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ABSTRACT. - For an abstract evolution equation of the form Utt + Au +
(~) 3 0, general conditions on the "unbounded" feedback are given,

that ensure strong asymptotic stability. Essentially the directions determined
by the convex of the minima of the functional ~ should not intersect the
eigenspaces of A. Equivalently, the feedback on the velocity must dissipate
enough energy, in the sense that the kernel of the form (9~(’), .) is

not larger than the kernel of a "strategic" observation operator, for the
uncontrolled system. The particular case where the control operator is the
dual of the observation operator is specifically considered: the condition then
corresponds to more classical rank conditions on the observation operator.
The interest of the present framework is that it applies to boundary controls
and to interior controls on thin sets (of zero measure but positive capacity).
Several examples, including wave, beam and plate equations are considered.

Key words: Stabilization, Nonlinear feedback.

RESUME. - Pour un probleme d’ evolution abstrait de la forme utt + Au +
~03C8 (ut)  0, on donne des conditions generales sur le feedback « non
borne » pour assurer la stabilite asymptotique forte. Essentiellement les
directions determinees par le convexe des minima de 03C8 ne doivent pas etre
des directions propres de Foperateur A. De façon equivalente, il faut que
le bouclage sur la vitesse soit suffisamment dissipatif, en ce sens que le
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noyau de la forme (-), .) ne doit pas etre plus gros que le noyau d’ un
observateur « strategique », pour le systeme non controle. Le cas particulier
ou Foperateur de controle est l’adjoint de Foperateur d’ observation est

etudie; la condition se ramene alors a des conditions plus classiques de
rang sur l’opérateur d’ observation. Le cadre propose ici englobe le cas
de controles frontieres ou interieurs, distribues ou ponctuels, ainsi que des
controles unilateraux. Divers exemples concernant les equations des ondes,
des poutres ou des plaques, eventuellement avec des controles sur des
ensembles « fins », sont proposes.

0. INTRODUCTION

We consider here abstract evolution equations of the form

(0) Utt + Au + 81b (Ut) 3 0

where A is linear self-adjoint and a~ (ut) is a nonlinear dissipative
mechanism built with the subdifferential of a functional Our main

result provides a necessary and sufficient condition on ~ to get global
strong asymptotic stabilization in (0). This condition states essentially that
the convex of the zeros of the nonnegative functional ~ should not intersect
the eigenspaces of A. The approach adopted here to prove stabilization is
rather classical: through LaSalle’s invariance principle, it reduces to the

analysis of a "uniqueness" or "unique continuation" property for the linear
part of the equation. This is done by using spectral expansions. These
techniques have been introduced and intensively used in [DA], [DAd,
[HA], [HAl], [DA-SLE], [LA], [LAGi], [SLE].

Our abstract framework makes a very systematic use of these ideas and
provides a clean and general statement together with a very simple and
elementary proof. It includes most of the stabilization characterizations for
wave -and plate- like equations with distributed feedbacks, but also with
boundary controls or controls on thin sets (of zero measure but of positive
capacity). Applications to several (classical and less classical) examples are
given in the second part of the paper.
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1. ABSTRACT FRAMEWORK. WELLPOSEDNESS

We first describe an abstract framework for second order equations of
the form

and we prove existence and uniqueneness ot a solution and dissipativity of
the energy along trajectories. This part is more or less classical.

Let H be a Hilbert space, and let A be a linear operator with dense
domain D (A). We assume A is self-adjoint, coercive on H, and we define
V = D (A1~2 ), equipped with the scalar product

where A (V, V’) is defined by the bilinear form (, )vxv and extends A.
As usual, we identified H with its dual. Then V c H C V’, with the
following consistency relation

Let be given a proper, convex, lower semi-continuous (l.s.c.) function

with effective domain D (~) _ {v E V;  ( v)  oo}. We consider the
sub-differential of 03C8 defined by

with .
TL . °

n is Known inai is a maximai monoione grapn rrom v ana

that D (9~) c D (~), with a dense inclusion [BA-PRE].
Next, on the space V x H equipped with the natural product Hilbert

structure, we define the nonlinear operator B by

Vol. 11, n° 5-1994.
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and 11 1

Equivalentry, m terms or grapns consiaerea as subsets or v x n

We how prove that W C nave an adequate general framework LU define tt

second order evolution equation.

