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ABSTRACT. - One of the results proved in the paper deals with a

characterization of the families {K (03A9) : SZ bounded open set} of subsets
of ( ~n ) (p E [1, -~-oo~ ) whose elements can be described as

K (H) = ~u E (~’~) : Du (x) E C for a.e. x in C being
a closed convex subset of 

Characterizations similar to the above mentioned but for families of
subsets of BVloc (R") and (R") are also proved.
These results are deduced by a general characterization theorem for

families of subsets of a Hausdorff locally convex topological vector

subspace of 
An application to the problem of the homogenization of the elastic-plastic

torsion of a cylindrical bar is given.

Key words: Differential inclusions, representation of families of sets.

RESUME. - Un des resultats demontres dans notre travail conceme une
caracterisation des familles ensemble ouvert borne} des sous-
ensembles de (R") (p e [1, dont les elements peuvent etre
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554 R. DE ARCANGELIS AND A. CORBO ESPOSITO

decrits comme K (SZ) _ {i6 e (I~n) : Du (x) E C pour presque
chaque x en C etant un sous-ensemble convexe ferme de ~n.
On prouve aussi des caracterisations similaires pour des familles de

sous-ensembles de (R") et de 
Nos resultats sont derives par un theoreme general de caracterisation pour

des familles de sous-ensembles d’un sous-espace vectoriel topologique de
Hausdorff localement convexe de ( ~n ) .
On donne une application pour le probleme d’homogeneisation de la

torsion elastoplastique d’une barre cylindrique.

0. INTRODUCTION

Some problems in Calculus of Variations, for example the problem
of the elastic-plastic torsion of a cylindrical bar (cf [38], [39], [46],
[53], [ld] -’. [12]) lead to the study of variational inequalities or to the
minimization of integral functionals defined on sets of functions described
by constraints on the gradient. Such sets are of the following type
{u e IDu (x)1  cp (x) for a.e. x in cp being a

nonnegative function, S~ an open set and p in [1, +oo].
The study of the homogenization of the elastic-plastic torsion of a

cylindrical bar (cf [2], [5], [ 1 S] ’-. [21 ], [26], [30], [40]) analyzes, for every
regular bounded open set SZ, the asymptotic behaviour of sequences of
minimum problems for variational functionals defined on convex function
sets of the type {u E (IRn) : IDu (x)1  cp (hx) for a.e. x in ~,

being a nonnegative function also 1-periodic in each variable.

According to a conjecture due to A. Bensoussan, J. L. Lions and

G. Papanicolau (cf [5]), such asymptotic behaviour is again described by a
minimum problem for a variational functional defined on a set of the type

C being a suitable convex and closed subset of (~n.
In this context some abstract characterizations of the families {K (n) : f2

bounded open set} of subsets of whose elements can be described

as in (0.1) at least for every regular bounded open set SZ seem to be

interesting.
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555A CHARACTERIZATION OF FAMILIES...

We remark that characterization results similar to the ones proved in the

present paper, but relative to families of subsets of Sobolev spaces of the
e (R") : : u (x) > rljJ (x) for a.e. x in SZ~ : Q bounded

open set} have been proved in [2] and [3].
The characterization problem considered in the present paper can also be

framed in the context of variational convergence theory (cf. [2] and [32] for a

general exposition on the subject), in particular in the part of the theory that
deals with integral representation results in Calculus of Variations (cf. [2],
[7] -’. [9], [13], [14], [22], [24], [27], [28], [32], [36], [39], [43], [51]).
[ndeed our results can also be read as furnishing characterizations of the
functionals which can be described by means of variational integrals of the

type Du where for every subset E of we have denoted

by Q E the function defined by |E (x) = 0 if x E E and l E (x) == +0oo
if x E R"BE.

Nevertheless the consideration of extended real valued integrands seems
to require techniques at least partially different from those utilized in the
integral representation theory in Calculus of Variations.

It is straight away verified that, for every bounded open set SZ and every
p in [1, sets of the type in (0.1) verify the following simple linearity
properties

K (n) convex. (0.5)
Moreover, again for every bounded open set H, it is clear that the

following locality property holds

ana, oy me cioseaness or u, it loiiows tnat

.. -

About the dependence ot jfB on the open set, It oviously results that

K ( SZ 2 ) C K for every couple of bounded open sets SZ 2
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556 R. DE ARCANGELIS AND A. CORBO ESPOSITO

ior every couple 01 ouunueu open sets 03A91, a c2; 

tor every couple of bounded open sets 03A92

with 03A91 C 03A92 and meas (03A92B03A91) = 0. (0.10)

On the other side, it is clear that, if z e C, then the linear function ~cz,
defined by uz (x) = (z, x~ for every x in verifies

uz e K (0) for every bounded open set 0, (0.11 )

hence the set C turns out to be given by

C = ~ z E uz e K ( SZ ) for every bounded open set SZ ~ . (0.12)

Then in order to characterize, at least for p in [1, [, the families of
subsets of (IRn) than can be expressed as in (0.1), we start with a
family {K (S~) : SZ bounded open set} of subsets of verifying,
for every bounded open set SZ, conditions (0.2) .’- (0.10).

Later we define the set C by the formula (0.12) by using the above
introduced family {K (H) : SZ bounded open set} and prove that C is
closed and convex.

Finally we are able to prove that

tor every bounded open set mtn Lipschitz oounaary. 

The same characterization results holds also when p = +oo provided
that condition (0.7) is replaced by the following

Moreover we are able to obtain results ot the same klnd also tor families

of subsets of function spaces wider that 

For example we can prove that if {K (fl) : S~ bounded open set}
is a family of subsets of BVloc verifying conditions (0.2) -.’ (0.5},
(0.8) ’-. (o.10) and the following ones that replace (0.6) and (0.7)
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then

for every bounded open set S2 with Lipschitz boundary, (0.17)
the set C being again given by (0.12).

Conversely, if C is a closed convex subset of R~ and if for every
bounded open set SZ K (S2) is given by (0.17), then the family ~K (S2) :
n bounded open set} verifies conditions (0.2)-(0.5), (0.8) = (0.10), (0.15)
and (0.16).

Furthermore, if {K (H) : S2 bounded open set} is a family of subsets
of with p e [1, +oo], verifying conditions (0.2) : (0.5),
(0.8) = (0.10) and the following ones that replace (0.6) and (0.7).

then

tor every bounded open set 03A9 with Lipschitz boundary, 

the set C being again given by (0.12).
Conversely, if C is a closed convex subset of and if for every

bounded open set 0 K ( S~ ) is given by (0.20), then the family ~ ~ (0) : :
abounded open set} verifies conditions (0.2) ’-. (0.5), (0.8) -’. (0.10), (0.18)
and (0.19).

Eventually, to characterize the families {K (03A9) : n bounded open set}
as in (0.1) with C not only closed and convex but also with nonempty
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intenor it seems more natural to drop condition and use a condition

of topological richness, i. e.

K C1 has interior points in the C1 topology

for some bounded open set (0.21)

The characterization results for families of subsets of are

contained in Theorem 10.3, those for in Theorem 10.2 and

those for Lfoc in Theorem 10.1. In Theorem 10.4 a characterization

result for families in C1 is also proved.
The above results are deduced as particular cases by general

characterization theorems for families of subsets of a Hausdorff locally
convex topological vector subspace of (theorems 1.1 and 1.2).
An application of some of the above results to the problem of the

homogenization of the elastic-plastic torsion of a cylindrical bar is also

given in section 11.

In conclusion we observe that in the present paper only the case in which
the convex set C is a fixed one is treated. Much more delicate seems to be

the study of the characterization of the families of function sets in which
the constraint C can depend on the x variable.

1. MAIN RESULTS

In the present section we describe the main results of this paper and give
a brief account of the leading ideas of their proofs.

Let us first fix some notations.

For every function u y in Rn and t > 0 we denote by T [y] u
the function defined by

We also set = (I~"~, C~’~ = (fl~"~ and, tor every bounded

open set n, denote by W I ~ °° (0) the strong topology of W 1 a °° ( ~ ) and
by C~ ( S~ ) the strong one of C~ (n).

Finally for every Lebesgue measurable subset E of R~ we denote by
~ its measure.

