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ABSTRACT. — This paper studies the existence and the minimization
problem of the solutions of the Ginzburg-Landau equations in R? coupled
with an external magnetic field or a source current. The lack of a suitable
Sobolev inequality makes it necessary to consider a variational problem
over a special admissible space so that the space norms of the gauge vector
fields of a minimization sequence can be controlled by the corresponding
energy upper bound and a solution may be obtained as a minimizer of a
modified energy of the problem. Asymptotic properties and flux quantization
are established for finite-energy solutions. Besides, it is shown that the
solutions obtained also minimize the original Ginzburg-Landau energy
when the admissible space is properly chosen.
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RESUME. — Le but de ce travail est d’étudier 1’existence et le probléme
de minimisation des solutions des équations de Ginzburg-Landau dans R?,
couplées avec un champ magnétique externe ou une source de courant.
L’absence d’une inégalité convenable de Sobolev ameéne & considérer un
probleme variationnel sur un espace admissible spécial. Sur cet espace,
les normes des champs de vecteurs de la gauge d’une suite minimisante
peuvent &tre contrlées par la borne supérieure de 1’énergie correspondante.
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518 Y. YANG

Aussi, une solution peut étre obtenue comme un minimiseur d’une énergie
modifiée du probleme. Des propriétés asymptotiques et une quantification
de flux sont établies par des solutions d’énergie finie. Entre autres, il est
prouvé que les solutions obtenues minimisent aussi 1’énergie originale de
Ginzburg-Landau lorsque I’espace admissible est convenablement choisi.

I. INTRODUCTION

Let ¢ : R* — C be a complex scalar field and A : R™ — R™ a vector
field, where n = 2, 3, 4. The Ginzburg-Landau (GL) energy density in

the presence of an external magnetic field F3i (4, k = 1, 2,..., n) takes
the form

1 1 A * A A 2 2 1 ex
£ (6, A) = 3 Py Fyt5 (DA 6)" (D )5 (0P =17 =5 Fa 5. (1)

where Fj, = 0; Ay — O A; is the magnetic field induced from A = (4;)-
called the gauge vector field, D;’ ¢ =0;¢— 1 A; ¢ is the gauge-covariant
derivative of ¢, * denotes the complex conjugate, and the summation

convention is observed on repeated indices. There is a local gauge symmetry
in (1):

¢ — e, A~ A+ Vuw, w:R" = R. 2)

When n = 2,3, (1) defines the well-known GL model of
superconductivity, while, when n = 4, it defines the Euclidean abelian
Higgs model in classical field theory [DH]. Varying the energy E (¢, A) =

/ E(¢p, A)dz leads to the following GL equations

DADF 6+ 2 (1-[9P) o =0,
Ok Frj + % (¢ [DF ¢)* — ¢* [DF ¢]) e R™ 3)

1
= S O (Fg - F),

A basic problem is: Prove the existence of a finite-energy solution for the
GL system (3) assuming that the external field F' *n carries a finite energy

/ T Fix dz < o0, 4)
and, show that there are solutions which minimize the GL energy.
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GINZBURG-LANDAU SOLUTIONS 519

In the earlier work [Y1, Y2}, existence and minimization theorems have
been established for the dimensions n = 3, 4. Our solution of the problem
there depends on a modification of the energy density (1) and the following
Poincaré type inequality in R™ (n > 2) (see [B, GT]):

lull, 22 gay SC@IVUllzz ey, uwe CGo (RY). )
When n = 2, (5) fails and the techniques of [Y1, Y2] break down.
However, the case n = 2 is actually a more interesting situation of the
model because it gives rise to vortex-like or mixed-state solutions which is
a fundamental phenomenon in superconductivity physics. The purpose of
the present paper is to solve the n = 2 case. Our approach here is based
on an inequality which can control the local L? norm by the Dirichlet type
norm on the right-hand side of (5), of a function vanishing in a small ball.
We are led to introducing a special but natural function space for the vector
gauge vector A so that the minimizing sequence of the modified GL energy
is weakly compact in the space W2 (Q) for any bounded domain § in
R2. Thus the major difficulty in the early attempts in solving the problem
in R? is overcome. A solution over the full plane can then be obtained
by passing to the limit from bounded domains. The solutions found are
all in the global Coulomb gauge. The flux quantization problem, typical
in two dimensions, will also be briefly studied. It is shown that, when the
external field has power-type decay estimate at infinity, so will the excited
fields, which leads to a quantized magnetic flux as in [JT]. We will also
show that the solutions obtained minimize the original GL energy among
all field configurations in the Coulomb gauge when the admissible space of
the gauge vector fields is properly chosen to allow a convenient disposal
of the boundary terms arising from our energy comparison.