PROPOSITION 1. - B is maximal monotone on V x H.

Proof. - (i) The monotonicity is easy to establish. Let (v, h), (~, h) E
D (B), f e 8u/J (h), / ~ 8qb (h), such that A v + f and i?) + / C H.
Then [ ( 1 ) and (2)]

(ii) We prove that I + B is onto on V x H: for (F, G) E V x H, we
have to solve the system

wmcn is equivalent to tne system

[observe that ~; # (lu) obviously and that, it horns, tnen

Essentially, we have to prove that ( 10 c) holds L ~. that the operator
I + A + 8Q from V to V’ is onto. But this is easy to do, and more or less
standard. We recall briefly the procedure. Let
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which is a convex, Ls.c. functional on V. Since 03C8 is convex, l.s.c.
and proper, it is bounded below by an affine function, and hence,
lim J (0) = +0oo, as - +00. Therefore, J admits at least a minimum
at h e V. Then

Writing this inequality, using the convexity of ~, then dividing by t and
finally letting t ~ 0+, we get

Since (h, H - h)vxv = (A h, 0 - and (h, () - h)HxH =
(h, 0 - we deduce that G - AF - h - Ah E which
is just (10 c).
We denote by SB (t) the nonlinear semi-group of contractions on D (B)

generated by B. As a consequence of the general theory [BRE], we have
the following properties, where (u (t), v (t)) = SB (t) (uo, ui):

ana, for any I

t - IS Lipschitz continuous and a.e.

differentiable on [0, oo[

Moreover, for any (uo, E D (B)

(15) t - (-v (t), (Au (t) + (v (t))~°) E V x H is right-continuous
everywhere, where []° denotes the minimal section.

Vol. 11, n° 5-1994.
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Note that in particular, if (uo, Ul) E D (B) then u e (0, ~; H) n
(0, ~; V).

For any (uo, Ul) e D (B), we define

PROPOSITION 2. - (i) Assume (uo, E D (B), then B/0  s  t

where f (a) E (v (a)) a. e. a satisfies ( 14).
(ii) Assume 0 E ~~ (0); then V (uo, E D (B), t -~ E (t, ~cl)

is nonincreasing.

Proof. - (i) Let (uo, E D (B); by the regularity property ( 13 ), we
have, a.e. t:

where f (t) E satisfies (14)

Then (18) follows by integration.
(ii) Since 8Q is monotone and 0 E 8Q (0), we have

inus t - uo, is nomncreasing tor 1) (11). ~’y
density, and continuity of E (t, .,.) on V x H, the property is true for

(uo, UI) E D (B).
Remark 1. - A frequent situation is when ~ is given o C

where C E ,~ (V, U), U is another Hilbert space and ~ : U -] - oo, oo~
is proper convex and l.s.c. It fits in our framework if R (C) n D (~) ~ 0.
It has been proved in [LA] (see also Appendix 1 ) that if C is
surjective, then r~~ = C and that the equation

defines a nonlinear semi-group of contractions on a closed subset of V x H.
This situation corresponds to the case where the control operator C* is the
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adjoint of the observation operator C, with a nonlinear interaction between
observation and control described by 9~. Therefore, we have proved a
result which includes a familiar framework in control theory.
Remark 2. - The fact that 8aJ acts from V to V’ and not necessarily from

H to H, is essential to describe boundary or pointwise feedback between
observation and control in P.D.E’s o C).
Remark 3. - Even in the restricted case where ~ _ ~ o C and C is

surjective, it may be as convenient to keep the formulation with ~, and to
compute 9~ directly, without using C* C. This will be observed later

on, in the applications (Section 3).

2. STRONG ASYMPTOTIC STABILITY

We now study the asymptotic behaviour of the semi-group SB (t). The
main tool will be the invariance principle of LASALLE. As usual, some
compactness has to be assumed.

We suppose that 0 E (0), thus after a normalization

We denote by the closed convex set where ~ attains its minimum

Moreover, we assume B has compact resolvent (tor conditions ensunng
the compactness, see [CO-PI 1], Appendix 2). It follows from this fact and
from ( 19) that the trajectories of SB (t) are relatively compact in V x H,
and that for any ( uo , u 1 ) E D ( B ) , the w-limit set w (uo , is a non-empty
closed set [DA-SLE]. Moreover, we have the following:

PROPOSITION 3. - Assume ( 19) and B has compact resolvent. Then

(21) . If (uo, UI) E D (B), then w (uo, Ul) E D (B).
. cv is invariant under (t), and the restriction of (t)
on w u1) is an isometry for the V x H -norm.

