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ABSTRACT. — For an abstract evolution equation of the form u:: + Au +
v (us) 0, general conditions on the “unbounded” feedback are given,
that ensure strong asymptotic stability. Essentially the directions determined
by the convex of the minima of the functional ¢ should not intersect the
eigenspaces of A. Equivalently, the feedback on the velocity must dissipate
enough energy, in the sense that the kernmel of the form (9% (-), -) is
not larger than the kernel of a “strategic” observation operator, for the
uncontrolled system. The particular case where the control operator is the
dual of the observation operator is specifically considered: the condition then
corresponds to more classical rank conditions on the observation operator.
The interest of the present framework is that it applies to boundary controls
and to interior controls on thin sets (of zero measure but positive capacity).
Several examples, including wave, beam and plate equations are considered.

Key words: Stabilization, Nonlinear feedback.

RESUME. — Pour un probléme d’évolution abstrait de la forme s + Au+
O (uy) 3 0, on donne des conditions générales sur le feedback « non
borné » pour assurer la stabilité asymptotique forte. Essentiellement les
directions déterminées par le convexe des minima de 1) ne doivent pas étre
des directions propres de 1’opérateur A. De fagon équivalente, il faut que
le bouclage sur la vitesse soit suffisamment dissipatif, en ce sens que le
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486 F. CONRAD AND M. PIERRE

noyau de la forme (9% (-), -) ne doit pas étre plus gros que le noyau d’un
observateur « stratégique », pour le systeéme non contrdlé. Le cas particulier
ol I’opérateur de contrdle est ’adjoint de I’opérateur d’observation est
étudié; la condition se ramene alors & des conditions plus classiques de
rang sur I’opérateur d’observation. Le cadre proposé ici englobe le cas
de contrdles frontiéres ou intérieurs, distribués ou ponctuels, ainsi que des
contrdles unilatéraux. Divers exemples concernant les équations des ondes,
des poutres ou des plaques, éventuellement avec des contrdles sur des
ensembles « fins », sont proposés.

0. INTRODUCTION

We consider here abstract evolution equations of the form

where A is linear self-adjoint and 8% (u;) is a nonlinear dissipative
mechanism built with the subdifferential J4 of a functional . Our main
result provides a necessary and sufficient condition on % to get global
strong asymptotic stabilization in (0). This condition states essentially that
the convex of the zeros of the nonnegative functional 2/ should not intersect
the eigenspaces of A. The approach adopted here to prove stabilization is
rather classical: through LaSalle’s invariance principle, it reduces to the
analysis of a “uniqueness” or “unique continuation” property for the linear
part of the equation. This is done by using spectral expansions. These
techniques have been introduced and intensively used in [DA], [DA(],
[HA], [HA,], [DA-SLE], [LA], [LAG,], [SLE]

Our abstract framework makes a very systematic use of these ideas and
provides a clean and general statement together with a very simple and
elementary proof. It includes most of the stabilization characterizations for
wave —and plate— like equations with distributed feedbacks, but also with
boundary controls or controls on thin sets (of zero measure but of positive
capacity). Applications to several (classical and less classical) examples are
given in the second part of the paper.
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1. ABSTRACT FRAMEWORK. WELLPOSEDNESS

We first describe an abstract framework for second order equations of
the form

U + Au+ 09 (ug) 20,

and we prove existence and uniqueneness of a solution and dissipativity of
the energy along trajectories. This part is more or less classical.

Let H be a Hilbert space, and let A be a linear operator with dense
domain D (A). We assume A is self-adjoint, coercive on H, and we define
V = D (AY?), equipped with the scalar product

H (u, V)yxy = (AY?u, AM? V)HxH = (AU, VIvixv

where A € £ (V, V') is defined by the bilinear form (, )y xv and extends A.
As usual, we identified H with its dual. Then V C H C V', with the
following consistency relation

2 Vhe H, VYveV, (h,v)vixv="_h V)uxu.

Let be given a proper, convex, lower semi-continuous (Ls.c.) function

&) p: V—]-o00, oq], Y £ +00

with effective domain D (¢) = {v € V; ¥ (v) < oco}. We consider the
sub-differential vy of 1) defined by

{ YuelV,
O (w)={f € Vs ¢ (utv) =9 (v) 2(f, v )vv, VVEV],

with D (0y) = {u € V; 0y (u) # T}
It is known that d¢y is a maximal monotone graph from V to V', and
that D (8¢) C D (¢), with a dense inclusion [BA-PRE].

Next, on the space V x H equipped with the natural product Hilbert
structure, we define the nonlinear operator B by

@)

5) D (B) ={(v, h) € V x H; h € D (8v);
3f € 94 (h) such that Av+ f € H}
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488 F. CONRAD AND M. PIERRE
and if (v, h) € D(B)

6) B (v, h) = {(=h, Av+ f); Vf € ¥ (h) such that Av+ f € H}.

Equivalently, in terms of graphs considered as subsets of V' x H

(7 B={(w, h)x (=h, [Av+ 3% (RN H); (v, h) €V x H}.

We now prove that we have an adequate general framework to define a
second order evolution equation.

ProprosITION 1. — B is maximal monotone on V x H.

Proof. — (i) The monotonicity is easy to establish. Let (v, h), (7, h) e
D(B), f € 8y (h), f € 8 (h), such that Av + f and Av+ feH
Then [see (1) and (2)}

®) (~h+h v—0vxy+(Av+f—A5~f h—h)nxn
:(/i(v—f;), iL—iL)lev+<z‘iU+f—/i'l~1—f, h—il)lev
={(f-f, h— h)yixy 2 0, since 8¢ is monotoneon V x V'.

(ii) We prove that I + B is onto on V x H: for (F, G) € V x H, we
have to solve the system

(v, h) € D(B)
C)] v—h=F
h+Av+f=@G, fedy(h) (thus Av+ fe H)

which is equivalent to the system

veV, heD(@BY)CV (a)
(10) v=F+h (b)
h+ Ah+ f=G—AF, fedy(h) (c)

[observe that (9) = (10) obviously and that, if (10) holds, then
Av+f=Ah+f+AF =G—-hc H]
Essentially, we have to prove that (10 ¢) holds i. e. that the operator

I+ A+ Oy from V to V' is onto. But this is easy to do, and more or less
standard. We recall briefly the procedure. Let

J()_~7w meH+— w Ov v + ¥ (8) — (G — AF, O)y:xv
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which is a convex, l.s.c. functional on V. Since 7 is convex, Ls.c.
and proper, it is bounded below by an affine function, and hence,
lim J(8) = +o0, as |f|y — +oo. Therefore, J admits at least a minimum
at h € V. Then

J(hySJT(h+t(0—h), VoecV, Yielo, 1.