II. EXISTENCE BY THE CALCULUS OF VARIATIONS

We shall first find a solution of (3) in R? by looking for a critical point
of an energy stronger than F (see the discussion to follow). Analysis shows
that the failure of (5) in the case n = 2 makes it difficult to control the
local W% norms of a pair of field configurations in terms of its energy.
However, it turns out that we can use the following inequality to tackle
our problem here.

Vol. 11, n°® 5-1994.



520 Y. YANG

LeMMa 1. — Let u (z) (z € R?) be a differentiable function with support
contained in B¢ = {r € R?|1 < |z| < oc}. Then

z[>1 |$‘21n2|$|

2
/ “i(‘”)dxgzl/ Vu(z)?dz, ze€RZ (6
| |z]>1

Proof. — The above inequality can be found in [L] where the function «
is assumed to be compactly supported in B¢. However, this result is also
valid for functions in our generality which will be used in the study of (3)
in two dimensions. We proceed as follows.

First, it is easily checked that there holds the identity

u? u? V() .z
| — = — Be. 7
v (lxl”nlw!x) et je] T Pl 7 @

Integrating (7) on B§ = {w € R?|1 < |z| < R}, we get

2 \v4 2
/ —u2—dx:2/ u2—u.xd$_/ 2—u—a:.nds
B, |z?1n” |z| e |z|?In|z| lzj=r |2|*In|z]

\ 3 3
Be, l.’ltl In |.’17| Bg,

Thus (6) follows from taking & — oo in the above inequality. [

Let B be the set of vector fields on R? with differentiable components
and finite || ||»-norm. Here, for A € B,

14]3, = /] (3 A0 0, A0+ des / (8; [0 Ax]) (85 [0 Ax]) da,

lzi>1

where p is a smooth function over R? so that

0=p<1, p(x)=1 for|z]>2, supp(p)C {z € R|z|>1}.

The completion of B under the norm || || is denoted by H. It is clear
that M is a Hilbert space.

LeMMA 2. — For any A = (A;) € H, there holds

/l“ P AP d$§4/||>1[aj (0 AR (05 (p ARl dz. (®)

zi>1 |2]21n* |z
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Proof. — For A € M, there is a sequence {A"} C B so that
|4 — A% — 0 as n — co. By Lemma 1, we know that (8) is valid
for any element of B. Thus

2 m 2

e m_ an
/ _L__Id$§4/ (35 [p (A7 = AD))
lz}>1 lz[>1

o] In® 2]
x (9 [p (AT — A}))) da
< 4[lA™ - A7,

Letting m — oo, we obtain

2 n|2
p? 1A — A" 9
————dz < 4||A — A™||%,. 9
/|11>1 |z|2 In? || =4l Il ©)

As a consequence of the Minkowski inequality and (9), we have

(/Iz|>1 %I'—:i% dm) 2 S 2”A - A"HH

=1 /H (0, A30) ;o A d

1

Taking n — oo, we arrive at (8).
We are now ready to solve (3). For simplicity, we assume that the external
field is smooth. We rewrite the GL energy density (1) in the form

1 .
g(¢, A):gO(¢) A)——EF]/C ]el::(, J)k:1a2 (10)
The main result of this section is

TuroreM 3. — In R?, the GL system (3) has a finite-energy smooth
solution (¢, A) in the Coulomb gauge 0; A;j = 0 and Ey (¢, A) =

/50(¢, A)ds < .