. Let E D (B), (wo, E w (uo, and (w (t), wt (t)) _
SB (t) (wo , wi ) .

Then

where f(t) ts defined as in (14).

Vol. 11, n° 5-1994.
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. 1J moreover, 03C8 sanspes the following propeny

then

where Bo is the operator B corresponding to 0, i.e.

rrvuj. - The claim icuows airecuy rrom me maximality or -0 miu

the fact that t (u (t), ut is uniformly bounded, and in fact
decreasing along the trajectories [see ( 16)] .
The fact that SB (t) is an isometry on Ul) is a consequence of

the invariance principle of LASALLE, since
1

1:S a Lyap function [See 

Property (22) follows from formula (18) applied to (wo, instead
of (uo, ui) : t - E (t, wo, is constant, and ( f (d), is

nonnegative a.e. For properties (24) and (25), we first observe that since
f (t) E (t) ) a.e., we get

ana mus, from we aeauce

, ~ ~ , ~.>> , ~ ~ , ~ , ., , B.

This implies J e ~03C8 (0), and by assumption (z3) we get J (t) = u a.e. t.

Therefore, ~ satisfies the equation derived from ( 14)
! ~ /  B ~B , g -

/~B ~- m ~B - ~ A "’-.. D. - - -3

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and also

But by (1(5)

Lettmg t tena to zero, we get (w0, w1) ~ D(B0), by maximaiity ot the

operator Bo. Clearly, then (w (t), wt (t)) = (t) (wo , wi).
Next, we come to our main results of the paper, namely a characterization

of asymptotic stabilization in terms of ~ (more precisely of 
We will assume that the resolvent of A is compact and denote by Fi the

associated eigenspaces. They are of finite dimension and

THEOREM 4. - Assume A and B have compact resolvent and ( 19), (23).
Then

if and only if

Proof - Proposition 3 shows that, on the w-limit set cv (uo, the

nonlinear semi-group S$ (t) coincides with the linear semigroup (t)
associated with the uncontrolled operator Bo. Therefore, our first step will
consist in representing the solution of the uncontrolled linear equation in
terms of the spectrum of A.

We denote by ~n, n > 0 the eigenfunctions of A, with associated

eigenvalues > 0 (not necessarily distinct), so that ~~n~n is an

orthonormal basis of H (and an orthogonal basis of V) and

It is straightforward that I (03B6n/ n, ~i03B6n) is a Hilbert basis of

eigenfunctions of Bo in V x H associated with eigenvalues ~ i n.

Vol. 11, n° 5-1994.
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Let (Wo, = V x H, ~w wt It)) == It) WI).

By a straightforward computation we get

where (28) [resp. (29)] converges in V, (resp. H). Moreover
_0, .. - _ - I .  I

mow, 11 we assume that (w0, w1) ~ jL7 the convergences 111 and

(29) can be improved.
First, Wo E D (A), thus

1 ~

which implies

Next w1 ~ V, thus

, , t- B..

Since V = D(~/~) = {~~~;  oo}, we deduce that
N N

if (two, D (Bo), then, in particular, the series (29) converges in V,
uniformly with respect to t.

If we now denote by 0  wf  ~  ...  ~  ... the distinct
eigenvalues of A, with associated eigenspaces Fi of dimension p~ and
{03B6ji}j=1,...,pi a basis of eigenfunctions of Fi such that the whole system

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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corresponds then (28) and (29) can be rewritten (with obvious
notations)

where the series converges in V, uniformly in t. This finishes our first step
and we will now use the above representation to prove the sufficient and
necessary conditions announced in the theorem.

Sufficiency. - Assume (26). By the contraction property of the semi-group
SB (t), it is enough to prove (26) for (uo, E D (B).

Let (uo , D (B), and (wo, (uo, It is enough to prove
that (wo, 2.c~1 ) = 0.