Writing this inequality, using the convexity of ), then dividing by ¢ and
finally letting ¢ \, 0, we get

(G—AF, 0 = hyyry S(h, 6 ~h)gxn
+ (h, 8 — RYyxv + 9 (0) — 1 (h), VocV.

Since (h, 6 — R)yxv = (Ah, 6 — Ryyixy and (h, 6 — hYguy =
(h, 8 — h)yixv, we deduce that G — AF — h — Ah € 8y (h), which
is just (10 ¢).

We denote by S (¢) the nonlinear semi-group of contractions on D (B)

generated by B. As a consequence of the general theory [BRE], we have
the following properties, where (u (t), v (t)) = S& (t) (uo, u1):

(1) Y(up, w) € D(B), t— (u(t), v(t)) € C([0, oof; V x H)
and, for any (ug, u1) € D (B)

(12) Vt20, (u(t), v(t))eD(B)

(13) t — (u(t), v(t)) € V x H is Lipschitz continuous and a.e.
differentiable on [0, oof

(14) v (t) = ue(t), upe (8) + Au(t) + f(t) =0,
f@) €edy(v(t)), ae. t 2 0.
Moreover, for any (uo, u1) € D (B)

(15) t - (—v (), [Au(t) + 8¢ (v(t)]°) € V x H is right-continuous
everywhere, where []° denotes the minimal section.

(16) l(—v (2), [Au(t) + 0% (v ()])llvxa
S N(~us, [Auo + 3¢ (u)]llvxa,  Yt20.
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490 F. CONRAD AND M. PIERRE

Note that in particular, if (ug, u;) € D (B) then u € W%> (0, oc; H) N
Whee (0, oo; V).
For any (ug, w1) € D(B), we define

1 1
(17) E(t, wo, w1) = 5 [} + 3 o (Ol

PROPOSITION 2. — (i) Assume (ug, u1) € D (B), then VO < s St

(18)  E(t uo, u1) — E (s, uo, uo:-/ (F (0), v (o)) vy do,

where f(c) € 0 (v (0)) a.e. o satisfies (14).

(ii) Assume O € O (0); then ¥ (ug, u1) € D(B),t — E(t, uo, u1)
is nonincreasing.

Proof. — (i) Let (ug, u1) € D (B); by the regularity property (13), we
have, a.e. t:

LB, uo, wr) = (ue (1), u (v + (00 (0), v ()

dt
= (Au(t), ue (t)vixv + (—Au(t) = £ (1), v () mxs,
where f(t) € 0y (v(t)) satisfies (14)

=(Au(t), ue ())vixv — (Au(®)+ £ (1), v(t))vxv by (2)
=—(f ), v(t))vixv-

Then (18) follows by integration.
(ii) Since 97 is monotone and 0 € J¢ (0), we have

(£ (o), v(o))yxv 20.
Thus t — FE(t, ug, u1) is nonincreasing for (ug, u;) € D (B). By
density, and continuity of E (¢, .,.) on V x H, the property is true for
(Uo, Ul) S D(B)

Remark 1. — A frequent situation is when ) is given by 4 = ¢ o C
where C € L(V, U), U is another Hilbert space and ¢ : U —] — 00, ]
is proper convex and Ls.c. It fits in our framework if R (C) N D (¢) # @.
It has been proved in [LA] (see also [CO-PI;], Appendix 1) that if C is
surjective, then 9y = C* 3¢ C and that the equation

utt—+—f~1u—+—C*3¢Cut30

defines a nonlinear semi-group of contractions on a closed subset of V x H.
This situation corresponds to the case where the control operator C* is the
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adjoint of the observation operator C, with a nonlinear interaction between
observation and control described by 0v. Therefore, we have proved a
result which includes a familiar framework in control theory.

Remark 2. — The fact that 9% acts from V' to V' and not necessarily from
H to H, is essential to describe boundary or pointwise feedback between
observation and control in P.D.E’s (when % = ¢ o C).

Remark 3. — Even in the restricted case where 1 = ¢ o C and C is
surjective, it may be as convenient to keep the formulation with ¢, and to

compute d¢ directly, without using C* 9y C. This will be observed later
on, in the applications (Section 3).

2. STRONG ASYMPTOTIC STABILITY

We now study the asymptotic behaviour of the semi-group S2 (¢). The
main tool will be the invariance principle of LASALLE. As usual, some
compactness has to be assumed.

We suppose that 0 € 9% (0), thus after a normalization

(19) min ¢ (v) =4 (0) =0

We denote by K, the closed convex set where ¢ attains its minimum

(20) Ky ={¢€eV; ¢(v) =0}

Moreover, we assume B has compact resolvent (for conditions ensuring
the compactness, see [CO-PI;], Appendix 2). It follows from this fact and
from (19) that the trajectories of S (¢) are relatively compact in V x H,
and that for any (ug, u1) € D (B), the w-limit set w (ug, 1) is a non-empty
closed set [DA-SLE]. Moreover, we have the following:

ProposSITION 3. — Assume (19) and B has compact resolvent. Then
(1) « If (ug, u1) € D (B), then w (ug, u,) € D (B).
o w(uo, u1) is invariant under SB (t), and the restriction of S (t)
on w(ug, uy) is an isometry for the V- x H-norm.

* Let (u, u1) € D (B), (wo, w1) € w (ug, u1) and (w (t), w, (t)) =
o S8 (t) (wo, wr).

@ 0={{), we®)vxv,  [(t) €Y (w (1) ae.t,
where f(t) is defined as in (14).

Vol. 11, n® 5-1994.



492 F. CONRAD AND M. PIERRE

e If moreover, v satisfies the following property

(23) ov (0) = {0}

then
(’UJO, 'wl) eD (B()),
(24) and

(w (2), we (1)) = SP (t) (wo, w1),

where By is the operator B corresponding to Oy = 0, ie.

D(Bo)=D(A) x V,
25) and
VY (v, k) € D(By), Bo(v, h)=(=h, Av).
Proof. — The claim (21) follows directly from the maximality of B and

the fact that ¢ — || B° (u (t), u: (t))||v x & is uniformly bounded, and in fact
decreasing along the trajectories [see (16)].