Proof. — The original energy density (10) is not good enough to work
on. As in [Y1], we start from the modified density functions

1 1 -
To (¢, A) = 5 (0 Aw) (95 Ak) + 5 (D} 4) (D} ¢)
A
+2 (8 - 12, an
1
I (¢, A)=Tp(p, A) — §ij s
which are obviously stronger than £ and &.
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522 Y. YANG

Set I = | Zdx and Iy = / Zo dz over R2. Consider the variational

problem

Inin = min {I (¢, A)|(¢, A) € T x H}, (12)
where J is the set of complex-valued functions on R? with components
lying in W22 (R?). Since FgX e L* (R?) [see (4)], it is easily checked
that I;, in (12) is finite.

Next, it is clear that the functions in (11) are no longer invariant under
the general gauge symmetry (2). However, they are invariant if w in (2)

is a linear function of z;, zo. Thus, for a pair (¢, A) € J x H with
Iy (¢, A) < o0, define (¢, A’) so that

¢ =¢ev, A=A+ Vo,

1
w= —a;z; —ayxy where (a1, a) = g / A(z)dz.
jz<3

Then the average of A’ on {z € R?||z| < 3} vanishes, i. e.,

1
A’E—/ A’ (z)dz = 0.
9T Jizj<3

Moreover, the linearity of w in the variables z;, o implies that A’ € ‘H
because A’ is a translation of A by a constant vector,

Let {(¢™, A™)} be a minimizing sequence of the problem (12). The
Schwarz inequality implies that

Cly (9", A™) Ssup I (g™, A™) + [[F5E(172 may- (13)

Here, and in the sequel, C' > 0 is an irrelevant constant. From (13) and the
definition of I, we see the finiteness of the quantity

M = sup / (05 A7) (0; A}) da. (14)
n R2

By the above discussion, we may also assume that A" =0, n =1, 2, ...
Thus the Poincaré inequality applied on {z € R?||z| < 3} implies

n

swo [ (@A) @A)+ AP e SOM. a9)
lx<3

Recall that, in the definition of the norm || ||, the truncation function
satisfies p (z) = 1 for |z} > 2. As a consequence, the combination of (14)
and (15) gives us the boundedness of {A™} in H. Using Lemma 2 and

Annales de I"Institut Henri Poincaré - Analyse non linéaire



GINZBURG-LANDAU SOLUTIONS 523

the definition of || |l%, we conclude that the components of {A™} are
bounded sequences in W12 (Q) for any bounded domain 2 C R2. Thus
{A™} is also bounded in LP (£2) for any p = 1. On the other hand, the
definition of the gauge-covariant derivative gives

D" 47 2 510, 47 ~ C (A +147]* + 1),

Thus {¢"} is a bounded sequence in W12 (Q2) as well for any
bounded domain 2 in R2?. Using the compact embedding W2 (Q) —
L?P () (p 2 1) and by passing to a subsequence if necessary (a diagonal
subsequence argument), we may assume the existence of a pair (¢, 4) €
W2 (R?) so that

(g7, A™) — (¢, A) weakly in WH2(Q),

(¢n, A™) — (p, A) strongly in L? ()
for every bounded domain €2 € R? and any p 2 1. Of course A is also the
weak limit of {A™} in the space H. Thus (¢, A) € J x H. We are left to
show that (¢, A) solves the variational problem (12).

Let Zy, 7 be as defined in (11) and Br = {z € R?*||z| < R} (R >
0). The functionals Io (¢, A; R) = /Io (¢, A)dz and I (¢, A; R) =

(16)

T (¢, A) dx are integrals over Bp. The condition (4) says that for given

e > 0 there is By > 0 to ensure
/ S Firdz <& whenever R > Ry.
szBR
Thus for B > Ry,
1
I AR ST@n AN+ 5 [ R
2 Jr2_p,

SI(g™ A +eVM, n=12,..,

where M 2 0is as given in (14). Using (16), the weak lower semicontinuity
of the terms in I (., .; R),and I (¢™, A™) — I;, (as m — 00), we arrive at

I(¢, A; R) S Inyin +e VM,  R> Ry
Namely,

1 1
Ip(¢, A; R) £ Imin +eVM + = / F Fip do — - / Fjx Fii dz
2 R2 2 R2-Bpr

1
§Imin+2€VM+—2'/ ij ;:dfl,‘, R>R0
RrR2
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Setting B — oo in the above, we get I (¢, A) < I, by the arbitrariness
of € > 0. Hence I (¢, A) = Imin and (12) is solved.

