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ABSTRACT. — One of the results proved in the paper deals with a
characterization of the families {K (2) : Q bounded open set} of subsets
of WuP (R") (p € [1, 4+00]) whose elements can be described as

loc

K@) = {u€ Wy?R") : Du(z) € C for ae. z in Q}, C being
a closed convex subset of R™.

Characterizations similar to the above mentioned but for families of
subsets of BVj,. (R™) and L} _ (R™) are also proved.

These results are deduced by a general characterization theorem for
families of subsets of a Hausdorff locally convex topological vector
subspace of Lj,, (R™).

An application to the problem of the homogenization of the elastic-plastic
torsion of a cylindrical bar is given.

Key words: Differential inclusions, representation of families of sets.

RESUME. — Un des résultats démontrés dans notre travail concerne une
caractérisation des familles {K (£2) : Q ensemble ouvert borné} des sous-
ensembles de W7 (R™) (p € [1, +00]) dont les éléments peuvent étre
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554 R. DE ARCANGELIS AND A. CORBO ESPOSITO

décrits comme K () = {u € W7 (R*) : Du(z) € C pour presque
chaque z en Q}, C étant un sous-ensemble convexe fermé de R™.

On prouve aussi des caractérisations similaires pour des familles de
sous-ensembles de BVj,. (R™") et de L? (R™).

Nos résultats sont dérivés par un théoreme général de caractérisation pour
des familles de sous-ensembles d’un sous-espace vectoriel topologique de

Hausdorff localement convexe de L}, . (R™).

On donne une application pour le probleme d’homogénéisation de la
torsion élastoplastique d’une barre cylindrique.

0. INTRODUCTION

Some problems in Calculus of Variations, for example the problem
of the elastic-plastic torsion of a cylindrical bar (¢f. [38], [39], [46],
[53], [10]+[12]) lead to the study of variational inequalities or to the
minimization of integral functionals defined on sets of functions described
by constraints on the gradient. Such sets are of the following type
{u € WoP (R*) : |Du(z)] < ¢ (z) for ae. z in Q}, ¢ being a
nonnegative function, 2 an open set and p in [1, +o0].

The study of the homogenization of the elastic-plastic torsion of a
cylindrical bar (cf. [2], [5], [15]+ [21], [26], [30], [40]) analyzes, for every
regular bounded open set €2, the asymptotic behaviour of sequences of
minimum problems for variational functionals defined on convex function
sets of the type {u € WLP (R*) : |Du(z)] < ¢ (hz) for ae. z in 0,

loc

h € N}, ¢ being a nonnegative function also 1-periodic in each variable.
According to a conjecture due to A. Bensoussan, J. L. Lions and

G. Papanicolau (cf. [5]), such asymptotic behaviour is again described by a

minimum problem for a variational functional defined on a set of the type

K(Q)={ueW.?PR") : Du(z) € C forae. zinQ}, (0.1

loc

C being a suitable convex and closed subset of R™.

In this context some abstract characterizations of the families { K () : ©
bounded open set} of subsets of W ?(R™) whose elements can be described
as in (0.1) at least for every regular bounded open set {2 seem to be
interesting.
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We remark that characterization results similar to the ones proved in the
present paper, but relative to families of subsets of Sobolev spaces of the
type {{u € WL (R™) : u(z) > ¢ (z) for ae. ¢ in Q} : Q bounded

open set} have been proved in [2] and [3].

The characterization problem considered in the present paper can also be
framed in the context of variational convergence theory (cf. [2] and [32] for a
general exposition on the subject), in particular in the part of the theory that
deals with integral representation results in Calculus of Variations (c¢f. [2],
71+ 191 [13], [14], [22], [24], [27], (28], [32], [36], [39], [43], [S1D.
Indeed our results can also be read as furnishing characterizations of the
functionals which can be described by means of variational integrals of the

type l{zeq: Du («)ec} Where for every subset £ of R™ we have denoted

by HE%he function defined by lg () = 0 if z € F and lg (z) = 400
if z € R*"\E.

Nevertheless the consideration of extended real valued integrands seems
to require techniques at least partially different from those utilized in the
integral representation theory in Calculus of Variations.

It is straight away verified that, for every bounded open set {2 and every
pin [1, +00], sets of the type in (0.1) verify the following simple linearity
properties

vueK(Q), ceR=>u+ce K (Q) 0.2)
veK(Q), zoeR"=u(zg+-) e K (Q—1z0); 0.3)
u € K (Q), t>0=>%u(t-)eK(%Q>; 0.4)
K (2) convex. (0.5)

Moreover, again for every bounded open set €2, it is clear that the
following locality property holds

weK(Q), veWLP(R") :v=u aeonQ=veK(Q) (0.6
and, by the closedness of C, it follows that
K () is WP (Q)-closed in WL P (R™). 0.7)
About the dependence of K on the open set, it obviously results that
K (©) C K () for every couple of bounded open sets 21, €2,
with ; C Qs; 0.8)

Vol. 11, n°® 5-1994.



556 R. DE ARCANGELIS AND A. CORBO ESPOSITO

K (Q)NK (22) C K (Q Uy)

for every couple of bounded open sets £2;1, s; 0.9)
K (1) N W~ (R™) C K ()

for every couple of bounded open sets £2;, 2
with ; C €2, and meas (2,\Q;) = 0. (0.10)

On the other side, it is clear that, if z € C, then the linear function wu,,
defined by u, (z) = (z, z) for every x in R™, verifies

u, € K (Q) for every bounded open set 2, 0.11)
hence the set C turns out to be given by
C ={z€eR" : u, € K (Q)for every bounded open set 2}.  (0.12)

Then in order to characterize, at least for p in [1, 400, the families of
subsets of W7 (R™) than can be expressed as in (0.1), we start with a
family {K () : Q2 bounded open set} of subsets of W,.;? (R™) verifying,
for every bounded open set 2, conditions (0.2) < (0.10).

Later we define the set C' by the formula (0.12) by using the above
introduced family {K (£2) : 2 bounded open set} and prove that C is
closed and convex.

Finally we are able to prove that

K(Q)={ueWLP(R") : Du(z) € C for ae.xin N}

loc

for every bounded open set with Lipschitz boundary. (0.13)

The same characterization results holds also when p = +oo provided
that condition (0.7) is replaced by the following

K (Q) is weak® — W= (Q) closed in WL > (R™). (0.14)

loc
Moreover we are able to obtain results of the same kind also for families
of subsets of function spaces wider that W P (R™).