The fact that SZ (¢) is an isometry on w (ug, u1) is a consequence of
the invariance principle of LASALLE, since
1
t = E(t uo, w) = 5 [I(w(®), v () xa

is a Lyapunov function [See Proposition 2 (ii)].

Property (22) follows from formula (18) applied to (wg, w;) instead
of (ug, uy) : t — E (t, wo, w1) is constant, and (f (¢), ws (0))v'xv is
nonnegative a.e. For properties (24) and (25), we first observe that since
f(@) € 0¢ (w:(t)) ae., we get

Y (0) 2 ¥ (wi (1) = (F (£), we (£))vrxv

and thus, from (22) we deduce

¥ (we (¢)) S 9 (0), thus ¢ (w (t)) =0 =9 (0).
Let v € V be arbitrary. Then
P (v) =P (0) =9 (v) — ¥ (we (1))
2 (f(t), v —we ())vixv = (f(t), v)vixv [using (22)].

This implies f (¢) € 8¢ (0), and by assumption (23) we get f (f) = 0 ae. t.
Therefore, w satisfies the equation derived from (14)

wtt—f—/i'w(t) =0 aet20,
thus Aw(t) € H a.e. t > 0. This implies

w(t) € D(A) ae. t 20, and Aw(t) = Aw(t),
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and also
Bw(t),w: (1)) = B (w(t)) a-e. t.

But by (16)

[|Bo (w (£), we @) llvxa =B (w (t),w: ()’ llv
< B(wg, w1)|lvxy ae. t.
Letting ¢ tend to zero, we get (wq, wy) € D (By), by maximality of the
operator By. Clearly, then (w (t), w;: (t)) = SB0 () (wo, w1).
Next, we come to our main results of the paper, namely a characterization
of asymptotic stabilization in terms of %) (more precisely of K,,).

We will assume that the resolvent of A is compact and denote by F; the
associated eigenspaces. They are of finite dimension and

izl

THEOREM 4. — Assume A and B have compact resolvent and (19), (23).
Then

(26)  V(uo, u1) € D(B), tl}fgo SP(t) (uo, w1) =0 in Vx H

if and only if

@7) Viz1, K,n(—K,)nF =/{0}.

Proof. — Proposition 3 shows that, on the w-limit set w (ug, uy), the
nonlinear semi-group SZ (¢) coincides with the linear semigroup S50 (¢)
associated with the uncontrolled operator By. Therefore, our first step will
consist in representing the solution of the uncontrolled linear equation in
terms of the spectrum of A.

We denote by (,, n = 0 the eigenfunctions of A, with associated
eigenvalues p2 > 0 (not necessarily distinct), so that {(,}, is an
orthonormal basis of H (and an orthogonal basis of V') and

lCniH =1, lCn‘V:IAl/Z Can =l > 0.
1
V2

eigenfunctions of By in V' x H associated with eigenvalues % ¢ piy,.

It is straightforward that (Cn/pin, F1¢,) is a Hilbert basis of

Yol. 11, n°® 5-1994.



494 F. CONRAD AND M. PIERRE

Let (wo, w1) € D(Bo) =V x H, (w(t), we (t)) = SBo (1) (wo, w1).
By a straightforward computation we get

(28) w(t) = Z [an €OS fin t + by SIn fin ] Cn/ fin
N
(29) wy (t) = Z [br, €OS fin t — ap Sin pn t] ¢
N

where (28) {resp. (29)] converges in V, (resp. H). Moreover
an = (Wo, Cn/pn)vxy € 12(N), since wo € V and |(n/pnlv =1,
bp = (w1, &) axm € P (N), since wy € H and |Caly = 1.

Now, if we assume that (wo, w;) € D (By), the convergences in (28) and
(29) can be improved.

First, wy € D (A), thus
1 1
tn = — (AY?wo, AY? G um = — (Awo, Cn)mxn
Hn Hn
which implies

Pn @n = (Awe, C)mxm € 12(N), since Awy € H, and |(u|g = 1.
Next w; € V, thus

1
bn = (wh Cn)HXH - M—2 (wh ACn)HxH

n

1 1 n
=Ty (A2 w1, A2 G e = — <U11, C—>
VxVv

. . . n n Hn
which implies

i by = <w1, &> € I*(N), since w; € V, and |(n/pnly = 1.
VxVv

n

Since V = D (AY/?) = {Z On Cn; Zafl ¢? < oo}, we deduce that
N

N

if (wo, w1) € D (By), then, in particular, the series (29) converges in V,
uniformly with respect to .

If we now denote by 0 < w? < w? < --- < w? < --- the distinct

eigenvalues of A, with associated eigenspaces F; of dimension p;, and

{¢/}j=1,..,p; a basis of eigenfunctions of F; such that the whole system
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corresponds to {{,}n, then (28) and (29) can be rewritten (with obvious
notations)

oo Pi J
(30) w(t):ZZa cos wit — bl smwz]c,
: w;
=1 7=1
o0 Pi
(31 we () = Z Z [b] cos wit —al sin w;t] ¢,

i

1 =1

where the series converges in V, uniformly in ¢. This finishes our first step
and we will now use the above representation to prove the sufficient and
necessary conditions announced in the theorem.

Sufficiency. — Assume (26). By the contraction property of the semi-group
SB (t), it is enough to prove (26) for (ug, u1) € D (B).

Let (ug, u1) € D (B), and (wg, w1) € w (ug, u1) It is enough to prove
that (wp, w1) = 0.

Let (w (t), w: (t)) = SZ (¢) (wo, w1). By Proposition 3, (23) and (24)
imply that (wp, w1) € D(By), (w(t), w: (t)) = SB (¢) (wp, wy), thus
formula (31) is valid, and can be more simply written as

(32)  w(t) = Z cos w; tw; + sin w; t 1, with 5, ¥; € F;

=1
where the series converges in V, uniformly in ¢. Moreover (see proof of
Proposition 3)

(33) wy (t) € Ky, ae t20.
From the uniform convergence in (32) we deduce that
Ye >0, dNo €N suchthatforall N 2 Ny

wt(t)—Z[cos wity; +sin w;tY; | Se, ¥Yt=0
i=1 v

and thus, with n = +1, we deduce

1 [T 1+ncoswyt
Z R t
T/O 7w

N T
1 1+ 17 cos t .
- E —/ ———u—p—(cos w; t; +sin w; t1;)
~ T Jo 2

14+ mcoswyt
2

(34

v

HA
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On the other hand, a straightforward computation gives

T
1 .
(35) / (1+mncoswpt) coswtdt=— sinw; T
0 1
in (w; T
it o sin (w; + wp)
1 in(w; —wp)T, if i
e RO S
1 e
T+m$in2pr, lf =D
T 1
(36) —f (147 cos wyt) sinwitdt:—w—coswiT
0 i
i T—-1
ot o [cos (w; + wp) ]
1 0 -
+ 1 + [cos (w; —wp) T — 1], if 1#p
2 Wi — Wp
1 . .
ECOS2UJPT, if ¢1=p

From (34), (35) and (36) one obtains for N > p

wt(t)dt—ﬂwp Le.