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Let U be a vector subspace of verifying
- TT ~ .. ~ - T T

and let us consider, tor every bounded open set S ~, a topology T ( S Z ) on
U satisfying

(U, T (H)) is a Hausdforff locally convex topological vector space; (1.7)

n1 C SZ2 ~ T less fine than T (SZ2). (1.9)

Moreover we also assume that

for every x e (~ n , v E U and every bounded open set S2 we have

i) the function y E T[y]v E U is continuous from IRn endowed
with the usual topology to U endowed with the T ( SZ ) one,

ii) the function u e U ~ T[x]u E U is continuous from U endowed
with the T (Q) topology to U endowed with the T (n-x) one, (1.10)

that

for every u E U and every bounded open set S~ star-shaped with

respect to 0 the function t ~ ]0, +~[ ~ Otu e U

is continuous in T (SZ) (1.11)

and that, if for every u E U and ~ > denotes the regularization of u,

for every u E U and every bounded open set H

Vol. 11, nO 5-1994.
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satisfying the following conditions

and

ror every couple or oounaea open sets >

ror every couple or bounded open sets 

with 03A91 C SZ2 and = 0. (1.21)

Furthermore let us defined the set C by

C = {z ~ Rn : uz E K (U, for every bounded open set 03A9} (1.22)

and, for every bounded open set SZ, the set Kc (U, S~) by

r ,

The following characterization result holds.

- Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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THEOREM 1. Z . - Let U be a vector subs pace of verifying ( 1.3) .’- ( 1.6)
and let, for every bounded open set S~, T (S2) be a topology on U satisfying
( 1.7) -.’ ( 1. I 2).
For every bounded open set SZ let K (U, SZ) be a subset of U verifying

( 1.13) ’-. ( 1.21 ), let C be defined by ( 1.22) and KC ( U, S~) by ( 1.23).
Then C is closed, convex and

K (U, SZ) _ .KC (U, SL) for every bounded open set S~ with Lipschitz

boundary such that (U, T tS~)) is sequentially complete.
( 1.24)

Conversely, given a closed convex subset C of ~’~ it turns out

that conditions (1.13) ’-. (1.21) are satisfied by the family {K ( U, SZ ) :
~2 bounded open set~ whose elements are defined for every bounded open
set 03A9 by K (U, 03A9) = KC (U, SZ).
A different version of Theorem 1.1 is given by the following result in

which conditions ( 1.C), ( 1.8) (i) and ( 1.21 ) are replaced respectively by

for every bounded open set SZ T (SZ) is less fine than C1 (SZ) on C~ (1.26)

and

K ( U, Ho) n C1 has nonempty interior in the C 1 (no)
topology for some bounded open set no. (1.27)

THEOREM 1.2. - Let U be a vector subspace of verifying ( 1.3) ’-. ( 1.5),
(1.25) and let, for every bounded open set Q, T (SZ) be a topology on Usatisfying (1.7), (1.8) (ii), ( 1.9) ’-. ( 1.12) and ( 1.26). ~ ~ ~9/~y 9~ ~7
For every bounded open set SZ let K (U, SZ) be a subset of U verifying

(1.13) .’- (1.20) and (1.27), let C be defined by (1.22) and Kc ( U, SZ) by
(1.23).
Then C is closed, convex, has nonempty interior and

K ( U~ ~ ) - C U~ ~ )
for every bounded open set S~ with Lipschitz

boundary such that (U, T (SZ)) is sequentially complete. (1.28)
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Conversely, given a closed convex _subset C of ~’~ with nonempty interior
it turns out that conditions { 1.13) -’. ( 1.20) and ( 1.27) are satisfied by the
family ~K (U, S2) : SZ bounded open set~ whose elements are defined for
every bounded open set SZ by K ( U, S~ ) = Kc ( U, S~ ) .
Theorems 1.1 and 1.2 will be deduced in some steps according to the

following plan.
In sections 2 and 3 we fix some notations, recall some definitions and

the related properties and prove some preliminary results.
In sections 4 and 5, given a closed convex subset C of we study

the properties of the sets in (1.23).
In section 6 we prove a general result yielding sufficient conditions under

which K ( U, 0) = n K ( U, A) (this result plays the same crucial role of

the inner regularity ones in the integral representation theory (cf [14], [35]).
Section 7 is devoted to the proof of the properties of the set C in (1.22).
In section 8 we prove representation results for K ( U, SZ ) n C~ first under

the assumptions of Theorem 1.1 and then under those of Theorem 1.2.
The main ideas to achieve these results are a "blow up" argument and
an approximation procedure of continuously differentiable functions by
piecewise affine functions.

In section 9 theorems 1.1 and 1.2 are proved by using an approximation
procedure and a representation result for the regularization of a function.

In section 10 we specialize theorems 1.1 and 1.2 to the case of the most
common function spaces in mathematical analysis and in section 11 we
give an application of the results obtained.

2. GENERAL NOTATIONS

Let Q be a bounded open set. We denote by W 1 ? °° (0) the set of the
functions in L°° (Q) having distributional partial derivatives in L°° 

W 1 ~ °° (0) is naturally endowed with the topology induced by the norm
(~) - (0) + II (~).

Let us now observe that the map u e W1~ °° (SZ) -~ e

( L°° ( ~ ) ) n+’- allows us to identify W ~ ~ °° (0) with a closed subspace of
(L°~ (~))n+1, hence, being the dual space of (L1 
we define the °° ( SZ ) topology ( w * -W ~ ~ °° ( SZ ) ) as the natural
relative topology generated by the (S~))’~+1 one.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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In particular, given a generalized sequence {u03BB}03BB~ and u in W1,~ ( SZ )
it turns out converges to ~c in w ~ -yV 1 ~ °° (Q) if and only if

For every Borel subset B of R" we denote by M (B) the set of the
regular, countably additive set functions defined on the Borel subset of B
and with finite total variation on B. For every p e .M (B) we denote by

the total variation of M.

Let n be a bounded open set of Rn and let  E M (S2), then, being | |
a regular measure (cf [37] III Lemma 4.7 and III Lemma 5.12), by Riesz
representation theorem (cf [37] IV Theorem 6.3) we have

Let us now observe that

hence by (2.1) and (2.2) we obtain

for every bounded open set in .M (SZ). (2.3)
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ror every bounded open set 03A9 we denote by tne space or tne

functions u in G‘° ( ~ ) with u = 0 on endowed with the ~’° ( ~2 ) topology.
We recall the following result (cf Theorem 6.19 in [49]).

PROPOSITION 2.1. - Let SZ be a bounded open set, then the spaces (Co (~2) ) *
and .I~ (0) are isomorphic.
By BV (H) we denote the set of the functions in L1 (0) having

distributional partial derivatives in M ~SZ), BV (0) is naturally endowed

with the topology induced by the (Q) + ~ 
where k Du ( denotes the total variation of the vector measure Du on

Q and is given by

by Proposition 2.1 (./~’t the dual space of ( Co ( SZ ) ) n+ 1, we define
the weak*-BV ( S2 ) topology (w*-BV (03A9)) as the natural relative topology
of BV (Q) generated by the (w*-M one.

In particular, given a generalized sequence {u03BB}03BB~ and u in BV (0) it

turns out converges to u in w*-BV (0) if and only if

r ~.-, , Ti

For a wide exposition about functions we refer to [41], here we only
recall that, for every bounded open set S~, BV (~) compactly embeds in
L1loc (SZ), that BV (SZ) endowed with its w*-BV (SZ) topology is sequentially
complete and that each function in BV (S~) can be extended to a function
in BV ( ~$’z ) provided has Lipschitz boundary.
By we denote the set of functions on (~n that belong to BV (.4)

for every bounded open set A of 
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Analogously for every p E [1, we set = and

Lploc = Lploc (Rn).
For every open set 03A9 and p in [1, we denote by V ( SZ ) , w - V 

respectively the strong and the weak topology of I~’ ( SZ ) , the

strong topology of ( S2 ) and by C° ( SZ ) the usual strong topology
on ~’° 

Given an open set n and a function u on 03A9 we denote by osc u the
oscillation of u on SZ, i.e. the value sup |u (x) - u ( y)’ .

x, T/6~

Given a topological space (U, T) and a subset X of U, by the symbol
(U, T) - cl (X) we mean the closure of X in U i.e. the set of the points
u in U for which there exists a generalized sequence {u03BB}03BB~ ~ X such
that converges to u.