For example we can prove that if {K (€2) : € bounded open set}
is a family of subsets of BV (R™) verifying conditions (0.2)=(0.5),
(0.8) = (0.10) and the following ones that replace (0.6) and (0.7)

ueK(Q),veEBV, (R*) :v=u ae.onQ=veK(Q), (0.15)
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K (Q) is weak® — BV (Q) closed in BV, (R"), (0.16)
then

K(Q):{UEBWOC(RTL) : mADUEC

for every open subset A of Q}

for every bounded open set 2 with Lipschitz boundary, (0.17)

the set C' being again given by (0.12).

Conversely, if C' is a closed convex subset of R™ and if for every
bounded open set 2 K (£2) is given by (0.17), then the family {K (Q) :
) bounded open set} verifies conditions (0.2) + (0.5), (0.8) + (0.10), (0.15)
and (0.16).

Furthermore, if {K (£2) : £ bounded open set} is a family of subsets
of IZ (R™), with p € [1, 4o0], verifying conditions (0.2)+(0.5),

loc

(0.8) + (0.10) and the following ones that replace (0.6) and (0.7).

vueK(Q),vell (R*):v=u ae.onQ=veK(Q), (0.18)

loc
K (Q)is L? () closed in LY _ (R™) if p € [1, +o0]
and weak™ — L* (Q) closed in Li;, (R™)if p = +o0, (0.19)

loc

then
K () :{u e Lf (R") : —/ uDp e C
Q

for every o in C§ (Q) with ¢ > 0, / w= 1}
Q
for every bounded open set £ with Lipschitz boundary, (0.20)

the set C' being again given by (0.12).

Conversely, if C' is a closed convex subset of R™ and if for every
bounded open set 2 K (§2) is given by (0.20), then the family {K (Q) :
¥ bounded open set} verifies conditions (0.2) +(0.5), (0.8) +(0.10), (0.18)
and (0.19).

Eventually, to characterize the families {K (£2) : Q bounded open set}
as in (0.1) with C' not only closed and convex but also with nonempty
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interior it seems more natural to drop condition (0.10) and use a condition
of topological richness, i.e.

K (Q9) N C* (R™) has interior points in the C* (€) topology

for some bounded open set . 0.21)

The characterization results for families of subsets of W,.” (R™) are
contained in Theorem 10.3, those for BV, (R®) in Theorem 10.2 and
those for L7 (R™) in Theorem 10.1. In Theorem 10.4 a characterization
result for families in C! (R™) is also proved.

The above results are deduced as particular cases by general
characterization theorems for families of subsets of a Hausdorff locally

convex topological vector subspace of L}, (R™) (theorems 1.1 and 1.2).
An application of some of the above results to the problem of the
homogenization of the elastic-plastic torsion of a cylindrical bar is also
given in section 11.
In conclusion we observe that in the present paper only the case in which
the convex set C' is a fixed one is treated. Much more delicate seems to be
the study of the characterization of the families of function sets in which

the constraint C' can depend on the = variable.

1. MAIN RESULTS

In the present section we describe the main results of this paper and give
a brief account of the leading ideas of their proofs.

Let us first fix some notations.
For every function u on R™, y in R™ and ¢ > 0 we denote by T [y] u

the function defined by
(T[ylu) () =u(y+z), zeR" (1.1
and by O.u the one given by

(Ou) (z) = % u(tz), @ e€R™ (12)

We also set W2 ™ = W, > (R™), C! = C' (R™) and, for every bounded
open set (2, denote by W1 °° () the strong topology of W1 > (Q) and
by C! (Q2) the strong one of C* (Q2).

Finally for every Lebesgue measurable subset I/ of R™ we denote by
|E| its measure.

Annales de ’Institut Henri Poincaré - Analyse non linéaire



A CHARACTERIZATION OF FAMILIES... 559

1
loc

Let U be a vector subspace of Li, . (R™) verifying

uelU, ceR=z3>u+cel; (1.3)
wel, yeR" = TylueU; (1.4
uel, t>0= Oue U, (1.5)

W ° CU (1.6)

and let us consider, for every bounded open set €2, a topology T (£2) on
U satisfying

(U, 7 (§2)) is a Hausdforff locally convex topological vector space; (1.7)

i) 7 (£2) is less fine than W > (Q) on W, 18
ii) 7 (Q) is finer than weak-L' (Q2); '
O C Qs = 7 (24 less fine than 7 (05). (1.9

Moreover we also assume that

for every £ € R™, v € U and every bounded open set {2 we have

i) the function y € R™ — T[y]v € U is continuous from R™ endowed
with the usual topology to U endowed with the 7 (£2) one,

ii) the function v € U +— T[z]u € U is continuous from U endowed
with the 7 (§2) topology to U endowed with the 7 (Q2-z) one, (1.10)

that

for every u € U and every bounded open set € star-shaped with
respect to 0 the function ¢ € ]0, +oo[ — Oyu € U

is continuous in 7 (£2) (1.1

and that, if for every v € U and £ > 0 u. denotes the regularization of u,

for every u € U and every bounded open set {2

u. — uin T () ase — 07, (1.12)
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For every bounded open set { we consider a subset K (U, Q) of U
satisfying the following conditions

vweK(U Q), ceR=>u+ce K, Q) (1.13)

ve KU, Q), yeR"=>Tylue KU, Q—y); (1.14)
1

ue K (U, Q), t>0:>0tueK<U,ZQ); (1.15)

ve KU, Q), velU :v=u aeinQ=veK U, Q); (.16

K (U, Q) convex; (1.17)
K (U, Q)ist (2)-closed inU (1.18)

and
09 CQ = K (U, Q) CK U, ) (1.19)

KU, Q9)nK (U, Q) CK (U, 2 UQy)
for every couple of bounded open sets £21, o; (1.20)

KU, Q)nWh> C K (U, Q)

loc

for every couple of bounded open sets 1, Qs
with Ql g Qz and [QQ\Qll =0. (121)

Furthermore let us defined the set C' by

C={z€R™ : u, € K (U, Q) for every bounded open set 2}  (1.22)

and, for every bounded open set 2, the set K¢ (U, ) by

K (U, Q):{UEU : —/ uDp e C
Q

for every p € Cj () with p > 0, /
Q

= 1}. (1.23)

The following characterization result holds.
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THEOREM 1.1. — Let U be a vector subspace of L}, verifying (1.3) < (1.6)
and let, for every bounded open set Q, T () be a topology on U satisfying
(1.7)+(1.12).

For every bounded open set Q let K (U, Q) be a subset of U verifying
(1.13) + (1.21), let C be defined by (1.22) and K (U, Q) by (1.23).