Finally, varying the modified energy I in J x H by compactly supported
test functions around the obtained minimizer ($, A) of (12) and using the
standard elliptic regularity theory, we see that (¢, A) is a smooth solution
of the system

DD g+ 2 (1 [9) $ =0,
V24, + 5 ($[Df 9" — ¢ [DF 9)) z € R%. an

1
= 5 0 (Fgr — F3),

We can use the two equations in (17) to show that 8; A; is harmonic in R%.
However, since 9; A; € L? (R?), the Liouville theorem says that 9; 4; = 0.
As a consequence, it follows that V2 A; = 0, Ok A; = 0x (Ox A;—0; Ax) =
Ok Frj, j = 1, 2. In other words, (17) recovers the GL equations (3) in R2.
Thus (¢, A) solves (3) as well and the theorem is proved. [J

III. THE SOURCE CURRENT CASE

In our discussion of the GL theory in Section 2, the external field is
a magnetic field, F3'. A more general situation is that the external field
may be coupled into the model through the form of a smooth source
current density, J* = (J£*) (say). In this case the energy density takes
the following form
g(d)’ A) :50 (d)) A)+A] J;x) (18)
and the corresponding GL equations are
A
DD+ 5 (1-19)) 9 =0,
: 2 (19)
O Fij + 5 (#[Df* o] — ¢* [Df¢]) = J5~.

In order to observe consistency in (19), we must impose the current
conservation law on J¢* :

8; Jx = 0. (20)

For n = 3, 4, the existence of solutions of (19) as minimizers of the GL
energy has been established in [Y1, Y2] under the condition (20) and

J¥e L*: (R"), j=1,.,m n=34
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An obvious reason for imposing the above condition is due to the Poincaré
type inequality (5) so that the GL energy is ensured to be bounded from
below. For the case n = 2, since (5) is no longer valid, we need some
new conditions on J* to solve (19). In this section, we assume in addition
to (20) that

/ |22 1n? |z] | J**|? dz < oo, (21)
R2

Rz; J*(z) =0 as |z = R — oo, i=12 (22)

THEOREM 4. — Assume that (20)-(22) hold. The GL equations (19) over
R? subject to the general source current J = (J]‘?") have a finite-energy
smooth solution (¢, A) in the Coulomb gauge, 3; A; = 0.

Proof. — Again the energy density (18) is not good enough to work on

and we have to use the modified energy Iy = | Zydx where Zy is as

defined in (11). Set I = Iy -+ /Aj J7* dz. Consider the problem

Inin = min {I(¢, A)|(¢, A) € T x H, Iy (¢, A) < o0}. (23)
Since for A € H,
2
L., ez e < Al
therefore the Schwarz inequality and (21) imply that A; J3* € L (R?).
We first show that I is invariant under the gauge transformation (2)
when w (r) = a1 21 + @z 22 is a linear function. In fact, we have already

observed the invariance of Iy. On the other hand, from (20) and the
divergence theorem, we have for A’ = A + Vw,

/ Aijxdxz/ (A — 05 w) I dz
BR BH

ex 1 ex
:/ A;Jj d.’v—ﬁ wz; J5* ds.
BR |z|:R
Thus, using (22) and letting R — oo, we see that
/ A; T dr = / A; J5 da. 24
R2 R>2

Namely, the invariance of I holds as well.

We next show that I, in (23) is finite. For given (¢, A) in the
admissible set of (23), we obtain as in Section Il a modified pair (¢', A)
so that ¢’ = ¢e'“, A’ = A 4 Vw, w is a linear function, and the average
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of A’ on B3 = {xr € R?||z| < 3} is zero. Using the Poincaré inequality
on B3 and Lemma 2, we have

/ 1A’ da:+/ %dz
lzl<3 le|>2 |2]? In” {z]

R2

On the other hand, there holds for any € > 0,

/ AI Jexd > (/ lA/|2d +/ IA/12 y )
. b T — & T T 51 57 7 AT
Rz 7 =<3 lz)>2 |71* In? ||

___ 5_1 (/ lJex[2 dr
|x]<3

+ / lz|? In? |z| | J&|? dx). (26)
|z|>2

Inserting (25) and (26) into (24) yields

I(¢,A)2CiIy(d, A) — Co, 27
where C7, Cy > 0 are constants so that Cy depends only on .J°*. In
particular, the finiteness of I;, follows.