37) 1 fT 1+mncoswyt
0 2 4 v

lim —
T,/

1 t .
By (33) wy (t) € Ky a.e.t, and 1meos wpt € [0, 1] by the choice of

7n. Since K, is a closed convex set containing the origin, we get

1+ 7 cos wyt
2

and consequently, with the same argument,

w (t) € Ky ae.t,

1 T 147ncoswyt
0

38 Hm —
(38) Tg‘lic T 2

From (37) and (38) one deduces

1
(39) +7 0y € Ky

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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But, by definition, ¢, € F,. So (27) implies ¢, = 0. Similarly, multiplying
1 i t 1 t
(32) by linsinwpt 1hncos wpt and integrating over

2
(0, T'), one gets 1, = 0, Vp. Hence w, (t) = 0 for all ¢, and by (32), (31),
(30), w; (t) = O for all ¢ also. This proves (26).

instead of

Necessity. — We argue by contradiction. Suppose that, for some 2, there

ist:
CXISIS V€ K‘l/J N (—K.d,) N F;, v ?ﬁ 0.

1

Then consider u (t) = —— cos w; tv, u (t) = sin w; tv.
w;

It is clear that u, (t) = —w? u (¢) and thus

(40) up + Au=0.

So (u(t), u (£)) = S () (—wiiv, o).

Since v € Ky N (—Ky), for any A € [-1, 1], Av € K, and thus
1 (Av) = 0. Deriving this identity w.r.t. A yields

(f, vy =0, Vfedyp(Av), orelse
(fi Av) =0,  Vfedp(v).

As in the proof of Proposition 3, one deduces f € 91 (0), and from:
condition (23), one obtains

oY (Av) = {0}, vie[-1, 1]
Applying the result to A = sin w; ¢ one gets

0 (uy) = {0}

Thus =, which is a solution of (40) is also a solution of

(G3)) Uy + Au + a’(ﬂ (Ut) >0,

1
so (u (), us (t)) = SB () (—w— v, 0). But (u (t), uc (t)) A~ 0as T / oo,
whence the contradiction. '

In applications, the following corollary is often useful.

COROLLARY 5. — Assume o (v) = @(Cv), where C € L(V, U),
with U a Hilbert space and ¢ : U — [0, oo] convex, ls.c., satisfying
¢ (0) = min ¢ = 0, and

42) K,n(-K,)=1{0}, where K, ={uecU; p(u)=¢(0)= 0}.

Vol. 11, n° 5-1994.



498 F. CONRAD AND M. PIERRE

Assume moreover that A and B have compact resolvent and (23). Then
strong asymptotic stability holds for SB (t) if and only if

43) VieN, KerCnF, ={0}.

Proof. — We apply Theorem 4, and thus, have to compute K.

Kyn(-Ky)={veV;CveK,}n{veV,; C(-v)e K,}
={veV;CveK,N(-K,)} =KerC by (42).
Therefore (43) is equivalent to (27). Clearly (19) is satisfied, and (23) is

assumed. Thus Theorem 4 applies.

Remark 1. — Now, we can discuss the meaning of Corollary 5 in a
framework familiar in control theory, namely when the observation operator
is the dual of the control operator. Besides (42) assume moreover that

44) B (v) = C" B (C'v)

which is certainly true is ¢ is regular or if C is surjective ([LA], [CO-PI,],
Appendix 1). Assume also

(45) dp (0) Cc KerC*  (for instance ¢ (0) = {0}

Then (23) is satisfied and Corollary 5 applies.

Remark 2. — Let us note that (43) is equivalent to a rank condition. Indeed
(43) means that C restricted to F; is injective, or else rank Cjp, = dim F;.
This type of condition appears naturally when one wants to characterize
weak observability for the uncontrolled system

wtt+A'LU:0
46
() {Z=th
that is,
(47) Cw,=0, VYt>0 = w=0.

We refer to [EL JAI-PRI] for a discussion, or [TRI, Theorem 5.5] for a
theory in the case where C' € £ (H, U). Here C may be unbounded on .
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In our framework, where A is coercive with compact resolvent, we prove
equivalence between weak observability for (46) and the rank condition
(43) as follows: we apply C to (31) to obtain

oo

Cuws (t) = E [b; cos w;it — a; sin w; t]
i=1
with
5 Pi ) . P ) .
b= blC¢l, a=)_ alCyl
=1 =1

Assume first C w (t) = 0 a.e. t Z 0. As in the proof of Theorem 4 (but
more easily since here K is replaced by {0}), we deduce that a; = b; = 0,
i =1, 2, - By the rank condition (43), this implies a) = b7 = 0 and
therefore w, = w = 0.

Assume conversely that rank C| r, < dim F; = p;; then there exist
(al)j=1, ..p. # 0 such that

Pi Di
Zangog:O, butZafapf;éO.
j=1 =1

Pi
Set wy = Zaf ©? and wy = 0. Then (w (t), w: (t)) = SB° (¢) (wo, wy)

=1
satisfies
Pi . SD]"
w(t) = ol cos w;t—+ £ 0
(t) X_j ! e

Pi
but Cw, (t) = —E o sin witC ol =
j=1
Remark 3. — Corollary 5 is an extension of former results found in the
literature, in the following sense.
Consider an abstract evolution equation of the form
dy

48 i fu =
(48) dt+Ay+B u=0

where A generates a strongly continuous semi-group of contractions on a
Hilbert space H and B* € L (U, H), with { another Hilbert space. Assume
A has compact resolvent.

Then following [BE], it is known that system (48) is strongly stabilizable
iff the weakly (or strongly, by compactness of the resolvent) unstable states
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are approximatively controllable (here “unstable” means that it belongs
to the orthogonal of the asymptotically stable states for .A). In that case,
u = —By (or more generally, u = —-K By, where K € L (U) is coercive),
where B € L (H, Uf) is a stabilizing feedback.