Given a vector space V and a subset S of V we denote by conv (,5’)
the convex envelope of S, i.e. the set of the finite convex combinations

of points of S.

Moreover, given a convex subset C of ~’~ with 0 E C, we denote by
~ (C) the vector space generated by C, that is the set of the finite linear
combinations of the elements of C; obviously £ (C) turns out to be the
smallest vector subspace of IRn containing C.
Given a subset E of we denote by xE the characteristic function

of E defined by xE (x) = 1 if x E E and xE (x) = 0 if x g E.
Let us recall that a polyhedron is a finite intersection of half spaces.
A function u defined on Rn is said to be piecewise affine on if it

is continuous and can be expressed as

where zl , ... , E s ~ , ... , sa.,.L E I~ and P1, ... , Pm are pairwise
m

disjoint polyhedrons of ~’~ with nonempty interiors such that U Pj 
j’=i

We now recall the concept of integral of a function taking values in a
Hausdorff locally convex topological vector space (cf. [48]).

Let (U, T) be a Hausdorff locally convex topological vector space and
be a family of seminorms generating the topology T of U.

Let E be a Lebesgue measurable subset of (~n and let f be a function
from E to U.

DEFINITION 2.2. - The function f is said to be T-integrable on E if there
exists u E U such that for every r~ > 0 and a E there exists a partition

Vol. 11, n° 5-1994.
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= of E into measurable sets such that

r B

The vector u is the value of the integral of f on E and is denoted by

/~ f (v) dv.
By Definition 2.2 it is obvious that if f is T-integrable on E and if a is

another topology on U less fine than T, then f is also a-integrable on E.
We recall the following result about integrals of vector valued functions

(cf Corollary 5.2 in [48]).

THEOREM 2.3. - Let f : E - U be T-integrable on E and let L E U*.
._ _. _ /’ ._ _ ... _

Then L, f~ is Lebesgue summable on E ana

’ r B 
’

condition.

PROPOSITION 2.4. - Let E be a Lebesgue measurable subset of let

(U, T) be a sequentially complete Hausdorff locally convex topological
vector space and let f : U be continuous with compact support.

Then f is T-integrable on E.

Proof - Let us first observe that, being f continuous and spt (f) compact,
f is uniformly continuous in the following way

for every ~ > 0, a E A there exists 8 > 0
___ _t_ ~t_ _ ~ ~ _ _I ~ c . /*/BB ~. in i~

For every h e N let 7Zh be a partition of into half open

cubes with sidelenght 1 h and let, for every j ~ N, Eh = E n QF.
Since f has compact support it is not restrictive to assume that E is

bounded, hence for every h e N there exists 77~ e N such that E~ 7~ 0
if and only if j E {I,..., 
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For every j E ~ l, ... , let ~~ E E~ and define ~c~ _ ~ f 
j=i

We prove that is a Cauchy sequence.
To this aim let ~ > 0, a E A and let 03B4 be given by (2.6). Let v E N be

such that 2014  -2014= then for every h, k > v it results

Let us now observe that if Ef n then ]  8, hence
by (2.6) we deduce

hence {uh}h is a Cauchy sequence.
Since (U, T) is sequentially complete there exists u E U such that

and obviously u = E f (y) dy..

3. PRELIMINARY RESULTS

For every r > 0 we set

Let cx be a symmetric mollifier, i.e. a nonnegative function in G’°° ( ~ " )
such that spt (a) C B1, Rn 03B1 = 1 and a (-x) = a (x) for every x in Rn.

Vol. 11, n° 5-1994.
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ror every ~ ~ u let us set a~ ~x) _ ~ ~° cx ~~°, ana denne,

for every u in the regularization u~ of u by

next result yields a description or tne regularization or a runction m

terms of the integral of its translated.

PROPOSITION 3.1. - Let S~ be an open subset of and let a be the

mollifier appearing in (3.2).
Then for every u E > 0, the function cx (.) T [~.] u is L1 (SZ)-

integrable on and

L,et us onserve that me space endowed WILD the L- ( 03A9) topology
is a Banach space, then by Proposition 2.4 applied with (U, T) equal to

L1 (S~) ) the integral r ~x (~) T d~ exists and is in ~n
For every v* in L°° (03A9) the functional v E L1loc ~ v* (x) v (x) dx

is linear and continuous on L1 (S~)), hence by Theorem 2.3 applied
with (U, T) equal to L~ (SZ)) we deduce

fO /fO v

By (3.4) equality (3.3) soon follows. []

About the left hand side of (3.3) the following result holds.

PROPOSITION 3.2. - Let {~, T) be a Hausdorff locally convex topological
vector subspace of verifying { 1.4).

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Let a be the mollifier appearing in (3.2), then if for every u E > 0

the function a (.) T ~~~~ z.c is T-integrable on ~~ it results

r

Proof. - Let u e > 0. Let us denote by H~u the right hand side
of (3.5).

It is well known that, due to separation theorems for closed convex sets,
there exists a family .~’,~ _ ~ ( v~ , a E ,S’ ~ C U* x i~ such that

Let y E Bl, then obviously by (3.6) we deduce

therefore by multiplying both sides of (3.7) by ~x (~/) and then integrating
over we obtain

n

By (3.8) and Theorem 2.3 we infer

for every a 

hence by (3.9) and (3.6) the thesis follows..
For every bounded open set SZ of ~n and E > 0 let us define the sets

f~ and S~~ as

The following result holds.

PROPOSITION 3.3. - Let SZ be an open set of ~’ be a convex set of (~~n
and let 03C8 be a function in such that

Vol. 11, n° 5-1994.
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Then for every E > U it results

I r ~ _ ~r .-

families C R" and such that

By (3.11) and (3.13) it follows that

therefore by (3.14) it soon tollows that

/ ~ B

lor every a and every x in 03A9~. j3 . i J )

Let us now prove the following result.

PROPOSITION 3.4. - Let G be a convex subset of such that aG ~ ~
0

and Br C G for some r > 0.

Let t e ]0, 1[, then

J_ _1 /~!-Y ~l~’IB B ,._ /1 ~LB /~ ~ L1 B

0
, . , .., ~ .. ---.

In conclusion by (3.18) it follows that the distance of every point ty of
tG from 8G is greater than or equal to r ( 1 - t), hence (3.16) follows..

For every n x n matrix M we denote by if it exists, the inverse
of M and by MT the transpose of M.
Given two bounded open sets 03A92, we say that 03A91 ~ 03A92 if 
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We now select a particular class of star-shaped open sets.

DEFINITION 3.5. - We say that an open set S~ is strongly star-shaped if
it is star-shaped with respect to some point xo in SZ and if for every x
in SZ the half open line segment joining xo to x, and not containing x,
is contained in Q.

Let SZ be a strongly star-shaped bounded open set and let xo be given
by Definition 3.5, then it is obvious that for every t > 0 the open
set xo + t (S2 - ~o) is still strongly star-shaped and that, if t > l,
S~ C xo + t ( SZ _ xo)..

This implies

Let SZ be an open set of we say that S~ has Lipschitz boundary if o~SZ
is locally the graph of a Lipschitz continuous function.
The following result holds for open sets with Lipschitz boundary

(see [39], [24]).

PROPOSITION 3.6. - Let S~ be a bounded open set with Lipschitz boundary,
then there exists a finite open covering ~SZ~ ~~-1,".,s of SZ such that for every
j = 1, ..., s SZ~ n SZ is strongly star-shaped with Lipschitz boundary.

4. SOME AUXILIARY RESULTS

In the present section, given a vector subspace U of and a subset

C of we study, for every bounded open set Q, some properties of
the sets in (1.23).
To this aim it is useful to consider first some particular cases.
We need to prove some lemmas.

LEMMA 4.1. - Let S~ be a bounded open set and let C be a closed and

convex subset of 
Let u ~ then

r
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Proof - Let u verify the left hand side of (4.1 ), then we have

P r

By (4.2) we easily deduce that if x is a Lebesgue point tor Du then
Du (z) G C, hence one implication follows.

Let us now prove the opposite implication.
Since C is closed and convex there exist two families C fR~

and C !R such that

Let us assume that Du (x) E C tor in S Z and let c,o E (03A9 ) be

such that cp > 0 and 03A9 03C6 = l, then by (4.3) we get

By integrating both sides of (4.4) over Q and by applying the divergence
theorem we obtain

hence by (4.5) and (4.3) the implication follows..