Then C is closed, convex and

K (U, Q) = K¢ (U, Q) for every bounded open set Q with Lipschitz

boundary such that (U, T (Q)) is sequentially complete.
(1.24)

Conversely, given a closed convex subset C of R™ it turns out
that conditions (1.13)+(1.21) are satisfied by the family {K (U, Q)
Q) bounded open set} whose elements are defined for every bounded open
set Q by K (U, Q) = K¢ (U, Q).

A different version of Theorem 1.1 is given by the following result in
which conditions (1.6), (1.8) (i) and (1.21) are replaced respectively by

CctcUu; (1.25)

for every bounded open set 7 (Q) is less fine than C* (2) on C! (1.26)

and

K (U, Q) N C* has nonempty interior in the C* ()
topology for some bounded open set (2g. (1.27)

THEOREM 1.2. ~ Let U be a vector subspace of L} verifying (1.3) +(1.5),

loe

(1.25) and let, for every bounded open set ), 7 () be a topology on U
satisfying (1.7), (1.8) (i), (1.9)+(1.12) and (1.26).

For every bounded open set Q2 let K (U, Q) be a subset of U verifying
(1.13)+ (1.20) and (1.27), let C be defined by (1.22) and Kc (U, Q) by
(1.23).

Then C is closed, convex, has nonempty interior and

KU, Q) =Kc (U, Q)
for every bounded open set Q with Lipschitz
boundary such that (U, 7 (Q)) is sequentially complete. (1.28)
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Conversely, given a closed convex subset C of R™ with nonempty interior
it turns out that conditions (1.13)+ (1.20) and (1.27) are satisfied by the
Jamily {K (U, ) : Q bounded open set} whose elements are defined for
every bounded open set Q2 by K (U, Q) = K¢ (U, Q).

Theorems 1.1 and 1.2 will be deduced in some steps according to the
following plan.

In sections 2 and 3 we fix some notations, recall some definitions and
the related properties and prove some preliminary results.

In sections 4 and 5, given a closed convex subset C' of R™, we study
the properties of the sets in (1.23).

In section 6 we prove a general result yielding sufficient conditions under

which K (U, ) = [ K (U, A) (this result plays the same crucial role of
ACQ
the inner regularity ones in the integral representation theory (cf. [14], [35]).

Section 7 is devoted to the proof of the properties of the set C in (1.22).

In section 8 we prove representation results for K (U, Q)N C? first under
the assumptions of Theorem 1.1 and then under those of Theorem 1.2.
The main ideas to achieve these results are a “blow up” argument and
an approximation procedure of continuously differentiable functions by
piecewise affine functions.

In section 9 theorems 1.1 and 1.2 are proved by using an approximation
procedure and a representation result for the regularization of a function.

In section 10 we specialize theorems 1.1 and 1.2 to the case of the most
common function spaces in mathematical analysis and in section 11 we
give an application of the results obtained.

2. GENERAL NOTATIONS

Let Q be a bounded open set. We denote by W > () the set of the
functions in L°° () having distributional partial derivatives in L (Q).

W1 () is naturally endowed with the topology induced by the norm
llullw:. = () = lullze () + Il [Dul ||z (Q)-

Let us now observe that the map u € W' (Q) — (u, D1u,..., Dyu) €
(L°° (£2))™*! allows us to identify W' > (2) with a closed subspace of
(L= (£2))" "1, hence, being (L* (Q))"*+! the dual space of (L' (2))"+1,
we define the weak*-W* =< (Q) topology (w*-Wh > (Q)) as the natural
relative topology generated by the (w*-L°° (Q))"*! one.
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In particular, given a generalized sequence {u)}xea and u in W12 (Q)
it turns out that {u,}rea converges to u in w*-Wh > (Q) if and only if

11/1\11 l/ﬂ U,\1/10+Z/QDM,\1/J¢} Z/Quwo-Fi/QDiu/\wi

for every (o, ¥1,---, ¥n) € (L* (Q))" .

For every Borel subset B of R™ we denote by M (B) the set of the
regular, countably additive set functions defined on the Borel subset of B
and with finite total variation on B. For every p € M (B) we denote by
|| the total variation of .

Let €2 be a bounded open set of R and let 4 € M (2), then, being ||
a regular measure (cf. [37] III Lemma 4.7 and Il Lemma 5.12), by Riesz
representation theorem (cf. [37] IV Theorem 6.3) we have

lu] () = sup {[p| (K) : K compact, K C Q}
= sup {sup {/K pdu ¢ € C°(K), llollco () < 1}

: K compact, K C Q} 2.1)

Let us now observe that

sup {sup { [ o+ 0. 0 (), lgllon o <1
K

: K compact, K C Q}
= sup {/ wdp = o € Cy (), [lellco @ = 1}, (2.2)
Q
hence by (2.1) and (2.2) we obtain

ummﬁ@{éwuwe%mmmw@s§

for every bounded open set Q, pin M (). (2.3)
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For every bounded open set 2 we denote by Cp (Q2) the space of the
functions u in C°(Q) with u = 0 on J endowed with the C°(Q) topology.

We recall the following result (¢f. Theorem 6.19 in [49]).

PROFPOSITION 2.1. — Let ) be a bounded open set, then the spaces (Cy(€2))*
and M (Q) are isomorphic.

By BV (£1) we denote the set of the functions in L' (£2) having
distributional partial derivatives in M (), BV () is naturally endowed

with the topology induced by the norm |[u(|pv (@) = llullz @) + [ Dy
Q

where [Du| denotes the total variation of the vector measure Du on

Q
Q and is given by

/Q | Du} = sup {/Q udivg : g € (Cy ()", lg ()] <1

for every z in Q} (24

The map u € BV (@) — (/ wdz, Diu,..., Dnu) e (M (Q)"*!

allows us to identify BV (€2) witf(l 11 subspace of (M (§2))**+1, hence, being
by Proposition 2.1 (M (£2))"*! the dual space of (Co (2))"*!, we define
the weak*-BV (Q) topology (w*-BV (Q)) as the natural relative topology
of BV () generated by the (w*-M (Q))"*! one.

In particular, given a generalized sequence {uy}ieca and u in BV (Q) it
turns out that {uy}rca converges to u in w*-BV (2) if and only if

lim [/Q %\%Jr; /Q Diu,\i/h} :/Q 1/)0U+i§; /Q YiDiu
for every (’d}Ov 'd}la ceey 7/}1'7.) € (CO (Q))n+1'

For a wide exposition about BV functions we refer to [41], here we only
recall that, for every bounded open set 2, BV (§2) compactly embeds in
L}, (), that BV () endowed with its w*-BV (§2) topology is sequentially
complete and that each function in BV (2) can be extended to a function
in BV (R™) provided 2 has Lipschitz boundary.