Let (w (t), wt (t)) = SB (t) (wo, wi). By Proposition 3, (23) and (24)
imply that (wo, D (Bo), (w (t), wt (t)) = S~° (t) (wo, WI), thus
formula (31 ) is valid, and can be more simply written as

where the series converges m v , uniformly m t. Moreover (see proor or

Proposition 3)

From the uniform convergence in (j2) we deduce that

V E > 0, 3 No E N such that for all N >_ No
. f’Y’B , 

I _ ~ ,.." ~ .

Vol. 11, n° 5-1994.
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On the other hand, a straightforward computation gives

nuiii and (30) uiic obtains 1V1 J!

By (33) wt (t) E a.e. t, E [0, 1] by the choice of
yy. Since is a closed convex set containing the origin, we get

Annales ae l’Institut Henri Poincaré - Analyse non lineaire
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But, by definition, E F~. So (27) implies == 0. Similarly, multiplying

(32) by instead of and integrating over

(0, T), one gets = 0, Vp. Hence wt (t) = 0 for all t, and by (32), (31),
(30), ~t) == 0 for all t also. This proves (26).

Necessity. - We argue by contradiction. Suppose that, for some i, there
exists

Then consider == 20142014 
. 

cos M = sin 
~4

It is clear that == 2014~ ~c (t) and thus

Smce v E fl (-k03C8), tor any A E E and thus

~ (À v) = 0. Deriving this identity w.r.t. A yields

As in the proot ot Proposition 3, one deduces f ~ ~03C8(0), ana Ironi

condition (23), one obtains

Applying tne result to A = sin 03C9it one gets

Thus u, which is a solution ot (4U) is also a solution ot

so (~ (~l ’ = S~ (~) "’ 0)- (~ (~l ’ 9 0 as T / 00,

whence the contradiction.
In applications, the following corollary is often useful.

COROLLARY 5. - Assume iJ (v) == p (Cv), where C E £ (V, U),
with U a Hilbert space and p : U - [0, ~] convex, I.s,c., satisfying
w (0) == min p == 0, and

Vol. 11, n° 5-1994.
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Assume moreover that A and B have compact resolvent and (23). Then
strong asymptotic stability holds for ,SB (t) if and only if

we apply i neorem 4, ana mus, nave io compuie 

Therefore (43) is equivalent to (27). Clearly (19) is satisfied, and (23) is
assumed. Thus Theorem 4 applies.

Remark 1. - Now, we can discuss the meaning of Corollary 5 in a

framework familiar in control theory, namely when the observation operator
is the dual of the control operator. Besides (42) assume moreover that

wiiicii is certainly true is 03C8 15 reguar ui 11 is surjective

Appendix 1). Assume also

Then (23) is satisfied and Corollary 5 applies.

Remark 2. - Let us note that (43) is equivalent to a rank condition. Indeed
(43) means that C restricted to Fi is injective, or else rank = dim Fi.
This type of condition appears naturally when one wants to characterize
weak observability for the uncontrolled system

that IS,

We refer to [EL JAI-PRI] for a discussion, or [TRI, Theorem 5.5] for a

theory in the case where C E ,~ ( H, U). Here C may be unbounded on H.

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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in our rrameworK, wnere a is coercive wim compact resolvent, we prove

equivalence between weak observability for (46) and the rank condition
(43) as follows: we apply C to (31) to obtain

with

Assume first C w (t) = 0 a.e. t >__ 0. As in the proof of Theorem 4 (but
more easily since here is replaced by {0}), we deduce that i = bi = 0,
i = 1, 2, ... By the rank condition (43), this implies ai = b2 = 0 and
therefore 0.

Assume conversely that rank C|Fi  dim Fi = pi; then there exist

0 such that

satisfies

but

Remark 3. - Corollary 5 is an extension of former results found in the
literature, in the following sense.

Consider an abstract evolution equation of the form

wnere generates a strongly continuous semi-group ot contractions on a
Hilbert space H and S* E L (U, H) , with U another Hilbert space. Assume
A has compact resolvent.

Then following [BE], it is known that system (48) is strongly stabilizable
iff the weakly (or strongly, by compactness of the resolvent) unstable states

Vol. 11, n° 5-1994.
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to the orthogonal of the asymptotically stable states for A). In that case,
u = -B y (or more generally, u == 2014~~~/, where K E ,C (U) is coercive),
where (H, U) is a stabilizing feedback.

Consider now our case where

Since A is skew-adjoint, the associated semi-group is conservative and all
states are unstable, in the sense made precised above.