Consider now our case where

0 I

(49)A:<A 0

) and B=[0,C, H=VxH, U=U.

Since A is skew-adjoint, the associated semi-group is conservative and all
states are unstable, in the sense made precised above.

We recall that, roughly speaking, approximate controllability of a pair
(A, B*) is equivalent to weak observability of the dual pair (A*, B), and,
as remarked previously, characterized by rank conditions.

Hence we have proved a nonlinear unbounded extension of the result of
[BE], namely, in the framework of second order systems: the system

(50) Yy +Ay+C u=0 with CEE(V, U),

is strongly stabilizable iff the pair (A4, C) is weakly observable. In that case
u € Jp (C'y,) is a stabilizing feedback, provided p : U — [0, o] is convex,
L.s.c., proper, and satisfies (42) and (44)-(45) (with compactness of B).

We observe that Theorem 4 goes beyond this formulation, since it does
not need the introduction of any observation operator C.

Remark 4. — Another interesting feature of our formulation is that it
can handle “unilateral” feedback conditions, since conditions (27) or (42)
concern K ¢ N (=K 1), or K ¢ N (—K ), and not separately K, or K...
This will be used in examples in next section. Such “unilateral” feedbacks
were also considered previously ([HA]).

Remark 5. — Finally, we would like to remark that Theorem 4 is a way
of systematically reducing the problem of stabilization to the verification
of an adequate uniqueness property for the operator A, in an abstract
“unbounded nonlinear” framework (for the damping term). For a similar
point of view, in a linear or nonlinear framework, see [DA], [Q-R] for
an abstract formulation, and [LAG,], [LA;], [Q-R] for applications. In
particular, the formalization and results in [DA] are very similar to ours,
though developed for bounded feedbacks.
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3. APPLICATIONS

Now we show how the strong stabilization for various nonlinear feedback
terms can be deduced from Theorem 4 or Corollary 5, in the case of wave,
beam or plate-like equations. Of course, with our technique, we do not
obtain any estimate of the decay to zero. Other techniques are needed,
together generally with geometric assumptions on the domain, see for
example [CHE], [LAG], [LA], [KO-ZU], [ZU] for the wave equation with
boundary damping, and [LA], [LAG;] for plate-like equations.

3.1. Euler-Bernoulli beam equation

We consider a beam which is clamped at the left end, and controlled at
the right end by a force and a moment which are nonlinear functions of
the transversal and angular velocities. We assume variable mass density b
and flexural rigidity a such that

(51) a,be L*(0,1),a,b2m>0
( butt + (auzz)zz - 0’ O<zx< 1, t>0
(0, 1) = u, (0, t) =0, t>0
(52) <
—QUgg (1, 1) € B (uze (1, 1)), t>0
\ (auzz)z (17 t) € a(ut (17 t))? > 0)

where o and (3 are maximal monotone graphs in R? with 0 € «(0),
0 € 8(0). This problem has been specifically studied in [CO-PI]. Here we
only show that it fits in our general abstract framework.

Let H = L?(0, 1) equipped with the scalar product (u, v)y =
1
/ b(z)u(z)v(z)dz,

V = {ve H2(0, 1); (0) = v, (0) = 0},
(A U, V)Vixy :/0 OUgy Vop AT,
D(A) ={u €V; (auzyr)rs € H; aUzz (1) = (0Uge), (1) = 0}

1
Yu e D(A), Au = E(aum)m.
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Let j1, j2 : R — [0, oo} be convex, Ls.c. and proper such that dj; = a,
872 = B, 71 (0) = j2(0) = 0. We set ¢ (v) = j1(v(1)) + j2 (v (1)) =

w(Cv), Vv € V, where
06, &) =d1(&) +h2 (&), V(& &) eU=R?
and C € L (V, U) is defined by Cv = (v (1), vz (1)). Then
o (v) = a(v(1)) 6 — B(v= (1)) &

[here, C is surjective, so that 91 (v) = C* dp (Cv)]. Noticing that, for
regular v, one has

(Av + 09 (h), Wyvixy =avze (1) w, (1) — (0Vse)e (1) w (1)
+oa(h(1)w (1) + B (hs (1) wz (1)

1
+ / (0Vsz ) e W dz,
0

we get immediately from (5)
D(B)={(v,h) eVxH;heV;h(1)€ D(a); hy (1) € D(B);
(

vz (1) € B (he (1)); (0v2z)z (1) € (h(1)); (0Vez)es €H}
and if (v, h) € D(B)

B (o, W) = (b § (@vas)er )

One can prove that D (B) is dense in V x H, thus (52) is well-posed on
V x H, and that A and B have compact resolvent [CO-PI]. The eigenvalues
and eigenvectors of A are given by

(a (P.’t.’t).’t.’t = ‘-UQ b 2

¢ (0) =¢:(0)=0

@ Pee (1) = (@ 2z). (1) = 0.

All the eigenvalues w?, k = 1, 2, -- -, are simple, and @ (1) and @i, (1)
are nonzero for any k [CO-PI].

Now we apply Theorem 4. Here

Ky ={veViv(1) e (0); v (1) € 45" (0)}.

Condition (23) is equivalent to « (0) = {0} and 3 (0) = {0}, i.e. the two
graphs are not “vertical” at the origin.

Let us next study condition (27) of Theorem 4. If both j; ' (0) and
451 (0) contain a neighborhood of the origin, then, for any v € V, there
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exists A € R such that =Av € K v, thus stabilization is not possible. On
the other hand, if j; (£) > 0 for £ > 0 or £ < 0, or j» has this same
property, then

Kyn(—Ky)={veV;v(1)=0} or {veV;v, (1) =0}

Thus condition (27) amounts to proving the following uniqueness result

(aUgz )z = A bu
(53) w(0)=0, u (0)=0

QU (1) = 0, (aUze)e (1) =0,
and v (1) = 0 or u, (1) = 0, imply u = 0. But this is always true, as a
consequence of the simplicity of the eigenvalues (see [CO-PI] for a proof).

Thus strong asymptotic stability holds if the two graphs o and 3 are not
vertical at 0, one at least being not “flat” at 0. Note that the result is true
for intance with the following unilateral feedback

AUz g (1> t) =0, (auzz)z (13 t) = [ut (17 t)}+

It is also possible to generalize equation (52) by taking coupled boundary
conditions, that is (with @ = b = 1 for simplicity) 9 (v) = ¢ (C v) where

w: R? =0, 0o]is convex, l.s.c. and proper

¢ (0) = min pand Cv = (v (1), v, (1)).