By BVj,. we denote the set of functions on R™ that belong to BV (4)

for every bounded open set A of R"™.
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Analogously for every p € [1, +00] we set Whr = WP (R™) and
LfOC = LfOC (Rn)'

For every open set 2 and p in [1, +00] we denote by L? (Q), w— L* (),
W7 () respectively the strong and the weak topology of L? (Q), the
strong topology of Wb 7 (Q) and by C° (Q) the usual strong topology
on C° (Q).

Given an open set 2 and a function u on {2 we denote by 0sc u the
oscillation of » on 2, i.e. the value supQ lu (z) — u (y)!.

z,yc

Given a topological space (U, 7) and a subset X of U, by the symbol
(U, 1) — ¢l (X) we mean the closure of X in U i.e. the set of the points
u in U for which there exists a generalized sequence {ux}aea € X such
that {ux}aea converges to u.

Given a vector space V and a subset S of V we denote by conv (S5)

the convex envelope of S, i.e. the set of the finite convex combinations
of points of S.

Moreover, given a convex subset C' of R® with 0 € C, we denote by
¥ (C) the vector space generated by C, that is the set of the finite linear
combinations of the elements of C; obviously £ (C) turns out to be the
smallest vector subspace of R™ containing C.

Given a subset E of R™, we denote by xg the characteristic function
of £ defined by xp(z) =1ifx € Fand xg(z) =0if z € E.

Let us recall that a polyhedron is a finite intersection of half spaces.

A function u defined on R™ is said to be piecewise affine on R™ if it
is continuous and can be expressed as

m

w(z) =Y (us, (z)+8;)xp; (¢) TER
j=1
where z1,..., zm € R™, 81,..., $m € R and Py,..., P, are pairwise

disjoint polyhedrons of R™ with nonempty interiors such that L"j FP; =R".
=1

We now recall the concept of integral of a function takin]g values in a
Hausdorff locally convex topological vector space (cf. [48]).

Let (U, 7) be a Hausdorff locally convex topological vector space and
let {p.}ac.a be a family of seminorms generating the topology 7 of U.

Let £ be a Lebesgue measurable subset of R™ and let f be a function
from E to U.

DEFINITION 2.2. — The function f is said to be T-integrable on E if there
exists u € U such that for every n > 0 and a € A there exists a partition
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566 R. DE ARCANGELIS AND A. CORBO ESPOSITO

Ay o =A{By.a, j}i=1...m of E into measurable sets such that

sup {pa (i FWilBy,a, 5] — U)

: ijB,,,a,j,je{l,...,m}}<7). (2.5)

The vector u is the value of the integral of f on E and is denoted by
| fwa
E

By Definition 2.2 it is obvious that if f is 7-integrable on £ and if o is
another topology on U less fine than 7, then f is also o-integrable on E.

We recall the following result about integrals of vector valued functions
(cf. Corollary 5.2 in [48]).

THEOREM 2.3. — Let f : E — U be 1-integrable on F and let L € U*.
Then (L, f) is Lebesgue summable on E and / (L, f(y) dy =
E

<L, /Ef (y) dy>.

For sake of completeness we now briefly recall the following integrability
condition.

ProposiTION 2.4. — Let E be a Lebesgue measurable subset of R™, let
(U, T) be a sequentially complete Hausdorff locally convex topological
vector space and let f : E — U be continuous with compact support.

Then f is T-integrable on L.

Proof. — Let us first observe that, being f continuous and spt(f) compact,
f is uniformly continuous in the following way

for every n > 0, a € Athere exists § > 0
such that |z —y] < §d =p, (f (z) — f (v)) <n. (2.6)

For every h € N let R* = {Q?}jEN be a partition of R™ into half open
cubes with sidelenght 7 and let, for every j € N, EJh =FEnN Q;’.

Since f has compact support it is not restrictive to assume that E is
bounded, hence for every h € N there exists m; € N such that EJ" £ QO
if and only if j € {1,..., mxn}.
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Forevery j € {1,..., mp} let y? € E! and define u, = Z fWHIED.

We prove that {un}p is a Cauchy sequence.
To this aim let 17 >0, a € Aand let § be given by (2.6). Let v € N be

1
such that — < v then for every h, k > v it results
Pa (un — ur) = pa (Z f B - Z f (yf)lEk)
g=1

= pa (Z fh) > BN E}|
i=1 j=1
DI IEREA)
7=1 =1

my  Mmpy

<SSO IBFNEHp. (F ) - F@Wh). @D

i=1 j=1

Let us now observe that if E} N EY # & then [y} — y*| < 6, hence
by (2.6) we deduce

mp Mg

Po (up — ux) < Z Z |ENEY\n=|Eln forevery h, k>v, (2.8)
i=1 j=1

hence {uh}h is a Cauchy sequence.
Since (U, 7) is sequentially complete there exists w € U such that

up, — u and obviously u = fwdy. B
E

3. PRELIMINARY RESULTS

For every 7 > 0 we set
B, ={z €R" : |g| <} (3.1)
Let o be a symmetric mollifier, i.e. a nonnegative function in C* (R")

such that spt () C By, / a=1and & (—z) = a (z) for every z in R™.

n
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For every € > O let us set a. (z) = e™™ a (z/€), x € R™, and define,

for every u in L}, the regularization u. of u by

ue (2) = (e xu) (z) = / e (z—y)u(y) dy zeR" (32
The next result yields a description of the regularization of a function in
terms of the integral of its translated.

ProposITION 3.1. — Let Q be an open subset of R™ and let o be the
mollifier appearing in (3.2).

Then for every u € L}, € > 0, the function o () T [e-] u is L' ()-
integrable on R™ and

(/n a(y) T leylu dy) (z) = ue (z) forae. zinQ. (3.3)

Proof. — let e > 0, u € L},..
Let us observe that the space Ll endowed with the L () topology

loc

is a Banach space, then by Proposition 2.4 applied with (U, 7) equal to

LL . L' (Q)) the integral | o« (y)T [ey] u dy exists and is in L .
loc loc

RYI
For every v* in L™ (Q) the functional v € L}, — / v* (z) v (z) dz
Q
is linear and continuous on (L;,., L' (Q)), hence by Theorem 2.3 applied
with (U, 7) equal to (L}, L' (Q)) we deduce

locy

[v@ ([ e @a

- / n /Q v (2) a (y) (T [ey] ) (=) da dy
:/na<y>/9v*<z>u(x+ey>dzdy
~[v@ [ cwuereadydo

= / v* () ue (z) dr  for everyv*™ € L™ (). (3.4)
Q

By (3.4) equality (3.3) soon follows. W

About the left hand side of (3.3) the following result holds.