LEMMA 4.2. - Let SZ be a bounded open set and let C be a closed and
convex subset of 

Let u E then

Proof - Let u verify the left hand side of (4.6); let A be an open
subset of 03A9 and let C C10 (A) be such that 0   and

~h (x) ~ (x) for every x in A.
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Since u E BYloc we have
r r

therefore by (4.7) and the closedness of L’ we deduce

By (4.8) we get the direct implication in (4.6).
In order to prove the reverse one let u verify the right hand side of (4.6),

then by using the closedness of C, it is easy to prove that

Let 03C6 be in C10 (H) be such that /? > 0, / /? = 1.
For every v ~ N let Rv be a partition of Rn into half open cubes with

sidelength 1 v and let Qvj be such cubes.

Since by (4.9), for every j E sv, |Qvj ~ 03A9| I Du E C, by the

convexity of C we have 
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By (4.10), the closedness of C, once observed that ~ cp3 
uniformly on SZ as v --~ oo, we deduce that

Now let us define for every bounded open set 03A9 and p E [1, +~]

and

1 nen ay tne previous iemmas tne following result holds.

PROPOSITION 4.3. - Let C be a closed convex subset of For every
bounded open set S~ let KC (C1, SZ), I~C SZ), p E ~1, -+-oo~, and
Kc SZ) be defined by (1.23) respectively with U = Cl, U = 
p E ~1, ~-oo~, and U = moreover let p E ~l, 
and KC ( SZ ) be defined by {4.12), {4.13 ) and (3 .14) .

Then

for every bounded open set 03A9, (4.15)

I~~ SZ) = (S~) for every bounded open set S~, (4.16)

K~ S~) = I~c (SZ) for every bounded open set S2. (4.17)

Proof - The proof immediately follows by Lemma 4.1 and
Lemma4.2..
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We can now study the properties of Kc (U, .).

PROPOSITION 4.4. - Let U be a vector subs pace of verifying
(1.3) ’-. (1.5), let C be a subset of (~n and let, for every bounded open
set SZ, Kc ( U, SZ ) be given by ( 1. 23 ) .

Then for every bounded open set SZ it results

Moreover for every bounded open set SZ we have

and

for every couple of bounded open sets SZ 1, S‘L 2 ;

for every couple of bounded open sets 03A91, S22 with 03A91 C 03A92 and
= o.

Proof. - The proof of (4.18) ’-. (4.20) easily follows by ( 1.3) .’- { 1.5),
moreover (4.21) ’.- (4.23) are straight away verified.
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In order to prove (4.24) let u E U and Kc ( U, 0) be such
converges to u in (0) topology, then for every

rp E CJ (0) with ~ > 0, 1 rp = 1, by the closedness of C, it follows that
f - _ _ /’ - ~. . - _ _.

We now prove (4.25).
Let 03A91 and 03A92 be two bounded open sets, let u E Kc(U, 03A92)

and let p E C’o (Qi with 03C6 ~ 0, = 1.

By using the finite partition of unity lemma (cf [37] XIV, Lemma 2.4)
let ~pl E Cl (Qi), CJ (SZ2) be such that

", ~. n ,., ~ n ,., ~ ,~ - 1 ~~. ~...~- t,..v ~.~ ~,Q~

i3y (4.L~) we get

and we have

r

Let us now set ~i and t2 = / then it is clear that
Qi J’Q2

1 /- 1

and that
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therefore, since

ana Ine convexity of cJ we ueuuce that

r

By (4.34) inclusion (4.25) follows.
In conclusion we prove (4.26).
Let SZ2 be two bounded open sets with 03A91 C 03A92 and |03A92B03A91| = 0

and let Kc ( ~I, n 

Then by Lemma 4.1 we have

Since = 0, by (4.35) we get
ir*~ ~ . ~,. ,.

hence, by (4.~6) and again Lemma 4.1, we obtain that u E Kc (U, l 12 ),
therefore (4.26) holds..

5. A REPRESENTATION RESULT

Let C be a closed convex subset of IRn and let, for every bounded open
set H, KC ( SZ ) be defined by (4.12).

In this section, given a vector subspace U of and, for every
bounded open set Q, a topology T ( SZ ) on U, we describe the sets

n (U, T (H)) - cl (K3 (SZ~ ) n U).
~>o

We assume that

for every bounded open set 0 T (H) is finer than w - L~ ( SZ ) (5.1)

and that, if for u E U and ~ > 0 Ue denotes the regularization of u defined
by (3.2),
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PROPOSITION 5.1. - Let U be a vector subs pace of and let, for every
bounded open set S~, T (SZ) be a topology on U verifying (5.1) and (5.2).

Let C be a closed convex subset of Rn and let, for every bounded open
set S2, I~~ (S~) be defined by (4.12) and Kc (U, ~) by (1.23). Then

Proof. - Since G’ is closed and convex there exist two families

C and C R such that

~>o

then for every e > 0 there exists a generalized C1 ~ U
such that ~~ 2014~ u in T ( S2 ) and

Let p E C10 ( SZ ) be such that p > 0, 03A9 03C6 = 1 and let ~ > 0 be such that
03C6 E then by (5.4) and (5.5) we soon obtain

Since 03C6 ~ CJ (03A9-~) and u~03BB ~ u in T (SZ), by (5.1) and (5.6) we deduce

therefore by (5.7) and (5.4) we have
frT /F~BB t /~ TT~-1 1 ~r~-v _

In order to prove the reverse inclusion in (5.8) let u be in ~~ (U, 
and let, for every c > 0, u~ be te regularization of u given by (3.2).
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Let c > U, then tor every x e the function cx~ (x - ~ ) is in 
with a~ (~ - -) > 0, f~ ~x~ (x - y) dy = 1; therefore we have

that is by i) of (5.2)

Let us now observe that

hence, tor fixed ~o > 0, by (5.11) we get

By (5.12) and ii) of (5.2) we soon deduce

Hy (:).o) and (.).iJ) equality (5.~) tollows..

6. AN INNER REGULARITY RESULT

Let us briefly recall the concept of inner regular envelope of an increasing
set function (cf [35]).
Let F be an extended real valued function defined on the set of all

bounded open sets of we say that F is increasing if

Given an increasing function defined for every bounded open set of 
we define the inner regular envelope F- of F on Q as
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bounded open set Q, H (Q) be a subset of V verifying the following
monotonicity assumption

i ~ ...

Therefore, given a bounded open set SZ, we define the inner regular
envelope H- ( SZ ) of .~ (.) on the open set SZ as the domain ( S~, ~ .),
i.e. by (6.4) and (6.3)

-- , - , ~ __ ... ~ __ . _ _ .

of subsets of V we give sufficient conditions in order to prove an identity
result between H- (H) and H ( SZ ) at least for every bounded open set S2

with Lipschitz boundary.
We assume that V is a vector subspace of verifying (1.4), (1.5) and

that, for every bounded open set 0, a topology 03C3(03A9) on V is given such that
m ~ r ~ r ~ ~ /!1B . 1-

bounded open set S2 star-shaped with respect to y. (6.7)

For every bounded open set SZ let H (S2) be a subset of V such that

and

for every couple of bounded open sets S L ~ , S ~~ . (6.11 )
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The following result holds.

PROPOSITION b.1. - Let V be a vector subspace of verifying (1.4),
(1.5).
For every bounded open set SZ let a be a topology on V satisfying

(6.7) and let H (SZ) be a subset of V verifying (f .8) .’- (6.1 I) and (6.4). Then

for every bounded open set S L with Lipschitz boundary.

Proof - Let SZ be a bounded open set, then by (6.4) it soon follows that

In order to prove the reverse inclusion in (6.13) let us first assume that
S~ is strongly star-shaped, let be such that SZ is star-shaped with
respect to 

Let ~ > 0, since S2 is strongly star-shaped, by (3.19) there exists tE E]O, 1[ [
such that

hence by (6.14) and (6.4) it turns out that

Let u E [ 1 tl (03A9-~ ), then, once observed that t~ ~ 1- as ~ ~ UT,
~>o

by (6.15) it results that

therefore by (6.8) and (6.9) we deduce that

By (6.17), (6.7) and (6.10) we infer, as t ~ 1-, that

for every strongly star-shaped bounded open set n. (6.18)

In order to prove (6.18) for every bounded open set n with Lipschitz
boundary be a finite open covering of Q given by
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Proposition 3.6, such that tor every j = 1, ... , s 03A9j = 03A9j n 03A9 is strongly
star-shaped.