Consider for instance

1
(p(ga 77)25(7—6_7])27 7> 0.
Here Corollary 5 is not applicable since K, N (—K,) # {0}. However
Theorem 4 applies. Indeed,
Ky ={veV;ro(l)— v (1) =0},

and

(09 (v), Byvixy = [rv (1) —ve (] [T h (1) = ke (D],
thus (23) is obviously true.

For condition (27), one has to prove the following uniqueness result: if
u is a solution of (53) in the specific case o = b = 1, and if moreover
Tu(l) — uy (1) = 0, then u = 0.

Vol. 11, n° 5-1994.



504 F. CONRAD AND M. PIERRE

Let v # 0 be a solution of (53). Then u = @i, A\x = wji, and one has
to prove that
TPk (1) - Pk (1) ?é 0; Vka

_ Phe (1)
or else ¢y, (1) [7- o (1)

But for the normalized eigenfunctions, it is known that

}7&0, Vk=1,2,--

or(1) = 2(~1)*",  and

Wkr(l) - 400
koo mu)’“r [COl-

So strong stabilization occurs for the problem

Ut + Uzzze = 0

v (0, ) =u, (0,t) =0

Ugs (1, £) = Ty (1, £) — uge (1, 1)

Uper (1, 8) = 7 [Tue (1, 1) — ugy (1, £)]
for any T > 0, except for a sequence going to infinity. In particular, (54)
is strongly stable for any small 7 > 0.

(54)

Remark. — Assume a and b are piecewise regular, and for simplicity,
constant on (x;_ 3, x;) with 2o = 0, zy — 1. With the previous notations,
consider

N
’l,/} (’U) = — E [Ozi ’U2 (.'111) + ,Bi ‘l)z (-Tz)]7 (871 z 0, ,Bi z 0.
i=1
Then the abstract formulation covers the following problem (A is the same
as previously)

biutt+aiurrrrzo on (-’L'i~17 .'117;), 7= 17 Y N
v (0,t) =0, u, (0, ) =0
’LL(.’L'i_, t) = U(IiJr: t)a Uy (:Ci*9 t) = Ug (-Ti+> t)

(ai Uzrzrx (-Ti—a t) — Qi1 Uzza (-Ti+7 t))

=0 Uz (Ti—, t) + Qig1 Uy (Zi4, )

=(5 5) () v
(G ) =0 a) (250)
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This problem has been considered in [CHE-DE], where uniform exponential
decay is proved under the assumption ay > 0, b; < b1, a; = @41, Vi.

Applying our Theorem 4, we obtain the strong stability under the
assumptions «;, G; 2 0, ¢ =1, ---, N, and ay or Oy > 0, as in
the previous case. If oy = Gy = 0, but «;, or §;; > 0 for some iy, then,
due to the simplicity of all eigenvalues, x;, has to be “strategic” in the
sense that it has to be different from all the zeros of the eigenfunctions or
of the derivatives of the eigenfunctions.

With our method, it is not hard to consider nonlinear feedback laws as
previously, and even to combine this with coupled interaction between the
transversal and angular velocities at the nodes z;, t = 1, ---, N.

Finally the same analysis for coupled vibrating strings instead of beams
would lead to the result in Theorem 3.4 of the recent paper [HOJ.

3.2. Hybrid system (for Euler-Bernouilli beams)

We consider an homogeneous Euler-Bernouilli beam clamped at the left
end, and controlled at the right end by a moment, but now, there is a mass
and inertia at this end. Normalizing the constants, the model is the following

rwtt_*'wzzzzzo, O<z<l, t >0,
w (0, t) = w, (0, t) =0, t>0,

—Wer (1, ) = Were (1, £) + f(£), t>0,

\ Wz (1, t) - wtt(la t)a t>0.

With f(t) = wae (1, t) if Jwee (1, £)] = 7y f() = 7 sgn(wa (1, 1))
otherwise, we get the problem studied in [SLE], where strong asymptotic
stability has been proved.

Let us show that we can also handle this problem with our technique.
We set

H=1%0,1) xR xR,
V={(w, a, b) € H; we H*(0, 1);
w(0) = w; (0) = 0; a =w(l); b=w, (1)},
W @ 1
b B VixV ¢
D(A) = {(w, a, b) € V; we H*(0, 1)},
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and, if (w, a, b) € D(A),

w wIIfL‘I
Ala | = | —Wee (1)
b Waer (1)
Let ¢ : R x R be the function
{w(€)=€ if [¢l=r
e(§) =rsgn(§) i [lzr

and j the primitive of ¢ such that j(0) = 0. For (w, a, b) € V, we set
¥ (w, a,b) = j (b). Then it is not difficult to see that the abstract formulation

Uy + Au+ 0 (uy) = 0, u = (w, a, b),

recovers the initial problem of [SLE]. So this problem is well-posed on
V x H, as a first order equation. Omitting the details concerning the precise
definition of B, the density of D (B) in V x H, and the compactness of the
resolvents (obtained using [CO-PI;], Appendix 2), the asymptotic stability
amounts, through Theorem 4, to proving the following “uniqueness” result.

Let ¢ be an “eigenvalue” of A, ¢ = (w, a, b), such that ¢ (p) = 0,
then ¢ = 0. Or else, if w satisfies

Wapzs = AW
Weer (1) = Aa = Aw (1)
Weze (1) = Ab = Aw, (1)
w(0) = w, (0) =0
and w, (1) = 0
then w = 0 (thus also a = b = 0). But, in [SLE] it is proved that the

eigenvalues of this equation are simple and that, moreover w, (1) # 0
(see [SLE, (8.29)]. Whence the strong asymptotic stabilization.

Remark 1. — Instead of controlling by a moment, one can control by a
force, that is, boundary conditions are now

{ —Wex (1; t) = Wt (17 t)
Wrrx (17 t) = Wy (17 t) + g (t)7
where g (¢) = w, (1, t), possibly also truncated as before.

Remark 2. — One can combine the model studied in the Remark of Section
3.1 with the previous one. Then one can study the case of serially connected
Euler-Bernouilli beams with, at each node (of possibly nonzero mass and
nonzero inertia) control by force and/or moment, that is, at each node

{ Qi Uzze (Ti-y t) — Qi1 Uzao (Tit, E) = My Uge (T4, ) + gi ()
—Qi Uy (:L'i*a t) + Qiq1 Uz (Ii+7 t) - Ji Uzt (I’h t) + f‘b (t)
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where f; and g; are of the form just presented (with, or without, truncation).
But of course the reduced “uniqueness” result becomes rather hard to
handle...