ProposiTION 3.2. — Let (U, T) be a Hausdorff locally convex topological
vector subspace of Ll _ verifying (1.4).

loc
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Let o be the mollifier appearing in (3.2), then if for every u € U, e > 0
the function o (-) T [e-] w is T-integrable on R™ it results

| a@Tlenludy € @, el (conv (Tlew, y € B:)

foreveryu e U, € > 0. (3.5)

Proof. — Let v € U, € > 0. Let us denote by HE the right hand side
of (3.5).

It is well known that, due to separation theorems for closed convex sets,
there exists a family 7: = {(v}, a,), 0 € S} C U* x R such that

ve H, & (v, v)+a, >0 foreveryoe S. (3.6)

o

Let y € By, then obviously by (3.6) we deduce

(vy, T ley]u) + a, > 0 for every o € S, 3.7

therefore by multiplying both sides of (3.7) by « (y) and then integrating
over R™ we obtain

/ a(y) (vr, Tleylu)dy + a, >0 for every o € S. (3.8)

By (3.8) and Theorem 2.3 we infer

o< [ al)(un, Tleal ) dy = < [t T[ey]udy>
for every o € S, 3.9

hence by (3.9) and (3.6) the thesis follows. W

For every bounded open set 1 of R™ and ¢ > 0 let us define the sets
Q- and 2} as

£

O = {z e : dist (z, 09) > e}, } (3.10)

Qf = {z R~ : dist (z, Q) < €}.
The following result holds.

PROPOSITION 3.3. — Let  be an open set of R™, C' be a convex set of R"
and let v be a function in (Li,.)" such that

¥ (z) € C for ae. zinl (3.11)
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Then for every € > 0 it results
Y. (x) € C  for every zin . (3.12)

Proof. — Since C is a convex set so is also C, hence there exist two
families {3, },es € R™ and {7, }secs C R such that

C={z€R" : (Bs, 2) +7, >0 foreveryo € S}. (3.13)
By (3.11) and (3.13) it follows that

(Bor, ¥ ()Y + v, >0 forevery o € Sand ae.yin {2, (3.14)

therefore by (3.14) it soon follows that

<ﬂ"’ /R o (2 =) ¥ () dy> + %
:/n ae (2~ 1) ({Bor ¥ (¥)) +7,)dy 20

for every o € S and every zin 2. (3.15)

By (3.15) and (3.13) (3.12) soon follows. W
Let us now prove the following result.

PrOPOSITION 3.4. — Let G be a convex subset of R™ such that 0G # <
and B, go; for some r > 0.
Let t €10, 1], then
dist (tG, 9G) > r (1 - 1). (3.16)
Proof. — Let y € G, then (see for example [37] page 413)
ty+(l—-t)x eCorY for every z in B,, (3.17)
hence, by (3.17), it soon follows that
ty + B, (1-0) cG. (3.18)

In conclusion by (3.18) it follows that the distance of every point ty of
tG from OG is greater than or equal to r (1 — ), hence (3.16) follows. W

For every n X n matrix M we denote by M ™!, if it exists, the inverse
of M and by M7 the transpose of M.

Given two bounded open sets §2;, 22, we say that ; € £, if Q; C §,.
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We now select a particular class of star-shaped open sets.

DEFINITION 3.5. — We say that an open set €) is strongly star-shaped if
it is star-shaped with respect to some point xo in ) and if for every z
in € the half open line segment joining zo to x, and not containing x,
is contained in ).

Let € be a strongly star-shaped bounded open set and let zg be given
by Definition 3.5, then it is obvious that for every t > 0 the open
set To + ¢ (2 — zg) is still strongly star-shaped and that, if ¢ > 1,
§§w0+t(Q—m0). .

This implies

To+ s(Q—z9) €QExo+t(Q— x0)
for every s, t € Rsuch that0 < s <1 < t. (3.19)

Let £2 be an open set of R™; we say that €2 has Lipschitz boundary if 5Q
is locally the graph of a Lipschitz continuous function.

The following result holds for open sets with Lipschitz boundary
(see [39], [24]).

PROPOSITION 3.6. — Let §) be a bounded open set with Lipschitz boundary,
then there exists a finite open covering {Qj }i=1,....s of S such that for every
Jg=1,..., s Q; NQ is strongly star-shaped with Lipschitz boundary.

4. SOME AUXILIARY RESULTS

In the present section, given a vector subspace U of L} . and a subset

C of R™, we study, for every bounded open set €2, some properties of
the sets in (1.23).

To this aim it is useful to consider first some particular cases.

We need to prove some lemmas.

LeMMA 4.1. — Let Q be a bounded open set and let C be a closed and
convex subset of R™.

Let u € VV,L1 then

c

—/ uDp € C forevery ¢ € Cy(Q) with ¢ >0,
)

/ p=1<Du(z)eC forae z in Q. 4.1)
Q
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Proof. — Let u verify the left hand side of (4.1), then we have

/ wDu€e C forevery @€ C;(Q) with ¢ >0, / p=1. (4.2)
Q Q

By (4.2) we easily deduce that if z is a Lebesgue point for Du then
Du (z) € C, hence one implication follows.

Let us now prove the opposite implication.

Since C' is closed and convex there exist two families {a,},es C R™
and {b,},es C R such that

z€C & {as, 2) + b, >0 forevery o € S. 4.3)
Let us assume that Du (z) € C for a.e. z in  and let ¢ € Cj () be
such that ¢ > 0 and / @ =1, then by (4.3) we get
Q

¢ (z){as, Du(z))+ ¢ (z)b, >0 forae zinQandeveryo € S. (4.4)

By integrating both sides of (4.4) over 2 and by applying the divergence
theorem we obtain

<a07 _/ UDQO> + ba = <a¢7) / QODU> + bg‘ >0
Q Q

for every o € 5, (4.5)

hence by (4.5) and (4.3) the implication follows. W

LEMMA 4.2. — Let 2 be a bounded open set and let C be a closed and
convex subset of R™.
Let uv € BV, then

—/ uDp € C forevery ¢ € Cy (Q) with ¢ >0,
Q

1
/Lp-—-l & —/DuEC for every
0 |A] /4

open subset Aof Q.