- ~ rr , .-~ , _ .. _ _ . _ -

Since SZ~ is strongly star-shaped, by (6.18) and (6.19) it follows that
s

At this point, by (6.20) and (6.11 ) it follows that

By (6.13) and (6.21) equality (6.12) follows..

7. THE CHARACTERIZATION PROBLEM

Let U be a vector subspace of and let, for every bounded open set

(U, Q) be a subset of U.
In the present section and in the next ones we propose sufficient conditions

on the family {K ( U, : f2 bounded open set} in order to deduce the
existence of a closed convex subset C of Rn such that K ( U, 03A9) = K c (U, SZ )
at least for every regular bounded open set Q, Kc ( U, being defined
by (1.23).
We assume that U is a vector subspace of satisfying ( 1.3) ’-. ( 1.5).
For every bounded open set f2 let K (U, f2) be a subset of U satisfying,

according to Proposition 4.4, assumptions ( 1.13) -.’ ( 1.21 ).
For every bounded open set f2 let us define the sets C (S~) and C by

~ ~r~ 2014 c n, n11 ~ iB x

and by (1.22).

PROPOSITION 7.1. - Let U be a vector subs pace of satisfying
(1.3) ’-. ( 1.5), let, for every bounded open set Q, K ( U, SZ) be a subset
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of U satisfying ( 1.13) ’-. ( 1.15) and ( 1.19), C (SZ) be given by (7.1 ) and let
~’ be defined by ( 1.22). Then

Proof - We only need to prove that the sets C ( SZ ) are independent on
S2. To this aim let A, B be bounded open sets and let us prove that

We can obviously assume that C (~4) ~ 0.
Let z e C (A) then uz e K (U, A) and, if xo E A, by (1.14) it results

that T [xo] uz e K (U, A - xo).
Since 0 E A - xo let t > 0 be such that

then by (1.15), (1.19) and (7.4) it turns out that

At this point we only have to observe that

hence by (7.6), (1.13) and (7.5) we soon get ~cz E I~ (U, B), establishing
(7.3).

By (7.3), changing the role of A and B, we obtain

C (A) = C (B) for every couple of bounded open sets A and B.. (7.7)

In order to study further properties of the set C we need to assume that

K (U, ~) n C1 is C1 (SZ) closed in C1 for every bounded open set SZ. (7.8)

PROPOSITION 7.2. - Let U be a vector subs pace of satisfying
(1.3) ’-. (1.5), let, for every bounded open set S2, K (U, SZ), be a subset
of U satisfying ( 1.13) -’. { 1.15), ( 1.19) and let C be defined by ( 1.22). We
have that

a) if in addition we assume (7.8) then C is closed;
b) if in addition ( 1.17) holds then C is convex.
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Let if De a Dounaea open set. ana let {zh}h ~ o

be such that

men me runcuons ~zh are ~ c~ ~- ana n result

By (7.10) and (7.8) it follows that uz e K (U, S~); by Proposition 7.1
this yields that z E C and the closedness of C follows.

Finally if (1.17) holds the convexity of C immediately follows..

Remark 7.3. - We observe that, in general, conditions of geometric type
on the family {K (U, f~) : : H bounded open set} change into geometric
properties of the set C in (1.22).

For example it is easy to verify that if in addition to ( 1.13 ) -’. ( 1.15 ),
(1.17) and (1.19) we assume the following condition

mere exists a oounaea open sei a c ana sucn that

then the set C is a ball with centre in zo and radius r = :

uz E K ~U~ f!)}.
In fact, by Proposition 7.2, the set C turns out to be convex, moreover,

by (7.11 ), for every z E C it results that Rz E C; this implies that C is
the above described ball.

In the same way if we assume that

- r~ /Tr ~B . _ ~ _ . _ r~ /rT ~B B I

then C is a cone.

Let us now prove the following result.

LEMMA 7.4. - Let U be a vector subs pace of satisfying ( 1. 3 ) : ( 1.5 ),
let { K (U, SZ) : SZ bounded open set~ be a family of subset of U verifying
( 1. I 3) ’-. ( 1.15), { 1.19), (7.8) and let C be defined by (1.22). Let S~ be a
bounded open set and let u be in K (U, ~2) n G’1, then
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Proof. - Let S2 be a bounded open set, u in K ( U, n C 1 and xo in 0,
then, by virtue of ( 1.13) ’-. ( 1.15), for every t ~ 0 the function

, , , . , BB , .

Let us now ooserve tnat nence ror every positive t sumciently
small, it follows that

By (7.15) and (1.19) there exists to > 0 such that
_ ~ , _ _ _ _ __ .__ _ . _.,

Let us recall now that u is differentiable in xo, hence

I . / __ . i __ __ BB - i __ 1

moreover lt is easy to verity mat oy me conununy or Du n results

therefore by (7.19), (7.16) and (7.8) we infer that

By (7.20) and (1.13) we get that

hence by (7.21) and Proposition 7.1 the thesis follows..
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8. THE CASE OF CONTINUOUSLY

DIFFERENTIABLE FUNCTIONS

In the present section, given U and a family {~C(~7, f~) : SZ bounded open
set} of subsets of U as in section 7, we characterize the sets K ( U, Q) n C 1.
For every subset C of and every bounded open set Q let Kb ( S~ ) and

(Q) be defined by (4.12) and (4.13).

PROPOSITION 8.1. - Let U be a vector subspace of verifying
(1.3) ’-. (1.5) ; for every bounded open set SZ let K (U, S2) be a subset of U
verifying ( 1.13) -’. ( 1.15), ( 1.19), (7.8) and let C be given by ( 1.22). Then

Proof. - The proof immediately follows by Lemma 7.4..

We now prove, by various steps, the reverse inclusion in (8.1).
To do this we need to assume that

ror every oounaea open 

LEMMA 8.2. - Let U be a vector subspace of satisfying ( 1.3) ’-. ( 1.6);
let {K (U, SZ~ : S~ bounded open set~ be a family of subsets of U verifying
(1.13) -.’ {1.16) and (1.19) ’-. (1.21).

Let C be given by ( 1.22), then for every bounded open set S~ its results

_ . rr . _ .. r _ . . _ 1
u piecewise affine function on Rn,

.. T /~B , . - r~ ( T T 1 ! I

.,. "

Proof - Let Q be a bounded open set and let u = £ + sj) xp~
j=i

be a piecewise affine function on R".
Since u e K8’ ° (Q), it turns out that

- - .- ..

c~ oeing given oy 

By (8.4) and (1.13) we soon get that
0
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hence by (8.5), (1.6) and (1.16) we obtain

At this point by (8.6) and (1.20) we deduce that
/ ~. v

and finally by (8.7) and (1.21), once recalled that

the thesis follows..
.. ~7~ *f* > > , r~B B

be a family of subsets of U verifying ( 1.13) ’-. ( 1.15), (1.17), (1.19) and
let C be defined by (1.22).
Then by Proposition 7.2 C turns out to be convex.
Let us observe that it is not restrictive to assume that, if C 7~ ~, 0 E C;

in fact, if this is not the case, taken zo in C, it is sufficient to consider the
sets ~’ ( U, S2 ) == K ( U, H) - uzo and C’ = C - zo .
Let £ (C) be the vector space generated by C and let v ( n) be its

dimension, then it is soon observed that C possesses interior points in the
topology of £ (C) and that, by using the same argument as before, it is

not restrictive to assume that

0

0 E C the interior being taken in the topology of ~ ( C) . (8.8)

If v  n let us denote by 0v, respectively by 0n-v, the origin of jRv,
respectively of 

Let R : : Rn be the identity transformation if v = n and an

orthogonal linear transformation such that

For every function u in us define the function u’ as

then since = we have that

Vol. 11, n° 5-1994.