3.3. Wave equation

We consider the wave equation on a smooth bounded domain 2 of R¥,
N 2 1. Control is exerted by means of a force which is a nonlinear function
of the observed velocity, on a part ['y of the boundary I', assumed to be
regular. In the sequel (I'g, I'y) is a partition of I', and we assume meas
(To) > 0, int Ty # &.

The system is the following

’lLtt"Au:O, Z'GQ, t>0
(55) u =0, zely,, t>0
ou

E:—a(ay)g(ut), rely, t>0,

where g : R — R is monotone, continuous (just for simplification, one could

actually take a maximal monotone graph instead), such that g (0) = 0,4 > 0
is continuous, and v is the normal unit vector on I' pointing outwards £2.

When Iy = {z € T; (z — z0) - v > 0}, 'y = '\ Ty, where z, € RY,
int Ty #0, and, if N > 3, TonT. =9, strong stability holds for problem
(55), with estimates for the decay depending on the behaviour of g (see
for instance [ZU]). Strong stability has also been proved in [LA] in this
framework, for more general g.

Here we obtain strong stabilization for very general partitions (I'g, T'.)
of the boundary. First, we put (55) in our abstract framework. We set

g = a9, H = L*(Q), V={ve H (Q); v=00nT,},

(Au, V)vixy :/ Vu-Vudz,
Q

D(A) = {uEV; Au € L*(Q); %g ZUOHPO},

Vue D(A), Au=—-Au.

Lety (v) = / a(z)j(v(z))do (z),Vv € V. Assume g satisfies a suitable
o
growth condition. Then Yv € V, 8¢ (v) = {f}, where (see [CO-PL],
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Appendix 4)

(F By = /F a () g (v(2)) h(z) do (),

so that, from (5), one deduces

D(B) = {(v, R) eV xV; Ave L?(Q); g:ji = —ag (h) onFo}

and, if (v, h) € D(B), B(v, h) = (—=h, —Av). Since D(B) D
D(A) x {heV; h=0o0nTIy}, it follows that D (B) is dense in V' x H,
so that (55) is well-posed on V' x H. Compactness of A is obvious and
compactness of B follows from the adequate growth condition on g (see
[CO-PI,], Appendix 4).

Thus we can apply Theorem 4. We first observe that (23) is obviously
satisfied.

Let us now show that (27) is satisfied. Assume K; N (—K;) = {0} that
is, g is not “flat” at O, as usual. Then
Kyn—-Ky,={veV;jw(o))=0,j(-v(o)) =0, ae. on [y}
={veV;v(o)e K;N(—K;)ae. on Iy}
={veV;v=0 ae on I'o}.

So condition (27) amounts to proving the following “uniqueness” result:

—~Ap=uwp
(56) @Y = 0 on F*

19

a—f =0 only
and
(57) @Y = 0 on FO

imply ¢ = 0 in Q.

This uniqueness result holds for very general situations where ['g is not
too “thin”. For instance, if I'q contains B (zq, )N, where 1o € I', and I is
regular. The proof is elementary and proceeds by extending ¢ by 0 outside
I" (and near ['p), using analyticity properties. This can also be viewed as
a very particular case of Holmgren’s unique continuation theorem. So, we
have an extension of the results of [LA;].
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When 'y = (z € T; (z — zo) - v > 0}, one can prove the uniqueness
result by the usual multipliers’s technique. However, in that case, we get
much more than uniqueness (or equivalently weak observability), namely
strong observability.

One can easily be convinced that stabilization holds for more general
partitions by taking for instance a rectangular membrane © = (0, a) x (0, b)

with © = 0 on the vertical edges T, and a—u € —f (us) on the horizontal
14

edges I'g, where # is a maximal monotone graph satisfying adequate
growth conditions, so that the compactness assumptions hold. In that case,
the uniqueness result can be proved in an elementary way, using Fourier
expansions.

The solutions of the eigenvalue problem (56) are

o (m? n? . mTT T sy
W = T <?+b—2), cp(:c,y):;arssm . COST
P2 2 m? 2
wherereN*,seN,§+b—2:a—2+b—2,,withm€N*,n€N.

For y = 0, or y = b, one gets @p, = Z + a,, sin T o_ 0. This
a

implies a,s = 0 for all r, s. Thus (56) and (57) imply ¢ = 0.

Clearly, the uniqueness result holds also for any I'g which contains an
arbitrarily small horizontal interval.

Instead of a boundary feedback, one can also consider an interior
feedback, in a fairly general framework. For simplicity, consider again
the rectangular membrane with Dirichlet conditions on I', and I'y (or
Neumann conditions on I'p).

Let  : R — [0, oo] be a convex, Ls.c. proper function such that min
j = 7(0), set 8 = 33, and consider

(58) ¥ (v) = /Q i(0)du, D) CV =H Q)

where p is a positive Radon measure on £2, of finite energy, and ¥ is the
quasi-continuous representative of v, with respect to the V-capacity.

In particular, one can consider the case where the support of u is a “thin”
set E of positive capacity (a piece of curve for instance), or a closed set

E with non empty interior. With p the length or area measure in that case,
one solves in fact the formal problem

u — Au+ F(uy) 2 0.

Vol. 11, n°® 5-1994.



510 F. CONRAD AND M. PIERRE

Since g is of finite energy, it follows that v, —» v in V = v,, — 9, pa.e.
up to a subsequence, and hence ¢ is l.s.c. Therefore, our theory applies and,
provided the compactness assumptions are true, strong stability amounts to
verifying (23) and (27).

The usual assumption §(0) = {0} ensures (23) is true. For (27), we
assume K;N(—K;) = {0}. Then we have to prove the following uniqueness
result:

(59 —Au=Au in
©w=0 onl

and

(60) =0 p a.e.

imply v = 0.

For instance if p is the length or area measure on a piece of curve or on
a closed set I of non empty interior, stabilization “usually” holds. Assume

2 2
as above that Q = (0, a) x (0, b); then A\ = wy,, = 72 (%— + Z_Z) and
if s (x, y) = sin T in W_;f’ the solution of (59) can be written
r? 2 m? n?
’U,(.Z', y):Z Qrs Prs (.’L‘, y)7 where p_’_b_z:?_’_’b?