We recall that, roughly speaking, approximate controllability of a pair
(A, B*) is equivalent to weak observability of the dual pair (A* , B) , and,
as remarked previously, characterized by rank conditions.

Hence we have proved a nonlinear unbounded extension of the result of
[BE], namely, in the framework of second order systems: the system

is strongly stabihzable itt the pair (A, u) is weakly observable. in that case
~c E ( C is a stabilizing feedback, provided cp: ~7 -~ [0, oo] is convex,
l.s.c., proper, and satisfies (42) and (44)-(45) (with compactness of B).
We observe that Theorem 4 goes beyond this formulation, since it does

not need the introduction of any observation operator C.

Remark 4. - Another interesting feature of our formulation is that it

can handle "unilateral" feedback conditions, since conditions (27) or (42)
concern n (2014~~), or K cp n (2014~~), and not separately K 1/J or 
This will be used in examples in next section. Such "unilateral" feedbacks
were also considered previously ([HAl]).

Remark 5. - Finally, we would like to remark that Theorem 4 is a way
of systematically reducing the problem of stabilization to the verification
of an adequate uniqueness property for the operator A, in an abstract

"unbounded nonlinear" framework (for the damping term). For a similar
point of view, in a linear or nonlinear framework, see [DA], [Q-R] for
an abstract formulation, and [LA;], [Q-R] for applications. In

particular, the formalization and results in [DA] are very similar to ours,
though developed for bounded feedbacks.
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3. APPLICATIONS

Now we show how the strong stabilization for various nonlinear feedback
terms can be deduced from Theorem 4 or Corollary 5, in the case of wave,
beam or plate-like equations. Of course, with our technique, we do not
obtain any estimate of the decay to zero. Other techniques are needed,
together generally with geometric assumptions on the domain, see for

example [CHE], [LAG], [LA], [KO-ZU], [ZU] for the wave equation with
boundary damping, and [LA], [LAG1] for plate-like equations.

3.1. Euler-Bernoulli beam equation

We consider a beam which is clamped at the left end, and controlled at
the right end by a force and a moment which are nonlinear functions of
the transversal and angular velocities. We assume variable mass density b
and flexural rigidity a such that

wnere a and p are maximal monotone grapns with u E 

0 E j3 (0). This problem has been specifically studied in [CO-PI]. Here we
only show that it fits in our general abstract framework.

Let H = L~ (0, 1) equipped with the scalar product (u, 
yi

Vol. H, n° 5-1994.
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Let ji, ~2 1 8~ --~ [O? oo] be convex, l.s.c. and proper such that c~i = a,
~2 - ~ ~’i (0) - ~2 (0) - 0. We set  (~) - j1 (~ (1)) + ~2 (~ (1)) =
(/?(C ~), ~ V, where

and  U) 16 uciiiicu 

r,.. /, , / /~BB~ / /-BB f/

regular v, one has

B. r / ~ B. - T r 

and it

One can prove that 17 (H) is dense in V x H, thus (52) is well-posed on
V x H, and that A and B have compact resolvent [CO-PI]. The eigenvalues
and eigenvectors of A are given by

, / B 2 1

All tne eigenvalues = 1, 2, ..., are Slmple, and ana 03C8kx( 1)
are nonzero for any k [CO-PI].
Now we apply Theorem 4. Here

__ - __ .. ... 1 I .... ~ ...-

Condition (23) is equivalent to a (0) == {0} and {j (0) == {0}, i.e. the two

graphs are not "vertical" at the origin.
Let us next study condition (27) of Theorem 4. If both jl1 (0) and

(0) contain a neighborhood of the origin, then, for any v E V, there

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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exists 03BB E R such that v thus stabilization is not possible. On
the other hand, if j1 (ç) > 0 for ~ > 0 or ~  0, or j2 has this same
property, then

Thus condition (27) amounts to proving the following uniqueness result

and u ( 1 ) = 0 or 2tx ( 1 ) = 0, imply u - 0. But this is always true, as a
consequence of the simplicity of the eigenvalues (see [CO-PI] for a proof).
Thus strong asymptotic stability holds if the two graphs a and ~3 are not

vertical at 0, one at least being not "flat" at 0. Note that the result is true
for intance with the following unilateral feedback

it is aiso possiDie io generalize equation oy taking coupled Dounuary

conditions, that is (with a = b 1 for simplicity) ~ (v) = cp (C v) where

Consider for instance

Here corollary J is not applicable since nowever

Theorem 4 applies. Indeed,
~... ~- T/. 2014 .. /1 B .. /i B - n1

and

mus is obviously true.