588 R. DE ARCANGELIS AND A. CORBO ESPOSITO

Let x E Hn, let ~i be an open ball ot ~’L centered at ~, then tor every
u in (B) by (8.9), (8.11) and the convexity of B, it follows that

u’ effectively depends only on (~l , ... , when (~1, ... , yn ) varies in
RB, RB obviously being an open ball centered at Y == Rx.
Hence we can define the function û as

By (8.12), (8.11 ) and (8.9) it soon follows that

where Prv is the projection function from (~n to I~v defined by

moreover by (8.8) and (8.9) it tollows that

_ ~_ ~-.2014 2014,~~~

LEMMA 8.3. - Let U be a vector subspace of satisfying ( 1.3) ’-. ( 1.6)
and let { K (U, ~) : SZ bounded open set} be a family of subsets of U
verifying ( 1.13) -’. ( 1.17), ( 1.19) ’-. ( 1.21 ) and (8.2).

Let C be given by (1.22), then

Proof - Let us first prove the following stronger inclusion

K,~ (B) C K (U, B) for every open ball B ofR". (8.17)

To this aim let B be an open ball let u be in K~ ( B ) and let û
be the function deduced from u as in (8.12), then obviously (8.13) holds,
moreover we can assume (8.15).
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Let 03A9’ be a bounded open set with Lipschitz boundary such that 03A9’ ~ B,
1[ and be a sequence of piecewise affine functions

such that

(see for example Proposition 2.I at page 309 in [39]).

By (8.13), (8.15) and Proposition 3.4, applied with m = v and

G = Prv (RC) (the convention that dist (z, ~) - +oo for every z e ~n
is adopted), we get the existence of 8 > 0 such that

hence by (8.18) and (8.19) we soon obtain that

Let us define now the functions ~ch and uh as

then, by (8.21 ) and (8.18), the functions ~ch are piecewise affine and
_ ---1 _~.. _ . _

moreover, by (8.20) we have

Duh (x) e C for a.e. x E B, h E N sufficiently large. (8.23)

At this point, by Lemma 8.2 we get that

uh E K (U, B) for every h E N sufficiently large, (8.24)

hence, by (8.22), (8.24) and (8.2) we soon obtain that

tu E K (U, B) for every t E ~0; 1[. (8.25)

Finally, by (8.25) and again (8.2) we deduce (8.17) as t -~ 1-.
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By (8.17) the thesis easily follows, in fact let Q be a bounded open set,
let ~ > 0 and let B 1, ... , Bk be a finite covering of 03A9-~ made up of open
balls such that jE~ C S~ for every j E ~ l, ... , 1~ ~ .
By (8.17) we get

Since (8.27) holds for every ~ > 0, inclusion (8.16) follows by (8.27)..
We can now prove the main result of this section.

THEOREM 8.4. - Let U be a vector subs pace of satisfying ( 1.3) ’-. ( 1.~).
For every bounded open set  let K (U, SZ) be a subset. of U verifying

( I .13) ’-. ( 1.17), ( 1.19) ’-. ( 1.21 ), (8.2) and let KC (SZ) be defined by (4.12)
with C given by (1.22).

Then

jor every bounded open set 5 G with Lipschitz boundary. j5,15 >

Proof. - The proof follows by Proposition 8.1, Lemma 8.3 and

Proposition 6.1 applied with H (H) = K ( U, 0) n C 1, V = C~ and

a (0) equal to the C1 (Q) topology, once observed that, with these choices,
(6.7) trivially holds..

Let us observe that assumption (1.21) has been utilized directly just to
prove one step of the proof of Theorem 8.4, i.e. the one performed in
Lemma 8.2.

In the rest of the present section our goal will consist in replacing
condition (1.21) with assumption (1.27) suggested mainly by the existing
studies in literature on gradient constrained problems (cf [2], [5],
[ 19] ’-. [21], [26], [30], [39]) and prove again the thesis of Theorem 8.4.
A first consequence of (1.27) is proved in the following result.

PROPOSITION 8.5. - Let U be a vector subspace of verifying
(1.3) ’-. ( 1.5); for every bounded open set S2 let K ( U, SZ) be a subset
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of U verifying ( 1.13) -’. ( 1.15), ( 1. I ~), (7. ~), ( 1.27) and let G’ be given by
(1.22). Then

Proof. - Let no be given by (1.27) and let xo be in 

Let us denote by Lxo the operator defined by

then it is clear that L~~ is a linear, continuous operator onto therefore

by (1.27) and the open mapping theorem we obtain that

By Lemma 7.4 we have

hence by (8.31) and (8.32) the thesis follows..
We now study the properties of the interiors in the C~ (Q) topology of

the elements K (U, 0) n C1 when 0 is a bounded open set.
To do this we need to assume (1.25).

LEMMA 8.6. - Let U be a vector subspace of verifying ( 1.3), ( 1.4),
{ 1.25) and let, for every bounded open set SZ, K ( U, SZ) be a subset of U
such that (1.13), (1.14), (1.16), (1.19), (1.20) and (1.27) hold.

Then there exist zo E and ~o > 0 such that

SZ bounded open set,
/I - T 7

~’roof: - By (1.27) let ~co be in the interior in the 0 topology of
K (U, Ho) n C~.

Let For every h E N let J3~ be the open ball centered at xo
and with radius 1 dist (xo, and let be a sequence of functions

such that

By virtue of (8.34), for h large enough, the functions Uh will be in the
interior, with respect to the C~ (Qo) topology, of K ( U, C ~ . Let us
denote by Uo one of such functions, say to = and set Bo = then
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uo is in the interior in the ~‘1 topology of K ( U, ~1 C~ , 1 f (o-3~)
0 affine in J 

(8.35)

By virtue of (8.35) let z0 = D0 (x0), let ~0 > 0 be such that

and set 6 = diam (Bo).
Let us first prove that

B open ball centered at xo , diam (B)  b,
1 I I _ _ _ i I y h _ ~... _ .- 7-~ / r T nB ~ ~ i

To do this let B and v be as in (8.37), then since B has C1 boundary
there exists a function w such that

By (8.38) and (8.36) we get

hence by (8.39), (1.19), (8.38), (1.16) and (1.13) we obtain

Let us now prove that

B open ball, diam (B)  s;
... 1 I / ~ ~. ~3 .. _ r 7-~

Let be as in (8.41) and let B, then it is clear that

1 .. _ m r _ _ __ ~ _ n
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that x0 ~ xo - yo + B and that diam (xo - yo + B)  8, hence by (8.37)
we obtain

By (8.43), (1.13) and (1.14), (8.41) soon follows.

We now prove (8.33).
To this aim let be as in (8.33) and be a finite

covering of 03A9 made up by open balls such that

then by (8.44) we have that

hence by (8.45) and (8.41) we obtain

At this point by (8.46), (1.20) and (1.19) we get

hence by (8.47) the thesis follows..

We can now prove the analogous of Theorem 8.4.

THEOREM 8.7. - Let U be a vector subspace of satis, fying ( 1.3) ’-. ( 1.5)
and (1.25). For every bounded open set S~ let K (U, SZ) be a subset of U
verifying ( 1.13 ) -’. ( 1.17), ( 1.19), (1.20), (7.8), (1.27) and let KC ( SZ ) be
defined by (4.12) with C given by (1.22).

Then

K (U, SZ) rl ~’~ = I~C (S~) for every bounded open set S~. (8.48)
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Proof : - Let us prove that

To this aim let u E KC (03A9), let zo ana ~0 ae gmen ny Lemma 8. ana

let T E [0, 1[.
Let t E [T, 1 [ and let Qi, ..., be open cubes centered respectively’ 

fit

at the points xi, ..., E H with n C U ~~ and such that, by setting
j=1

for every j E {1,..., mt} ztj =  Du (xj) - TZO,

Let us now observe that obviously ~o E C7 and that, since

Du (x) G (7 for every x in H and (7 is convex, we have

z0 + 1 t ztj = 

-7 + 1 - 
T z0 E (7 for every j ~ {1,..., mt},

hence by (1.22) and (1.13) we obtain

At this point oy Lemma ana we infer

.... , ~.. , . , , ’- , > ,

therefore by (8.52), (1.13), (1.20) and (1.19) we obtain
. x B~

Tor every T ~ ~U, ~B.3J;
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As ir -~ 1-, by (8.53) and (7.8) we get (8.49).

Finally by (8.49) and Proposition 8.1 the thesis follows..

9. THE GENERAL CASE

In the present section we prove a complete characterization of the sets
I~ (U, S~).

LEMMA 9. I . - Let U be a vector subspace of satisfying ( 1.4), ( 1.25)
and let, for every bounded open set SZ, T (~) be a topology on U verifying
( 1.7), ( 1.9), ( 1.10) (i) and ( 1.12).