If E 5], B[x {yo}. with %" ¢ Q, orif E D {z0}x]a, B[, with % ¢Q,
then (60) implies «,s = 0 for all r, s and « = 0. Hence (27) is true.

If the above conditions on I are not true, it may happen that a solution u
of (59) is identically zero on E, so stabilization does not hold. We observe
that if ' contains an open set, strong stabilization holds.

3.4. Rectangular Kirchhoff plates

We consider a simply supported rectangular plate 2 = (0, a) x (0, b).
We can apply our general formalism to the equation

52
e + A% u+ 8¢ (u) =0 in Q, u:a—gzo on 91
)
to obtain stabilization results. Moreover, one can consider functionals of
the form (58) where D (v) C H? (), the capacity being now the one
associated with the H2-norm.
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In that way, one can choose Dirac masses for u, and thus consider inner
point control. Let us study one particular case, where the external force
acting on the plate is exerted at the points (p;, ¢;) € §. This problem
has been studied in {Y]. Normalizing the constants, we get the following
evolutionary system

( 1
utt+A2u=Zfi(t)6($_pivy_Qi)v ‘TEQ7 t>0a
i=1
8% u
= Q=T t>0
61) U = e =0 ond > 0,

U(IL‘, Y, 0) = Up ("L" y)7

\ Ut (‘Ta Y, 0) = Uz (‘T7 y)a

34 84 84
where A2 = a—m4 + 2 &62—8:1/2 + Ey_‘l’ fz S Llloc (R+, R) We set

H=L*(Q), V={ve H*(Q); v = 0 on N}.

We consider the control operator C* = {§(z — p;, ¥ — qi)}i=1,-,1 €
L(R, V).

In [Y], problem (61) has been considered on the state space V', with
A? as an operator defined on V', with domain V, so that control becomes

“distributed”. The main result of [Y] can be summarized as follows:
2

o if 2—2 € Q then (61) is neither approximately controllable, nor strongly

(or weakly) stabilizable, by any bounded linear feedback € L (v, R!),

acting on velocity,
2

o if Z_Q ¢ Q then (61) is approximately controllable and strongly

stabilizable by the feedback f (¢) = —Cwy, if and only if the following
(rank) condition is satisfied.

1
].2::1 Aern | €mn |t emnl

|€mn (Ps, ¢;)] # 0, VYm, n2>1, ie.

emn (Pj, ¢;) # 0 for some 4, forany m, n = 1.

Here A... are the eigenvalues of the free vibrating plate, and e,,, are
the corresponding eigenmodes (the eigenspaces are one-dimensional in the
case considered, and for general o and b, approximate controllability is
characterized by a rank condition, see [Y], Lemma 8). Moreover, in the
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(12

particular case of one actuator (1 =1, 7 4 Q), (61) is approximately

controllable iff Z ¢ Q and % € @, and f (t) = —uy (¢, p, q) is a stabilizing
a

feedback.

The proofs of the necessary and sufficient conditions given in [Y] are
based on theorems in number theory and Diophantine equations.

Here we just show that the feedback f (t) = —C u, is stabilizing, by
means of our abstract results, where the state space is H = L? (£2), so that
the control operator C* is unbounded. For simplicity, let us also consider
the case of one pointwise actuator. We set

{(Au, v)vixv :/ Au Avdz, Yu, v eV,
Q

8 u

D(A):{uGV; A’y € H; W:O}, Vue D(A), Au= A?u.

1 )
Let ¢ : V — R, be defined by % (v) = 3 v% (p, q), so that ¢ is convex
(regular), defined on the whole space V, and

o (v) = v (p, q)bpq-
Hence, we study the following equation (61) with f (1) = —u: (¢, p, q)

(62) e + Au+ 99 (uy) = 0.
For regular v, we get immediately, Vh € V, Vo € V

(Av + 8¢ (h), <p>V/Xv:/FAugf+/QA2uw+h(p, 7)¢(p, 9).

n
Choosing first ¢ € D (Q), then ¢ € V arbitrary, we get from (5)
9 9?u
D(B)=<(v, h) eV xV; A*u+ h(p, q)bpq € H; 5—2:0 on T
n
and by (6), if (v, h) € D(B), B (v, h) = {—h, A?2u+ h(p, q) b4}
Thus, formally, (61) and (62) are equivalent. We observe that A%y €
L?2(Q2\ B(p, g; €)), so that v € H*(Q\ B(p, ¢; €)), and the trace
Au = 8% u/On? on 0 makes sense. We also observe that
{(v, L) ve H* () NV; heV; h(p, q) =0} C D(B),
so that D (B) is dense in V x H.

Annales de UInstitut Henri Poincaré - Analyse non linéaire



NONLINEAR FEEDBACK STABILIZATION 513

Also, A has compact resolvent in H by classical regularity (see also [Y],
Lemma 3). Moreover 0¢ : V — V' is obviously compact since Range (9))
is one dimensional. Using [CO-PI;, Appendix 2], it follows that B has also
compact resolvent and so our whole theory on stabilization is valid.

Now we apply Theorem 4. Here K 9 = {v € V; v(p, q) = 0}. Since
o (v) = v(p, q) 6pq = 0, condition (23) is satisfied.

For condition (27), one has to prove that for any eigenfunction ¢, one
nNTIT

mTT
3 O’ here s = s i si 3 th
has ¢ (p, q) # 0, where ¢ (z, y) ;a sin. — in — e
eigenvalue being
. m2  n2\2 . 4 r2 52_m2 n?
G\ )T iR T e T

a?

It 7 ¢ Q, the eigenvalues are all simple (by contradiction) and clearly

n%(Z#Oifandonlyifgand%gQ.
a

2
Hence, in case Z—2 & Q, (61) is strongly stabilizable with the feedback

_ ief 2 kd
fi@t) = —Cuy, lffa and 2 Z Q.

sin

Remark 1. — The same result is true with % (v) = (v (p, q)), for
any strictly convex regular ¢. In that case, one controls with f () =

¢ (us (p, g, t)), with the assumptions a B, % Z Q.
a

b2’
Remark 2. — One can consider (61) as a problem with boundary feedback
at (p, q) € 3(Q2\ (p, ¢q)). This shows that one can stabilize a plate with a
pointwise feedback (on the boundary, if we want). This result is in contrast
with the case of membranes, where points have V = H!-capacity zero
(here the V = H?-capacity of a point is # 0). In the case of membranes,
control on a regular set £/ means that £ must contain at least a line, roughly
speaking, which is of positive capacity.
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