(4.6)

Proof. — Let u verify the left hand side of (4.6); let A be an open
subset of © and let {@n}r C C§ (A) be such that 0 < ¢, < @4y and
wh (z) — x4 (z) for every z in A.
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Since u € BV}, we have

/ wn Du = —/ uDy;, forevery heN, 4.7
Q Q
therefore by (4.7) and the closedness of C' we deduce
[AI/Du—hm/ /(phDu
e C. 4.8)

=1im—/uD ! ©hn
h Q
/‘Ph
Q

By (4.8) we get the direct implication in (4.6).
In order to prove the reverse one let u verify the right hand side of (4.6),

then by using the closedness of C, it is easy to prove that

/ Du € C for every Borel subset F of Q. 4.9)

[E]
Let ¢ be in C} () be such that ¢ > 0, / =1
Q
For every v € N let R” be a partition of R™ into half open cubes with

1
— and let Q% be such cubes.

sidelenght
IQ; N Q| > 0} and set, for every j € S,

124
Let S, = {j € N
1

i Q% N Q) Qvne

1
Since by (4.9), for every j € Sy, 7o—7 Du € C, by the
Q% N QY Qyne

convexity of C' we have

/ Z ©5 XQzna Du
/ s

/ Q v 1
YN
@ DueC

:Z /Q(p Q% N QY Qvna

JES,

for every v € N. (4.10)
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By (4.10), the closedness of C', once observed that g P Xquna = ¢
JES,
uniformly on €2 as v — oo, we deduce that

1
—/wDueC for every ¢ € Cy () with ¢ >0. (4.11)
Q

By (4.11) the reverse implication in (4.6) holds and the thesis follows. W
Now let us define for every bounded open set €2 and p € [1, +0o0]

KL () ={ueC': Du(z) e C forevery zinQ}, 4.12)

KEP () ={ueW_,? : Du(z) € C forae. zinQ} (4.13)

and

KC(Q)z{ueBVloc : L—Z—I/AD’UJEC

for every open subset A of Q} (4.14)

Then by the previous lemmas the following result holds.

ProrosITION 4.3. — Let C' be a closed convex subset of R™. For every
bounded open set Q) let Ko (CY, Q), Kc (WhF, Q), p € [1, +00), and

K¢ (BVige, Q) be defined by (1.23) respectively with U = C*, U = WL

loc
p € (1,400, and U = BV},.; moreover let K5 (), Ké’p(ﬂ),p € [1, +o0],
and K (Q) be defined by (4.12), (4.13) and (3.14).

Then

Ko (CH Q)= Ké ()  for every bounded open set S, (4.15)

Ko (WEE, Q) = K5P ()  for every bounded open set Q,  (4.16)

loc

Ke (BVie, ) = Kc () for every bounded open set €. (4.17)

Proof. — The proof immediately follows by Lemma 4.1 and
Lemma 42. W
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We can now study the properties of K¢ (U, -).

575

PrOPOSITION 4.4. — Let U be a vector subspace of L, . verifying
(1.3)+(1.5), let C be a subset of R™ and let, for every bounded open

set Q, Ko (U, Q) be given by (1.23).
Then for every bounded open set ) it results

ve Ke (U, Q),ceR=>u+ce Ko (U, Q);
u€ Kc (U, Q),yeR*=>T[ylue Kc (U, Q-—y);

we Ko (U, Q),t>0= 0,uc Ko (U, %Q)
ve Kc (U, Q),velU : v=uae. in Q=ve Kc (U Q)

Q]_ g Qz = KC (U, Qz) Q KC (U, Ql)

Moreover for every bounded open set ) we have

C conver = K¢ (U, Q) convex;

C closed = K¢ (U, Q) w — L () closed in U

and

C conver = Ko (U, )N K¢ (U, Q) C Ke (U, Q1 U Q)

for every couple of bounded open sets §}q, $)o;

C closed and conver = K¢ (U, 1) N Wh C Ko (U, Q2)

loc

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

for every couple of bounded open sets €1y, Qy with Q) C Q» and

1\ = 0.

Proof. — The proof of (4.18)+(4.20) easily follows by (1.3)=(1.5),

moreover (4.21) = (4.23) are straight away verified.
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In order to prove (4.24) let u € U and let {u) }aca € K¢ (U, ) be such
that {uy}aea converges to u in the w — L! (Q) topology, then for every

@ € C} (Q) with ¢ >0, / ¢ = 1, by the closedness of C, it follows that
Q

—/ uDyp = lim—/ uy Dy € C. 4.27)
Q A Q

By (4.27) the w — L' (Q) closedness of K¢ (U, §2) in U follows.
We now prove (4.25).
Let ©; and Q5 be two bounded open sets, letu € Ko (U, )NK(U, 22)
and let ¢ € C§ (Q; UQy) with ¢ > 0, @ = 1.
QU825
By using the finite partition of unity lemma (¢f. [37] XIV, Lemma 2.4)
let o; € C} (821), w2 € C} (Q2) be such that
©1 20, 9220, o1 + 92 =1 inspt(p). (4.28)

By (4.28) we get

Y = Q19 + p2¢ (4.29)

and we have

/ uDyp = / uD (p1p) + / uD (p2p). (4.30)
Q1082 (o 2
By (4.30) we deduce

1
—/ qu:—/ ‘Pl‘P/ uD | ———— 19
Q102 o o /%(p
251

1
—/ wp/ uD | ——— 2 |. (431
i 2 /ww
Q2

Let us now set ¢; = /

P19 and ¢ty = / @2, then it is clear that
o Q2

1 1
— i > 0, —pip=1 forze=1,2 4.32)
t; a, ti

and that

i+t = / (o1 +w2) @ =1, (4.33)
Q;UQ,
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1

therefore, since —/ uD - Lpiap) € C for i = 1,2, by (4.31)+(4.33)
Qi 7

and the convexity of C we deduce that

- / uDyp € C
QU

for every ¢ € Cé (Q; UQy) withy > 0, (4.34)

/ p = 1.
0100,

By (4.34) inclusion (4.25) follows.

In conclusion we prove (4.26).

Let Qy, €, be two bounded open sets with 2; C €, and |Q2\Q;] = 0
and let u € Ko (U, Q) N W5,

Then by Lemma 4.1 we have

Dy (z)e C forae zin$;. (4.35)
Since [Q22\Q4| = 0, by (4.35) we get
Du(z) e C forae. zin{y, (4.36)

hence, by (4.36) and again Lemma 4.1, we obtain that u € K¢ (U, Q»),
therefore (4.26) holds. M

5. A REPRESENTATION RESULT

Let C be a closed convex subset of R™ and let, for every bounded open
set 2, K} (2) be defined by (4.12).
1

In this section, given a vector subspace U of L;,  and, for every
bounded open set €, a topology 7 (2) on U, we describe the sets

() W, 7(Q) - el (KL (7)) N V).

e>0
We assume that

for every bounded open set 7 (Q) is finer than w — L' (Q) (5.1)

and that, if for v € U and ¢ > 0 u. denotes the regularization of « defined
by (3.2),

)u. € U forevery ue U, e >0,

ii)ue > uinT (Q)ase — 01 (5.2)

for every u € U, €2 bounded open set.
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The following result holds.