Let {(¢™, A™)} be a minimizing sequence of (23). Our earlier discussion
on the invariance of the terms in the energy functional allows us to assume,
after a suitable gauge transformation, that A™ has zero average on Bs.
Hence A™ verifies (25). Consequently (27) implies that { A™} is a bounded
sequence in ‘H. So it follows by passing to a subsequence if necessary that
we may assume (16) for {(¢™, A™)}.

Given € > 0, let Ry > 2 be such that
/ |22 1n? || [T dz < &2, R > Ry.
R2-Bgr

Then the integral I (¢™, A™; R) = /(IO (¢m, A™) + A% J£*) dx over By
satisfies

I(¢". A% R) S I(¢" A" +evM, n=12,..,
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where

n|2
M:sup/ Ldm
|

n Jiais2 |22 |z]

which is finite according to (25) and (27). We can then duplicate the steps
in proving Theorem 3 to show that (¢, A) is a minimizer of (23) which
also solves the GL equations (19) because of (20). [

IV. ASYMPTOTIC BEHAVIOR AND FLUX QUANTIZATION

In this section, we assume that (¢, A) is a solution of (3) or (19) with
finite modified energy Iy (¢, A) < oo and in the Coulomb gauge. Using the
methods of [Y1,Y2], it is not hard to establish the following L*-estimates.

THEOREM 5. — Suppose in (3) ((19)) that the external field ik (J;x)
lies in the space W'? (R?) (L*(R?))(j, k = 1,2). Then D} D ¢ €
L*(R?), |Dff ¢l e WH2(R?) (4, k=1, 2) and 1 — |$|* € W2 (R?) for
any p > 1. Besides, |$|?> — 1 as |z| — oo and |¢| < 1 in R? or otherwise
|¢] = L. If, furthermore, Fi¥ € W»2(R?) (J7* € WH2(R?) (4, k =
1,2), then D ¢, 0; A, € W22 (R?) (4, k = 1, 2).

We skip the proof here.

From the well-known Sobolev embedding W*? (R?) — L? (R?) (Vp >
1) and the fact that functions in WP (R?)(p > 2) vanish at infinity,
we obtain

COROLLARY 6. — For Fif € W»? (R?) (J5* € WH2(R?)) (5, k=1, 2),
there hold

D} ¢ — 0, 9; Ay — 0 as |z| — oo, g k=12

We have shown in Section II (IIT) that (¢, A) can be obtained as a
minimizer of the problem (12) ((23)) which is a finite-energy smooth
solution of the GL equations (3) ((19)). In order to calculate the magnetic
flux carried by the solution, some minimal decay assumption for the external
field has to be made. The main reason for doing this is that decay estimates
of the quantities 1 — [¢|?, D#* ¢, and Fjj, can thus be established so that
undesired boundary terms will be eliminated in the integral of our flux
evaluation.

For this purpose, we impose the following power type decay properties
for the external field:

O (Fyy — Fip)|(or |J5¥]) £ Clz|™, (28)
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18; Ok (F5% — F5)|(or 185 JRX — 0k J3*)) < Cla| 77, (29)
where @, 3 > 0, 4, k = 1, 2, and |z] is large.

THEOREM 7. — Suppose Fir € WH2(R?) (J&* € WH2(RY)) (5 = 1, 2).
If Fi (J5*) decays according to (28), then asymptotically

IDfgl S Clz[®,  0S1—|9P S Clzf™?e,  j=1,2
If, in addition, F3y (J5*) satisfies (29), then

|Fix] £ Clz|™, y=min{2q, 8}, j k=12

Proof. — We shall only demonstrate the case when the external field is
the source current, Je*.

Set g; = D} ¢ and |g|* = g, g}. It is crucial to derive the decay estimate
for |g| first.

Let 7 be an arbitrary complex scalar function. By the definition of the
gauge-covariant derivatives, we easily verify the useful curvature identity

D;‘DkAw—DkAD;‘wz —i Fyp 1.

