1..

Remark 4.7. - Let us define for any positive r > 0 the following subsets
of R"

We aim at constructing a bounded, Lipschitz continuous mapping ~ E
with the following properties:

We are going to define W as the composition of three mappings
Wi E i = 1, 2, 3.

(a) Construction of ~1. Choose a non-decreasing function ~1 E 
such that = t if ~t~ I  1, = 2 if t > 2 and = -2 if

t  -2. Then, let Wi E be the bounded, Lipschitz continuous
mapping defined by

It is plain that Wi satisfies (4.5), (4.6), and that Wi maps R" onto Q2.
Moreover, the sets Ci and Di are mapped by 03A81 onto {y ~ ~Q2 : y1  1}
and {y E ~~2 ~ ~/~ = 2} respectively.

(b) Construction of ~2. Choose a Lipschitz continuous function ~2 E
C1(lRn) such that if y E Qi, ~2 (~) _ -2 if y E 8Q2 with
y1  1, ~2 (y) = 2 if ~l = 2, and such that the partial derivative of ~2
with respect to y1 is non-negative on Then, set

so that W2 E is Lipschitz continuous and satisfies (4.5) and
(4.6). Moreover, the sets Q2 and {y E 8Q2 : 1 yl = 2} are invariant
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with respect to ~2 while {y E 8Q2: y1  1} is mapped by ~2 onto

{y E = -2}.
(c) Construction of W3. Choose a function ~3 E with 0  ~3  1,

which is equal to 1 when It I  1 and vanishes when It I > 2. Then, let
W3 E C1(Rn,Rn) be defined by

It is plain that W3 satisfies (4.5) and a routine calculation shows that (4.6)
too holds true. Finally, we notice that W3 fails to be Lipschitz continuous
on Rn. Nevertheless, we have

Now, let W E C1(Rn,lRn) be defined 0 W2 o Wi. On account

of W 2 = Q2 and (4.8), it follows that W is a bounded, Lipschitz
continuous mapping satisfying (4.5) and (4.6). As far as (4.7) is concerned,
recall that Ci and Di are mapped by W2 o Wi onto {y E 8Q2: y 1 = - 2 ~
and {y E 8Q2: y1 = 2} respectively and that these sets in turn are mapped
by W3 onto the constant vectors -2ei and 2ei, where (ei,..., en ) denotes
the standard basis of R". Hence, ~ satisfies (4.7).

Finally, for all positive p, let E C1(lRn, R") be the bounded, Lipschitz
continuous mapping defined by

The following properties of each WP follows immediately from the

corresponding properties of W:

Moreover, let L > 1 be such that

Now, we prove the following proposition.

PROPOSITION 4.8. - Let f : -~ ~0, oo~ satisfy conditions (i) and (ii).
Assume that the functions v E BY ( SZ, and satisfy
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(a) v~ E k >_ 1~

(b) is bounded in (~’ 
(c) v~ --~ v in L1 (S2, 
Then, F(v)  lim inf 

Proof. - To begin with, notice that we may and do assume that at least
one of the values and f °° (o, -1) is positive. Otherwise, f is

independent of its last variable by Lemma 4.4 and the conclusion follows
by Corollary 2. 3 . Then, let 03A6: R - [0,~) be the function defined according
to the values of fCXJ at the points (0, 1) and (0, -1) by

and notice that we may assume also that f satisfies the following growth
assumption:

(iv) there exists c2  oo such that 0  f(~,71)  c2(1 + ~ + ~(~))
for all (~, 7~) E ~°~’~-1~ x ~.

If not, let be the increasing sequence of convex functions

associated with f by Lemma 4.6, and let Fh be the functional defined
on Z3V(S2; by (4.1) with f replaced by fh. Each fh satisfies (iv) for
some positive constant Once the lower semicontinuity of each functional
Fh along has been proved, we get

Letting h ---~ oo, the lower semicontinuity of F along follows by
the monotone convergence theorem. 

-

Therefore, assume from now on that (iv) holds true and that 
c  oo. Then, choose positive numbers a, band c~ according to Lemma 4.4
in such a way that f (~, r~) + a~~) + b > holds on ~8~tn-1) It

follows from (b) and the boundedness of that ( ~ o 
is bounded in L 1 ( S2 ~ . Hence, let co  oo be such that 

-

Next, let E > 0 be given and choose s E N+ such that 2c0c2Ln  Es, where

L is the constant associated with ~ by (4.13). Then, pick ro > 0 and set
ri = 2iro, 1  2  s. Let be the sets defined by
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where the sets Cri , and QTi are those defined in Remark 4.7 with

r = ri. Write each Eri as a disjoint union of

and notice that both families and consist of pairwise
disjoint sets. Hence, each point of Rn is contained in at most two sets Eri ,
1  i  s, and this yields for each k > 1

Now, the argument described in Proposition 2.6 yields an index io E
{1,..., s~ and a subsequence (v~ ) ~~1 such that

Set r = rio and define

where is the mapping defined by (4.9) with p = r. Now, recalling the

properties of smoothness and Lipschitz continuity of it is easy to check

that wT E BY(SZ, that w~ E (~n), k > l, and that is

a bounded sequence in W l ~n-1 (SZ, ~n ) converging to wr in 
Moreover, now bounded in L°° (SZ, Indeed, the range of

each w’k is contained in Q2r.
Next, we evaluate F on each Recalling (iv), the properties of ~r,

and the positive homogeneity of we get for all k > 1
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Now, recalling (1.2), we get

pointwise on H for all k > 1, and hence

for all k > 1. Therefore, the previous estimate together with (4.14) and
the choice of s E N+ yields

Now, Proposition 4.5 can be applied to the sequence follows
that Letting k ~ oo in (4.15), we get

as vk ~ v in Ln-measure. We have thus proved that

with r > 0 arbitrarily chosen. As v E the monotone convergence
theorem yields F (v )  lim inf as r --~ oo monotonically. As E > 0o
was arbitrary, the proof is complete..

Finally, we drop the smoothness assumption on the sequence in the case
f satisfies (iv) too.

PROPOSITION 4.9. - Let f : (~°~~n> --~ ~0, oo~ satisfy conditions (i), (ii), and
(iv). Assume that the functions ~c E and satisfy

(a) ~j~ E > 1~ 
-

(b) is bounded in 

(c) u in 

Then, F(u)  lim inf 
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Proof. - Notice that (iv) in particular implies that 0  f(ç)  c~(l + ~~~),
~ E ~a~~~ for some positive constant c2. Therefore, the argument of

Proposition 2.7 can be applied once more..
Now, the proof of our main result is straightforward.

Proof of Theorem 4.1. - Approximate f by the increasing sequence
associated with f by Lemma 4.6. Each functional Fh defined on

by (4.1), with f replaced by fh, is lower semicontinuous along
by Proposition 4.9. The conclusion follows as in the proof of

Theorem 2.2..
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