For condition (27), one has to prove the following uniqueness result: if
u is a solution of (53) in the specific case ~=6=1, and if moreover
03C4u(1) - ux(1) = 0, then u ~ 0.

Vol. 11, n° 5-1994.
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Let u ~ 0 be a solution of (53). Then u = pk, Ak = and one has

to prove that
-.~ ,- {1B -z n 

Hut tor tne normalized eigenmnctions, it is Known mai

So strong stabilization occurs lor me problem

tor any T > u, except lor a sequence gomg to infinity. m particular, 
is strongly stable for any small T > 0.

Remark. - Assume a and b are piecewise regular, and for simplicity,
constant on with xo = 0, xN = 1. With the previous notations,
consider

men the abstract formuation covers me loiiowmg proDiem (A is ine same

as previously)
T. i B .2014 _ ~T~
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This problem has been considered in [CHE-DE], where uniform exponential
decay is proved under the assumption aN > 0, bi  V i.

Applying our Theorem 4, we obtain the strong stability under the
assumptions cx2, !3i > 0, z = 1, ’.., N, and aN or flN > 0, as in

the previous case. If = 0, but a2o or > 0 for some io, then,
due to the simplicity of all eigenvalues, xio has to be "strategic" in the
sense that it has to be different from all the zeros of the eigenfunctions or
of the derivatives of the eigenfunctions.
With our method, it is not hard to consider nonlinear feedback laws as

previously, and even to combine this with coupled interaction between the
transversal and angular velocities at the nodes xi, i = 1, ..., N.

Finally the same analysis for coupled vibrating strings instead of beams
would lead to the result in Theorem 3.4 of the recent paper [HO].

3.2. Hybrid system (for Euler-Bemouilli beams)

We consider an homogeneous Euler-Bemouilli beam clamped at the left
end, and controlled at the right end by a moment, but now, there is a mass
and inertia at this end. Normalizing the constants, the model is the following

otherwise, we get the problem studied in [SLE], where strong asymptotic
stability has been proved.

Let us show that we can also handle this problem with our technique.
We set

~ - _

Vol. 11, n° 5-1994.
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and, if 

Lei p : m oe the Tuncuon

r . ,-z ,

7/J (w, a, b) = j (b). Then it is not difficult to see that the abstract formulation

recovers me initial prOblem or ~o tms prooiem is weil-posea on
V x H, as a first order equation. Omitting the details concerning the precise
definition of B, the density of D (B) in V x H, and the compactness of the
resolvents (obtained using [CO-PI i]. Appendix 2), the asymptotic stability
amounts, through Theorem 4, to proving the following "uniqueness" result.

Let cp be an "eigenvalue" of A, cp = ( w , a, b ) , such that ~ ( cp ) = 0,
then 03C6 ~ 0. Or else, if w satisfies

then w 0 (thus also a = b = 0). But, in [SLE] it is proved that the
eigenvalues of this equation are simple and that, moreover t~~ (1) =t 0
(see [SLE, (8.29)]. Whence the strong asymptotic stabilization.

Remark 1. - Instead of controlling by a moment, one can control by a
force, that is, boundary conditions are now

, / - . B / -.. B

Remark 2. - One can combine the model studied in the Remark of Section
3.1 with the previous one. Then one can study the case of serially connected
Euler-Bemouilli beams with, at each node (of possibly nonzero mass and
nonzero inertia) control by force and/or moment, that is, at each node

! r .v , r .v , / . , . / . ,
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where fi and gi are of the form just presented (with, or without, truncation).
But of course the reduced "uniqueness" result becomes rather hard to

handle...