PROPOSITION 5.1. — Let U be a vector subspace of L;,, and let, for every
bounded open set Q, T (1) be a topology on U verifying (5.1) and (5.2).

Let C be a closed convex subset of R™ and let, for every bounded open
set Q, KL (Q) be defined by (4.12) and K¢ (U, Q) by (1.23). Then

() (U, 7 () — el (K& (@) nU) = Kc (U, @)

e>0
for every bounded open set 2. (5.3)
Proof. — Since C is closed and convex there exist two families

{as}oes € R™ and {b,}ses C R such that

C={z€eR": (a,, z) + b, > Ofor everyo € S}. (54
Let 2 be a bounded open set and let u € ﬂ (U, 7(Q))—cl(KL(Q7)NU),
e>0

then for every € > 0 there exists a generalized sequence {uf\ } aca CC Ny
such that w5 — u in 7 (Q) and

Du§ (z) € C forevery zinQ2-, A € A. (5.5)

Let ¢ € CL () be such that ¢ > 0, /cp =1 and let € > 0 be such that
Q
¢ € CHQZ), then by (5.4) and (5.5) we soon obtain

o

Since ¢ € C§ (7)) and u§ — win T (), by (5.1) and (5.6) we deduce

Oglim—<aa, / u§ D<p>+ba
by a-

&

< —<aa, / uD<p> + b, foreveryo € S, (5.7)
Q

wDUi>+ba/ >0 forevery AeA,oc€8. (56)
Q

€

therefore by (5.7) and (5.4) we have
() (U, 7(Q) — el (K& (Q7)nU) € Ko (U, ). (5.8)

>0
In order to prove the reverse inclusion in (5.8) let u be in K¢ (U, Q)
and let, for every € > 0, u. be te regularization of u given by (3.2).
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Let € > 0, then for every z € €17 the function o, (z — -) is in C} (2)
with a. (£ — ) > 0, [, . (z — y) dy = 1; therefore we have

Du, (z) = /Q (Dae) (z — ) u () dy

=—An<ae<m—->><y>u<y>dyec

forevery e >0, z € Q_, (5.9)

that is by 1) of (5.2)
ue € K& (QZ)NU  for every € > 0. (5.10)

Let us now observe that

e1< e = K& (Q7) C KL () (5.11)
hence, for fixed gg > 0, by (5.11) we get
u. € K& (Q2)NU forevery € < &q. (5.12)
By (5.12) and ii) of (5.2) we soon deduce
Ko (U, Q) C () (U, 7(Q) - d (K& (Q7)NT). (5.13)
€>0

By (5.8) and (5.13) equality (5.3) follows. M

6. AN INNER REGULARITY RESULT

Let us briefly recall the concept of inner regular envelope of an increasing
set function (cf. [35]).
Let F' be an extended real valued function defined on the set of all
bounded open sets of R™, we say that F' is increasing if
0 C Q= F(h) < F(Q). 6.1
Given an increasing function defined for every bounded open set of R™,

we define the inner regular envelope F_ of F' on {2 as

F_ ()= ilég F(A) (6.2)
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Obviously by (6.1) it follows that
F_ () =sup #(82). (6.3)
e>0
Let us now consider a vector subspace V of L; . and let, for every
bounded open set Q, H (2) be a subset of V verifying the following
monotonicity assumption

Q CQ = H(Q) CH(), (6.4)
then by (6.4) for every u € V the function
0 if we H(Q
1S, w) = { too if ugH EQ% (65)
is increasing.
Therefore, given a bounded open set {2, we define the inner regular
envelope H_ () of H (-) on the open set Q as the domain of I_ (Q,-),
ie. by (6.4) and (6.3)

H_(Q)= () H(A)=() H(). (6.6)
AeQ e>0
In the present section, given a family {H (?) : Q bounded open set}
of subsets of V' we give sufficient conditions in order to prove an identity
result between H_ () and H (f2) at least for every bounded open set {2
with Lipschitz boundary.
We assume that V is a vector subspace of L}, _ verifying (1.4), (1.5) and

loc

that, for every bounded open set €, a topology o (£2) on V is given such that

T[-y|O:Tlylu—u in o() as t— 1"
for every u € V and every strongly star-shaped
bounded open set € star-shaped with respect to y. 6.7)

For every bounded open set 2 let H (£2) be a subset of V such that

vue H(Q),yeR" = Tylue H(Q-y), (6.8)
uEH(Q),t>O:>Otu€H(—1—Q), (6.9)
H(Q) is o (Q)-closedinV (6.10)

and
H(Q)NH(Q) CTH(QUQ)
for every couple of bounded open sets 2, €25. (6.11)
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The following result holds.

PrOPOSITION 6.1. — Let V' be a vector subspace of Lj,, verifying (1.4),
(1.5).

For every bounded open set Q let o () be a topology on V satisfying
(6.7) and let H (2) be a subset of V verifying (6.8) +(6.11) and (6.4). Then

H(Q)=H_(Q) (6.12)
for every bounded open set §) with Lipschitz boundary.
Proof. — Let € be a bounded open set, then by (6.4) it soon follows that

H(Q)C()H ) (6.13)

e>0

In order to prove the reverse inclusion in (6.13) let us first assume that
Q is strongly star-shaped, let x4 € € be such that €2 is star-shaped with
respect to zg.

Lete > 0, since 2 is strongly star-shaped, by (3.19) there exists ¢, €]0, 1]
such that

Zo+1t(Q—xzo) C Q. for every t €]0, L], (6.14)
hence by (6.14) and (6.4) it turns out that
H(Q:)CH (zo+t(Q—1x0)) forevery t €]0, t]. (6.15)
Let w € () H (Q_), then, once observed that t, — 1~ as ¢ — 07,
by (6.15) it results that
u € H (zg+t(Q—1x0)) forevery t €]0, 1], (6.16)
therefore by (6.8) and (6.9) we deduce that
T [—z0] O: T [zo] u € H (). (6.17)
By (6.17), (6.7) and (6.10) we infer, as £ — 17, that

() H(@Q)CHQ)

for every strongly star-shaped bounded open set €. (6.18)

In order to prove (6.18) for every bounded open set {! with Lipschitz
boundary let {£;};~1,.,s be a finite open covering of  given by
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Proposition 3.6, such that for every j =1,..., s Q, = Qj N €2 is strongly
star-shaped.
Let u € ﬂ H (927), then by (6.4) it results that
>0
u € ﬂ H((%;);) forevery j=1,...,s. (6.19)
e>0

Since 2; is strongly star-shaped, by (6.18) and (6.19) it follows that
we () H(Q). (6.20)
j=1

At this point, by (6.20) and (6.11) it follows that

(VH(Q)CSH Q)

for every bounded open set 2 with Lipschitz boundary. (6.21)

By (6.13) and (6.21) equality (6.12) follows. W

7. THE CHARACTERIZATION PROBLEM

Let U be a vector subspace of L} _ and let, for every bounded open set
Q, K (U, ) be a subset of U.