Let { K ( U, S2) : SZ bounded open set } be a family of subsets of U
verifying ( 1.14), ( 1.16) ’-. ( 1.19) . Then

for every bounded open set SZ such that (U; T (SZ)) is sequentially complete.

Proof. - Let SZ be a bounded open set such that ( U; T ( SZ ) ) is sequentially
complete and let u be in K ( U, 

Let ~ > 0 and y E By (1.14) and (1.19) it follows that

hence by (9.2) and (1.17) we have

Let us now observe that, by (1.9) and (1.18), K ( U, is also

T in U, hence by (9.3) we deduce that

By (1.1U) (i) the tunctlon cx (.) T [~.] u is continuous with compact support
from i~n to U, therefore, by Proposition 2.4, Proposition 3.2, both applied
with T = T (03A9), and by (9.4) we obtain that the integral r 03B1 ( y ) T u dy
exists and that
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We now observe that by (9.5), Proposition 3.1, (1.25) and (1.16) we
obtain

_, ...

follows that Cl  C2 implies K (U, C K (U, SZ~2 ), we have

By (9.7) inclusion (9.1 ) follows..

We now prove the reverse inclusion to (9.1 ).

LEMMA 9.2. - Let U be a vector subs pace of and let, for every
bounded open set ~, T (S~~ be a topology on U satisfying {1.9).

Let { K ( U, SZ ) : SZ bounded open set { be a family of subsets of U
verifying ( 1.18). Then

for every bounded open set S ~. (

Proof. - The proof follows easily once observed that, by (1.9) and (1.18),
for every 6- > 0, K (U, is also T (2)-closed in U..
We can now prove Theorem 1.1.

Proof of Theorem 1.1. - By ( 1.18), ( 1.8) {i) condition (7.8) holds, hence
by Proposition 7.2 the set C in (1.22) turns out to be closed; moreover
by (1.17) it is also convex.

Let 0 be a bounded open set with Lipschitz boundary such that ( U; T ( SZ ) )
is sequentially complete.
We observe that by (1.10) (ii) and (1.11) condition (6.7) holds, hence

by virtue of (1.10) (i), Lemma 9.1, Lemma 9.2 and Proposition 6.1 applied
with V = U, a (03A9) = T (0), and H (03A9) = K ( U, 0) we get

Let us now observe that for every E > 0 we can find an open set with

Lipschitz boundary S~~ such that ~~~2, therefore by (1.19)
we deduce
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At this point we observe that, by (1.6) and (1.8) (i), the assumptions of
Theorem 8.4 are satisfied, hence it turns out that

the sets K~ (.) being defined by (4.12); therefore by (9.9) ’-. (9.11 ) we get

By (9.12) and Proposition 5.1, once recalled that by (1.6) .KC is

contained in U for every c > 0, equality (1.24) follows.

Finally the last part of the thesis follows by Proposition 4.4 and by
(1.8) (ii)..

By using the results of the last part of section 8 we can now prove
Theorem 1.2.

Proof of Theorem 1.2. - We observe that by ( 1.18) and ( 1.26) condition
(7.8) holds, hence by Proposition 7.2 the set C in (1.22) turns out to be
closed and convex, moreover by Proposition 8.5 it also results that C has

nonempty interior.

Let SZ be a bounded open set with Lipschitz boundary such that

( U; T ( ~2 ) ~ is sequentially complete, then by virtue of (1.10) (i), Lemma 9.1,
Lemma 9.2, (1.10) (ii), (1.11) and Proposition 6.1 applied with V = U,
cr (0) = T and H (0) = K (U, SZ) we get
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Let I~~ ~5~~ be defined by (4.12), then by (9.13) and Theorem 8.7 we
obtain

hence by (9.14) and Proposition 5.1, once recalled that by 
is contained in U for every c > 0, equality (1.28) follows.

Finally the last part of the thesis follows by Proposition 4.4 and by (1.8)
0

(ii) once observed that if then obviously K(U, has nonempty
interior in the C~ (Q) topology for every bounded open set 

10. SOME PARTICULAR CASES

In this section, by using the results of section 5, we specialize
Theorem 1.1 and Theorem 1.2 to the case of the most common function

spaces.

THEOREM 10.1. - Let p G [1, and let {K SZ) : SZ bounded open
set) be family of subsets of verifying ( 1.13) -’. ( 1.20) with U = and

T (SZ) equal to the LP (SZ) topology if p ~ ~l, and to the (SZ)
one if p = +00.

Let C be defined by (1.22) with U = Lfoc.
Then C is closed, convex and

a) if in addition ( 1.21 ) too is satisfied, it results that

b) if in addition (1.27) is satisfied, it results that C has also interior

points and that ( 10.1 ) holds.

Conversely, given a closed convex subset C of it turns out that

conditions (1.13) ’-. (1.21) with U = and T (S~) equal to the LP (S~)
topology if p E ~ 1, and to the ( S~ ) one if p = -+- oo are satisfied
by K (U, S~) = (~2) and that if in addition C has also interior points
then (1.27) too holds.

Proof - The proof follows by Theorem 1.1 and Theorem 1.2 applied
with U = and T ( S~ ) equal to the LP ( SZ ~ topology if p E ~ 1, -f- ~ ~
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and to the w*-L°° (SZ) one if p = -1-00, once observed that, for every
bounded open set 03A9, (Lploc, Lp (SZ)) if p E [1, +~] and (L~loc, w*-L°° (03A9))
if p = are sequentially complete Hausdorff locally convex topological
vector spaces..

In the case of BVloc functions the following result holds.

THEOREM 10.2. - Let {K SZ) : SZ bounded open set} be a family
of subsets of verifying (1.13) -’. (1.20) with U = and T (SZ)
equal to the w*-BV (SZ) topology.

Let C be defined by (1.22) with U = BVloc and Kc (SZ) by (4.14).
Then ~‘ is closed, convex and

a) if in addition ( 1.21 ) too is satisfied, it results that

for every bounded open set S~ with Lipschitz boundary ; ( 10.2)

b) if in addition (1.27) is satisfied, it results that C has also interior

points and that (10.2) holds.

Conversely, given a closed convex subset C of L~n it turns out that
conditions (1.13) ’.- (1.21) with U = BVloc and T (SZ) equal to the
w*-BV (SZ) topology are satisfied by K (U, SZ) = Kc (S2) and that if
in addition C has also interior points then (1.27) too holds.

Proof. - Let us first observe that, for every bounded open set SZ
with Lipschitz boundary w*-BV (SZ)) is a sequentially complete
Hausdorff locally convex topological vector space.

Therefore the proof follows by Theorem l.l and Theorem 1.2 applied
with U = and T (S~) equal to the w*-BV (SZ) topology and the
Proposition 4.3..

We now treat the case of functions.

THEOREM 10.3. - Let p E ~l, and let { K SZ) : S~ bounded

open set} be a family of subsets of verifying (1.13) ’-. (1.20) with
U = and T (SZ) equal to the p (SZ) topology if p E ~1, and
to the w * -W 1 ~ °° ( SZ ) one if p = -+- oo .

Let C be defined by (1.22) with U = and (SZ) by (4.13).
Then C is closed, convex and

a) if in addition ( 1.21 ) too is satisfied, it results that

for every bounded open set SZ with Lipschitz boundary; ( 10.3)
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b) if in addition {1.27) is satisfied, it results that C has also interior

points and that (10.3) holds.

Conversely, given a closed convex subset C of it turns out that

conditions {1.13) ’-. (1.21) with U = and T equal to the P ~SZ)
topology if p E ~l, and to the w*-W~’ °° (SZ) one if p = are

satisfied by K (U, S~) = ~S~) and that if in addition C has also interior
points then ( 1.27) too holds.

Proof. - Let us first observe that for every bounded open set SZ with

Lipschitz boundary the spaces (S2) ), p E ~l, -~-oo ~, and

w*-W 1’ °° (SZ)) are sequentially complete Hausdorff locally convex
topological vector spaces.
Hence the thesis follows by Theorem l.l and Theorem 1.2 applied with

U = and T (SZ) equal to the (~2) topology if p E ~l, 
and to the w * -W 1’ °° ( ~L ) one if p = and by Proposition 4.3..

In the case of C1 functions the following result holds.