3.3. Wave equation
We consider the wave equation on a smooth bounded domain n of IRN,

N > 1. Control is exerted by means of a force which is a nonlinear function
of the observed velocity, on a part Fo of the boundary F, assumed to be
regular. In the sequel (ro, r*) is a partition of F, and we assume meas

> 0, int r* # 0.
The system is the following

is monotone, continuous (just for simplification, one could
actually take a maximal monotone graph instead), such that g (0) = 0, a > 0
is continuous, and v is the normal unit vector on r pointing outwards H.
When Fo = {x E F; (x - xo) . v > 0~, r* = F B ro, where tP~.

int r* ~ 0, and, if N > 3, Po n r* _ 0, strong stability holds for problem
(55), with estimates for the decay depending on the behaviour of g (see
for instance [ZU]). Strong stability has also been proved in [LAi] in this
framework, for more general g.
Here we obtain strong stabilization for very general partitions (ro, IB)

of the boundary. First, we put (55) in our abstract framework. We set

Let ~ (v) = Ja (x) j (v (x))) da (x), V v E V. Assume g satisfies a suitableFo
growth condition. Then V v E V, c~~ (v) _ ~ f ~, where (see [CO-PIi],
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Appendix 4)

so mat, trom (5), one deduces

and, if (v, h) E D (B), B (v, h) = (-h, -Av). Since D (B) D
D (A) x ~h E V; h = 0 on it follows that D (B) is dense in V x H,
so that (55) is well-posed on V x H. Compactness of A is obvious and
compactness of B follows from the adequate growth condition on g (see
[CO-PI1 ], Appendix 4).
Thus we can apply Theorem 4. We first observe that (23) is obviously

satisfied.

Let us now show that (27) is satisfied. Assume Kj n (2014~) = {0} that
is, g is not "flat" at 0, as usual. Then

So condition (27) amounts to proving the following "uniqueness" result:

and

imply cp = 0 in Q.

This uniqueness result holds for very general situations where 03930 is not

too "thin". For instance, if 03930 contains B (xo, ~) n r, where xo E r, and r is
regular. The proof is elementary and proceeds by extending cp by 0 outside
r (and near ro), using analyticity properties. This can also be viewed as
a very particular case of Holmgren’s unique continuation theorem. So, we
have an extension of the results of [LA 1].
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When ro = (x E r; (~ - xo) . v > 0}, one can prove the uniqueness
result by the usual multipliers’s technique. However, in that case, we get
much more than uniqueness (or equivalently weak observability), namely
strong observability.
One can easily be convinced that stabilization holds for more general

partitions by taking for instance a rectangular membrane Q = (0, a) x (0, b)
with u = 0 on the vertical edges r * ~ and 2014 (ut) on the horizontal
edges ro, where ~3 is a maximal monotone graph satisfying adequate
growth conditions, so that the compactness assumptions hold. In that case,
the uniqueness result can be proved in an elementary way, using Fourier
expansions.
The solutions of the eigenvalue problem (56) are

where r

ror i

Clearly, the uniqueness result holds also for any ro which contains an
arbitrarily small horizontal interval.

Instead of a boundary feedback, one can also consider an interior

feedback, in a fairly general framework. For simplicity, consider again
the rectangular membrane with Dirichlet conditions on r* and ro (or
Neumann conditions on Fo).

Let j : [0, oo~ be a convex, l.s.c. proper function such that min

j = j (0), set /3 = and consider

where  is a positive Radon measure 01 finite energy, anu v is me

quasi-continuous representative of v, with respect to the V-capacity.
In particular, one can consider the case where the support of  is a "thin"

set E of positive capacity (a piece of curve for instance), or a closed set
E with non empty interior. With  the length or area measure in that case,
one solves in fact the formal problem
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Since p is of finite energy, it follows that vn - v in V # vn a.e.

up to a subsequence, and hence ~ is l.s.c. Therefore, our theory applies and,
provided the compactness assumptions are true, strong stability amounts to
verifying (23) and (27).
The usual assumption ~3 (0) == ~0~ ensures (23) is true. For (27), we

assume ~r)(2014J~) = {0}. Then we have to prove the following uniqueness
result:

urLu

imply u * 0.

For instance if p is the length or area measure on a piece of curve or on
a closed set E of non empty interior, stabilization "usually" holds. Assume
as above that Q = (0, a) x (0, b); then A = 03C9mn = 03C02(m2 a2 + n2 b2) and
if 03C6rs (x, y) = sin 

" 

rx a sin 
03C0 

sx b, the solution of (59) can be written

,8[ x {?/o}, with {x0} ]03B1,03B2[, with x0 a ~ Q,
then (60) implies = 0 for all r, s and u EE 0. Hence (27) is true.

If the above conditions on E are not true, it may happen that a solution u
of (59) is identically zero on E, so stabilization does not hold. We observe
that if E contains an open set, strong stabilization holds.