From this and the equations (19), we have after a lengthy calculation

A A
DADE g = ~5 (1= 6P)g; + 221 0 g,

A—1 * . s gex
+T¢2gj—21ijgk—1Jj @. (30)
Applying (30) in
V?gl* = 2D¢ g; (Di! 9;)* + 2Re {g} Di* D{ g;},
we find that

VAl 2 A+ 1= 1A= 1018 — A (1 = 161%) + 4| Fua]]) gl — 2|7 |g].

Since [¢| — 1, F12 — 0 as |z| — oo (see Corollary 6) and A > 0, the
above inequality has the reduction

Vil 2 Cilgl* = G2 1J™)*, |z > R, €29)

where C, Cy > 0 are constants and R > 0 is sufficiently large.

Annales de I'Institut Henri Poincaré - Analyse non linéaire



GINZBURG-LANDAU SOLUTIONS 529

Introduce the comparison function

o (x) = C3|z|722, |z| 2 R. (32)

Then V2o = 4a?|z|~%20 (Jz| > R). Inserting this equation and (28) (for
J*) into (31) yields

V(o -lg*) 40’ x| 20 — Ci|g* + Cp |z| 2
C
= (4042 |x["2 + —2> c—C, ]g]2
Cs

< (4a2 |2 + %) (c—1gP),  lal> R 3

where we have assumed that R and Cj are such that 4a? R=2 + Cy/C3 <
Cy. Obviously, for fixed R, we may choose C3 > 0 in (32) so large
that (o — |g]*)|jzj=r > 0. From this boundary condition, the property
o —lg|> — 0 as |z| — oo, (33), and the maximum principle, we see that
l9|> < o for |z| > R. Namely |g| = O (|z|~2).

Similarly, the asymptotic estimate of 1 — |¢|? follows from using the
above argument in the equation

V21 -9 = Agl* (1~ [4°) ~ 219/
while treating —2 |g|? as a decaying source term.
Now suppose (29) holds in addition. Differentiating (19) gives

i i .
V2 (O Aj) = 5 (95 9% —95 9x)+5 (¢ [Di 9;]—¢ [Di 951")+0k T3~ (34)

Thus, using (34) and the aforementioned curvature identity, it is seen that
Fi, = 0, Ay — 05 A satisfies the equation

V2 Fia = |¢]> Fiz +i(g} 92 — 91 63) + (01 J5* — 82 JT¥).
Thus

V2 FL, 2 2192 Fiy — 419 | Fia| — 2101 J5* — 85 J7*| [F1z]
2 Cy Ffy — Gy || %7, lz| > R,
where Cy, C, > 0 are constants, R is a large number, and v = min {2 ¢, 8}

with 3 being given in (29). Thus we can prove as before that F% <
Clz| 2.
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The proof of the theorem is complete. [

Concerning the total magnetic flux of the solution (¢, A), we have as
in [JT] the following statement.

THEOREM 8. — Assume the condition (28) where o > 1 and let H = F1,
denote the induced magnetic field. Then the total flux ® is quantized
according to the expression

= lim Hdxr=2xn N, (35)
R— oo jz|<R

where N is an integer which is recognized as the winding number of the
order parameter ¢ on the circle at infinity of the plane.

1
Proof. — Let Ry > 0 be such that |¢| > 3 for |z| > Ro (Theorem 5 or
7). Then the winding number N of ¢ at infinity obeys

27N = darg¢:-—i/ ding for any R > Ryg. (36)
jz]=R lz]=R
On the other hand, the divergence theorem and Theorem 7 imply that

/ Hdxz +1 / dln¢
lzi<R |o|=R

=<

< CR (7Y, R>Ro. (37

Inserting (36) into (37) and letting R — oo, we find & = 27 N as
expected. [

Thus, although the flux of the external field may take any prescribed
value, the excited flux can only assume quantized values which is a typical
phenomenon in superconductivity theory.

V. MINIMIZATION OF ENERGY

In Sects. II and III, we proved the existence of finite-energy smooth
solutions of the GL system (3) or (19) in R? by obtaining minimizers of
the problem (12) or (23) where the energy functional I takes a modified form
and is not physical. For example, the invariance under the general gauge
symmetry (2) is no longer valid. Since the GL energy E is actually given
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in (10) or (18), it will be important to find solutions of (3) or (19) so that
they also minimize the GL energy. Note that, in general, the GL equations
may have multiple solutions and the physical states are represented by
energy minimizers. The purpose of this section is to get solutions of the
GL equations that minimize the energy in a suitable admissible class.