THEOREM 10.4. - Let { K ( C 1, SZ ) : SZ bounded open set ~ be a family of
subsets of C~ verifying (1.13) ’-. (1.20) and (1.27) with U = C1 and T (S~)
equal to the CI ~~) topology.

Let C be defined by { 1.22) with U = Cl and .KC by {4.12).
Then C is closed, convex, has nonempty interior and

K (C1, SZ) = KC for every bounded open set S2. (10.4)

Conversely, given a closed convex subset C of (~n with nonempty interior
it turns out that conditions (1.13) -’. (1.20) and (1.27) with U = Cl and
T (SZ) equal to the C~- topology are satisfied by K (U, SZ) = KC (S~).

Proof. - The proof follows by Theorem 8.7 and by Proposition 4.4
applied with U = C 1 and T ( ~ ) equal to the C~ ~ SZ ) topology, and by
Proposition 4.3..

11. AN APPLICATION

In the present section we apply some of the results obtained in this

paper to the problem of the homogenization of the elastic-plastic torsion
of a cylindrical bar.

As already mentioned in the introduction, in the theory of homogenization
of the elastic-plastic torsion of a cylindrical bar it is interesting to study
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the "convergence" of sets of the type

h being an integer number, Q a bounded open set and cp a function verifying

Rn ~ [0, +~[, p bounded and I-periodic in each variable xi, ( 11.2)

to a set of the type

being described by the formula

C~ == {z E there exists w E 

with w 1-periodic in each variable xi

and Dw (x)  p (x) for a.e. x in ]0, 1[n~. (11.4)

This study is just the one we want to carry out in this section by using
Theorem 10.3 together with r-convergence theory (cf [32], [34]).

Let us briefly recall the definition and the main properties of

r-convergence. We refer to [34] and [2] for complete references.
Let (U, T) be a topological space satisfying the first countability axiom

and let Fh, h E N, F’ and F" be functionals from U to [-oo + oo].
Let u e U, we say that

if for every {uh}h C U such that u it results
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we say that

if (11.6) and (11./) hold with the operator "lim inf" replaced by "lim sup".

When F’ (u) = F~(~) we say that there exists the limit

0393- (7-) Fh (v).
h ~ ~

v ~ u

We recall that the functional F’ and F~ in (11.7) and (11.8) are T-lower
semicontinuous on U and that, if in addition (~ r) verifies the second

countability axiom, it results

there exists C such that the limit

For every subset S of set

ana prove me following result.

THEOREM 11.1. - Let cp be as in ( 11.2), let C~ be given by ( 11.4) and,
for every bounded open set 03A9 and (SZ) by ( 11.1 ) and K0~ (03A9)
by (11.3).
Assume that

then

for every bounded open set SZ, u in (11.12)

We remark that the convergence result in Theorem 11.1 turns out to

be equivalent to the Kuratowski notion of convergence for sequences of
sets (cf [45]).
Moreover we observe that a sufficient condition on p to get (11.11) is

the following one proposed in [20]
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there exist m > 0, ~ E 0, - such that
i i ~ r~

Let cp be a function as in ( 11.2), for every bounded open set Q and
hEN let us define the set

Kh (~) = {u E (D~ (~) ~ ] (hx) for a.e. x in SZ~ (11.14)

and its characteristic function ~~ (f2,.) = (Q) (.), moreover let us define
the following limits

We are going to prove that for every u in inner regular
envelopes (see Section 6 for the definition) F’ (~, u) and F" (’., u) of the
functionals in ( 11.15) and ( 11.16) agree for every bounded open set and that
they are equal to the characteristic function ~ ~ (SZ, ~ ) of a set of the type

(0) = ~u E v Du (x) E C~ for a.e. x in (11.17)

Coo being an explicitly described closed convex subset of I~n.

By virtue of this we will prove that for every bounded open set Q

the r- ( C° (03A9)) limit of the sequence {|K0h (03A9)}h exists and is equal to
(Q), K°~ (0) being given by (11.3).

From this result the "convergence" one for the sets in (11.1) to the one
in (11.3) will follow.

For every h e N let us set cph (x) = (/? (hx), z e 
Let us prove some properties of F" in ( 11.16).

LEMMA 11.2. - Let cp be as in ( 11.2) and let F" be given by ( 11.16).
Then

for every bounded open set S2, u in ( 11.18}
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Proof. - Let ~2, u, xo be as in ( 11.18), let us prove that

with ~ ~ ~ ~= SZ and let C be such that ~ch -~ ~c in C° ~A)
and I  cph a.e. in A.

Let C be such that lim == x°; for every h ~ N we

define the functions vn = uh (- -f- mh , then obviously vn ~ T in

C° (B - xo) and

By (11.20) we have that vh E Kh (B - xo) for every h E N, that is
ro 1 B A

tor every open set B with B C (11.21)

hence by (11.21) inequality (11.19) soon follows.

Finally, by simmetry, (11.18) follows by ( 11.19). .

LEMMA 11.3. - Let ~p be as in ( 11.2) and let F" be given by ( 11.16). Then
/ 1 B

for every bounded open set u zn and t > U. (11.22)

Proof - Let Q, u, t be as in (11.22), let us prove that
/ 1 B

Ubviously we can assume that ~_ (S Z, 2c) = U. Let ~i, ~ be open sets with
B (c A C SZ, C and be an increasing sequence
of integer numbers such that in C° (A) and  a.e. in A.

Let {th}h C N be such that lim = t; for every h E N we

define the functions w = kh uh ( th .), then obviously in
~ 

C° 1 B and
t 7
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for a.e. x and every h ~ N. (11.24)

By (11.24) we have that w h E B for every h ~ N, from
which we obtain 

F’ 1 u = 0 for every open set B with B C 03A9, (11.25)

hence by (11.25) inequality (11.26) soon follows, once observed that

sup a O t U) = sup F’ (E, ~ Ot u).
~~ ~ 

Finally, by simmetry, ( 11.22) follows by (11.23). N
We can now prove the representation result for jF~ and F~.
For every bounded open set SZ let us set

PROPOSITION 11.4. - Let p be as in ( 11.2), let F’, F" be given by ( 11.15)
and ( 11.16), by ( 11.4) and, for every bounded open set S~, ~~ ( S~ )
by ( ~ 1.26).
Assume that ( 11.11 ) holds, then

for every bounded open set 03A9, u in (11.27)

Proof. - Let us preliminarly observe that by ( 11.9), since we are going to
describe explicitly the inner regular envelopes of the functionals in ( 11.15)
and (11.16) for every bounded open set 0, it is not restrictive to assume that

for every bounded open in ( 11.2~)
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By ( 11.28) it is clear that for every bounded open set S~ there exists a

subset K (0) of such that

for every bounded open set 0, u in ( 11.29)

By (11.29) the family {K (0) : SZ bounded open set} satisfies all the

assumptions of Theorem 10.3 with p = +00. In fact (1.13), (1.16), (1.19)
trivially hold, (1.14) and (1.15) respectively follow by Lemma 11.2 and
Lemma 11.3, (1.17) follows by the convexity of F" {SZ, ~ ), (1.18) by the
C° { S~ ) lower semicontinuity of F" { SZ, ~ ) for every bounded open set SZ;
moreover (1.20) comes for example by (11.11) and Proposition 2.5 in [26]
and (1.27) by Proposition 3.5 again in [26], both applied with f = 0.

By Theorem 10.3 we deduce the existence of a closed convex subset C
of with nonempty interior such that

tor every bounded open set S with Lipschitz boundary, (11.30)

moreover, once recalled that

tor every bounded open set 03A9, u in Wloc, ( 11 v 1 )

by (11.29), (11.31), and (11.30) we obtain

for every bounded open set Q, ( 11.32)

hence in order to complete the proof we only have to verify that

C = (11.33)
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Equality (11.33) follows by (11.29) and Lemma 4.1 and Lemma 4.3 in
[26], both applied with f - 0..
We can prove Theorem 11.1.

Proof of Theorem 11.1. - Let S2, u be as in ( 11.12).
If u = 0 on ~03A9 the proof follows by Theorem 11.3 and Proposition 2.4

in [26] applied to f - 0.
Otherwise the thesis follows once observed that ~~) (u) = +00 and

that for every C such that in C° (H) it must result

that ~c~ rf- Kh (H) definitively in h..
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