3.4. Rectangular Kirchhoff plates

We consider a simply supported rectangular plate Q = (0, a) x (0, b).
We can apply our general formalism to the equation

to obtain stabilization results. Moreover, one can consider functionals of
the form (58) where D (~) C H2 (f~), the capacity being now the one
associated with the H2-norm.
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In that way, one can choose Dirac masses for and thus consider inner

point control. Let us study one particular case, where the external force
acting on the plate is exerted at the points qi) E ~. This problem
has been studied in [Y]. Normalizing the constants, we get the following
evolutionary system

wiicrc 1.

We consider the control operator 
~ ~ ni 

¿l2 as an operator defined on Y’, with domain V, so that control becomes
"distributed". The main result of [Y] can be summarized as follows:

. if E Q then (61) is neither approximately controllable, nor strongly
(or weakly) stabilizable, by any bounded linear feedback E ,C (v, ~ 1 ),
acting on velocity,

a2
. if then (61) is approximately controllable and strongly

stabilizable by the feedback f (t) = if and only if the following
(rank) condition is satisfied.

1 .

Here are the eigenvalues of the free vibrating plate, and are

the corresponding eigenmodes (the eigenspaces are one-dimensional in the
case considered, and for general a and b, approximate controllability is

characterized by a rank condition, see [Y], Lemma 8). Moreover, in the
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particular case of one actuator (1=1, a b2 ~ Q), (61) is approximately
controllable iff p ~ ~ and q  B and f (t) == 7 (t, p, q) is a stabilizing
feedback.

The proofs of the necessary and sufficient conditions given in [Y] are
based on theorems in number theory and Diophantine equations.

Here we just show that the feedback f (t) = is stabilizing, by
means of our abstract results, where the state space is H = L~ (H), so that
the control operator C* is unbounded. For simplicity, let us also consider
the case of one pointwise actuator. We set

Let 03C8: V -+ IR+ be defined by 03C8(03C5) == - 03BD2 (p, 9), so that 03C8 is convex2
(regular), defined on the whole space V, and

Hence, we study tne toliowng equation (61) with f(t) = -ut(t, p, q)

For regular v, we get immediately, E V, ~03C6 E V

and by (6), if (v, D (B), B (v, h) = {-h, ~2 u --~ h (p~ g) 
Thus, formally, (61) and (62) are equivalent. We observe that E

L2 (SZ B B (p, q; c)), so that u E H4 (SZ B B (p, q; ~)), and the trace

= 82 u/~n2 on ~03A9 makes sense. We also observe that

so tnat IS aense In v x ~.
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Also, A has compact resolvent in H by classical regularity (see also [Y],
Lemma 3). Moreover 9~ : V 2014~ V’ is obviously compact since Range 
is one dimensional. Using [CO-PIi, Appendix 2], it follows that B has also
compact resolvent and so our whole theory on stabilization is valid.

Now we apply Theorem 4. Here K 1b = (v E V; v (p, q ) = 0}. Since
(v) = v (p, q) 6~~ = 0, condition (23) is satisfied.

For condition (27), one has to prove that for any eigenfunction /?, one

has ( q) # 0, where 03C6(x, y) = 03A3 03B1rs sin sm , thehas p p, q T 0, where p x, y == Qrs SIn 
a 

SIn 
b 

the

eigenvalue being

If a2 b2 ¢ Q, the eigenvalues are all simple (by contradiction) and clearly
b 

i- 0 if and only if a 
and 

~2
Hence, in case Q, (61 ) is strongly stabilizable with the feedback

f (t) = iff p a and q b ~ Q.

Remark 1. - The same result is true with ~ (v) = cp (v (p, q)), for

any strictly convex regular cp. In that case, one controls with f (t) ==

cp (p, q, t) ), with the assumptions b2 , a , b ¢ Q.
Remark 2. - One can consider (61 ) as a problem with boundary feedback

at (p, q) E c~ (0 B (p, q)). This shows that one can stabilize a plate with a
pointwise feedback (on the boundary, if we want). This result is in contrast
with the case of membranes, where points have V = H1-capacity zero
(here the V = H2-capacity of a point is ~ 0). In the case of membranes,
control on a regular set E means that E must contain at least a line, roughly
speaking, which is of positive capacity.
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