Our starting point now is to find a comparison of the GL energy E and
the modified energy I defined in (12) or (23). It appears that the space
H used in Sects. II and III is not proper for such a comparison and it is
necessary to consider a subspace of H, which is restrictive enough so that
we can compare I and I and, at the same time, large enough so that the
GL equations can be fulfilled by energy minimizers of E. The following
study will follow this line.

Let C C B (see Sect. II) be the set of vector fields in R? satisfying the
condition that, for each A € C, there is a constant vector A° € R2 such
that A — A is of compact support. The closure of C in H is denoted by
H1. A useful property of H; is that there holds the identity

/ (8] Ak) (8] Ak)dl‘: / {(81 Ag —82 A1)2 +(8J A]-)z}dx,
R*? R2

(38)
A= (AJ) e H.

In fact, it is straightforward to verify (38) in C. However, since both
sides of (38) are continuous with respect to the norm of H, we see that
(38) is true in H; in general.

We are now ready to obtain a solution pair of the equations (3) or (19)
as a GL energy minimizer in the following sense.

THEOREM 9. — Suppose that (4) or (20)-(22) hold. Then the GL equations
(3) or (19) over R? have a smooth solution (¢, A) which minimizes the

GL energy I = / E dx among all field configurations in the admissible

set J x Hi and in the global Coulomb gauge. Here £ is as defined in
(10) or (18).

Proof. — We can proceed to show as in Sect. II or III that the optimization
problem (12) or (23), with ‘H replaced by H;, has a solution (¢, A), that

this solution satisfies the GL equations (3) or (19), and that 9, 21]- =0 in
R?. We claim that

E($, A) = min {E (¢, A)|(¢, A) € T x Hy, 8; A; =0}, (39)
In fact, the identity (38) says that I (¢, A) = E (¢, A) for (¢, A) €

T xHy with &, A; = 0. Thus E (4, A) = (g, A) <1 (6, A) = E (¢, A)
for (¢, A) € J x Hy and 9; A; = 0 as expected. O
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Note. Another technical reason for the choice of H; (or C) is that the
space is invariant under translations by constant vectors. This property
is crucial because it allows us to make gauge transformations (2) in the
modified energy I in which w is a linear function of the variables. The
discussion in Sects. II and III showed the importance of such a feature in
extracting a locally weakly convergent minimizing sequence.

VI. THE GENERAL SCALAR POTENTIAL CASE

We have assumed in our Lagrangian density (1) that the potential function

of the order parameter ¢ takes the form V (|¢]) = 3 (|¢]2 — 1). In fact

our method in the existence proofs applies to the more general situation
that the non-negative function V (s) (s 2 0) satisfies

SP_CI§V(8)§Sq+CQ7 P-,Q>1-,
where Oy, Co = 0 are constants. Part of the interest in such an

extension is to accommodate in the family of finite-energy solutions
the normal state ¢ = 0, Fj, = Fje,f For example, we may choose

A
Vgl = 3 [#]? (1> — 1)? as in the self-dual Chern-Simons-Higgs theory
[HKP, JW, SY]. In this case the generalized GL equations in R? are
A A
DEDE o+ 5187 (1— 191 ¢ — = (1~ 829 =0,

i

S (@[Df ¢ — ¢+ [DF g]) = I3~
Here we consider only the source current case. We can prove as in Sect. V,
for example, the existence of a smooth solution of the equations which is
also a GL energy minimizer among all field configurations in the Coulomb
gauge. In this section, we restrict our attention on the study of the asymptotic

behavior of a finite-energy solution. In view of (40), a lengthy calculation
shows that g; = D2 ¢ satisfies

(40)
Ok Frj +

‘ . ) A 1 9
DE D gy = 056~ 2i By e+ (5 + [5-2/\} o+ 3061 ) g,

+3 B - 2A+1)¢%g;. @)

From (41) we can prove that D D2 ¢ € L? (R?), |[D# 4| € W2 (R?)
if (¢, A) is of finite energy and J5* € L? (R?). Moreover, since 9 A;
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satisfies (34), we obtain Oy Aj, Dff ¢ € W2 (R?) if J&* € WH2(R2).
Therefore the simple inequality
19; (gl llo* — IDI = [D5 ¢l [16° — 1] + 214> | D5 ¢

and the bound |¢| < 1 imply that |¢| (J¢|>—1) € WL:? (R?) for any p > 1.
As a consequence (see Sect. IV), we can state the following asymptotic
behavior of ¢, D ¢, Fj.

THEOREM 10. — Suppose J5* € W2 (R*) forj = 1,2 and (¢, A) is a
finite-energy solution of (40) in the Coulomb gauge. Then

0 [¢|(1—[¢) =0, Di'¢—0, &A;—0 asl|z|— .

Furthermore, if J£* Sulfills (28)-(29), then the solutions satisfying |¢| = 1
at infinity have the decay properties described in Theorem 7. On the other
hand, the solutions satisfying |¢| = 0 at infinity obey the exponential decay

prOperty
|6 (@) = 0 (e VEIl)  for large |al. “2)
In this situation | D3 ¢| decays as in the |¢p| — 1 case.

Proof. — It suffices to elaborate on the second part of the statement. As
in Sect. IV, (41) gives us the inequality

V2laf 2 (5 + 11— 4+ 5 Mol b

—[3181* = 22+ Dllg[* 1g]* — 4l Fr2lg| - 217|g]. (43)

Since either |¢| — O or |¢| — 1 as |z| — oo, the inequality (43) always
leads to (31). Thus |g| = O (|z]=*).
Assume first that |¢] — 1 as |z] — co. Then

VZ(1 - 14%) = —2Re {¢" Di D! 6} — 2|9/
1
= (161 = 31 1= 16) (1= 6% — 2o
Because the coefficient of 1 — |¢|? on the right-hand side of above equation

becomes positive when |z| is large, we see that 1 — |¢|? decays like |g|?
as in Sect. IV.
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Assume next that [¢| — 0 as |z] — oo. Then
V?|$> = 2Re {¢* D{ D ¢} + 2lg)*

2 18Py (- 3l

v

As |z| — oo, the coefficient of |$|? on the right-hand side above goes to
A
5 Hence it is standard that |¢ (z)|? = O (e_\/gl’”') for large |z|. O

Note. The accurate statement of (42) is that for any 0 < ¢ < 1, there
is C'(g) > 0, so that

6(2)]2 < C(e)e ViUl 4 R2

It is interesting to see that the decay rate of |¢|? in this case is independent
of the property of the source term at infinity. This reveals a difference of
solutions which are asymptotically the symmetric vacuum, characterized by
|¢| = 0, from the solutions which are asymptotically asymmetric vacua,
characterized by [¢| = 1. The former are called in the Chern-Simons model
case non-topological solutions [JLW] in contrast to the latter, topological
solutions, for which the integer N given in the flux formula (35) in Sect. IV
is a topological invariant.

VII. A CONSTRAINED MINIMIZATION PROBLEM

We now go back to the classical case that the bare energy density & is as
defined in (10) so that a finite-energy solution goes to the asymmetric vacua
at infinity. From the discussion in Sect. IV, we see that such a solution
carries a quantized magnetic flux given in (35). The integer IV is unknown
to us. In particular, it is not clear whether every integer /N can be realized
by the flux of a finite-energy solution according to the expression (35).
Thus we are led to the following question.

Given an integer N, can we find a solution of the problem

2
(or A; Jf")} dz (44)

Minimize E (¢, A) = /

1
{50 (6, A) — 5 Fye FJ¥
R2

subject to Fiodr =27 N?
RZ
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There are only available results when the external field FJ or J5*
is absent. The problem is best understood in the self-dual case [Bo] when
A = 1 due to the work in [T1, T2, JT]: For any N, (44) has a 2 N-parameter
family of solutions with the parameters characterizing the locations of the
zeros of the scalar field ¢. These solutions represent N non-interacting
vortices. When A # 1, it is shown in [P, BC] that, for each N, the energy
E has a radially symmetric critical point satisfying the constraint in (44).
However, it is not clear as to whether these radial solutions are absolute
energy minimizers in the constraint class.
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