In the present section and in the next ones we propose sufficient conditions
on the family {K (U, ) :  bounded open set} in order to deduce the
existence of a closed convex subset C of R™ such that K (U, Q) = K¢ (U, Q)
at least for every regular bounded open set 2, K¢ (U, ) being defined
by (1.23).

We assume that U is a vector subspace of L}, satisfying (1.3) < (1.5).

For every bounded open set Q let K (U, 2) be a subset of U satisfying,
according to Proposition 4.4, assumptions (1.13)+(1.21).

For every bounded open set 2 let us define the sets C () and C by

CQ)={zeR" : u, € K(U, Q)} 7.1
and by (1.22).

PrOPOSITION 7.1. — Let U be a vector subspace of L}, satisfying
(1.3) = (1.5), let, for every bounded open ser Q, K (U, Q) be a subset

Annales de IInstitut Henri Poincaré - Analyse non linéaire



A CHARACTERIZATION OF FAMILIES... 583

of U satisfying (1.13) + (1.15) and (1.19), C (2) be given by (7.1) and let
C be defined by (1.22). Then
C(Q)=C forevery bounded open set (. (7.2)

Proof. — We only need to prove that the sets C (2) are independent on
Q. To this aim let A, B be bounded open sets and let us prove that

C (4) c C(B). (7.3)

We can obviously assume that C (A) # &.

Let z € C (A) then u, € K (U, A) and, if 25 € A, by (1.14) it results
that T [zo] u, € K (U, A — z¢).

Since 0 € A — zg let £ > 0 be such that

A—
™ 5B, (7.4)
then by (1.15), (1.19) and (7.4) it turns out that
A —
Oy T lzo)u, € K (U, - $°> C K (U, B). (7.5)

At this point we only have to observe that

O: T [zo] u, () = u, () + % {2, o) forevery zinR", (7.6)

hence by (7.6), (1.13) and (7.5) we soon get u, € K (U, B), establishing
(7.3).
By (7.3), changing the role of A and B, we obtain

C (A) = C (B) for every couple of bounded open sets A and B. B (7.7)

In order to study further properties of the set C we need to assume that

K (U, Q)nCis C* (Q) closed in C" for every bounded open set . (7.8)

PROPOSITION 7.2. — Let U be a vector subspace of L},, satisfying

(1.3) = (1.5), let, for every bounded open set Q), K (U, Q), be a subset
of U satisfying (1.13)+ (1.15), (1.19) and let C be defined by (1.22). We
have that

a) if in addition we assume (7.8) then C is closed,

b) if in addition (1.17) holds then C' is convex.
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Proof. — Let  be a bounded open set. Let 2 € R™ and let {2,}r C C
be such that

Zp —™ Z, (79)
then the functions u,, are in K (U, 2) N C! and by (7.9) it results
Uy, — u, in C(Q). (7.10)
By (7.10) and (7.8) it follows that v, € K (U, §); by Proposition 7.1
this yields that z € C' and the closedness of C follows.
Finally if (1.17) holds the convexity of C immediately follows. W
Remark 7.3. — We observe that, in general, conditions of geometric type

on the family {K (U, ) : € bounded open set} change into geometric
properties of the set C' in (1.22).

For example it is easy to verify that if in addition to (1.13)+(1.15),
(1.17) and (1.19) we assume the following condition

there exists a bounded open set €2 and z5 € R™ such that
ve K (U, Q)=u(R ') €K (U, RQ) (7.11)
for every orthogonal transformation R with R (zo) = 2

then the set C is a ball with centre in zo and radius r = sup{|z — z¢| :
u, € K (U, O)}.

In fact, by Proposition 7.2, the set C turns out to be convex, moreover,
by (7.11), for every z € C it results that Rz € C; this implies that C is
the above described ball.

In the same way if we assume that

there exists a bounded open set 2 such that } (7.12)

ue K(U Q),t>0=>tuec KU, Q)

then C is a cone.

Let us now prove the following result.

LeEmMMA 7.4. — Let U be a vector subspace of Llloc satisfying (1.3) = (1.5),
ler {K (U, Q) : Q bounded open set} be a family of subset of U verifying
(1.13) = (1.15), (1.19), (7.8) and let C be defined by (1.22). Let  be a

bounded open set and let u be in K (U, Q) N C, then

Du (z0) € C for every zo € Q. (7.13)
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Proof. — Let Q be a bounded open set, » in K (U, Q)N C* and z in Q,
then, by virtue of (1.13) <+ (1.15), for every ¢ > 0 the function
u(zo) _ u(xo+1t(—20)) — u(xo)

T[-20] O: T [zo) u — _— . (7.14)

Q—fL'[]

isin K (U, Zo + nCct.

Let us now observe that 0 € Q—z, hence for every positive ¢ sufficiently
small, it follows that

Q—‘.’L'[]

To + Q. (7.15)
By (7.15) and (1.19) there exists £y > 0 such that
T [-20] O: T [zo] u € K (U, Q)N C*

for every t €10, to|. (7.16)

Let us recall now that u is differentiable in zo, hence

t —_ —_
sup u (Zo +t (x — x0)) — u (o)
z€EQ t
ast — 0%; (7.17)

— (Du (zp), z — zo)| — 0

moreover it is easy to verify that by the continuity of Du it results

D (T [~x0] O: T [zo) u) — Du(zo) uniformly onQast — 0F. (7.18)
By (7.17) and (7.18) we deduce that

u (o)

T [—20) O: T [xo) u — — (Du (xo), - —x0) in C'(Q)

ast — 07, (7.19)
therefore by (7.19), (7.16) and (7.8) we infer that
(Du (zo), - — x0) € K (U, Q) nC*. (7.20)
By (7.20) and (1.13) we get that

Du (zg) € C (), (7.21)
hence by (7.21) and Proposition 7.1 the thesis follows. W
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8. THE CASE OF CONTINUOUSLY
DIFFERENTIABLE FUNCTIONS

In the present section, given U and a family {K (U, 2) : 2 bounded open
set} of subsets of U as in section 7, we characterize the sets K (U, Q)N C?.

For every subset C of R™ and every bounded open set 2 let K} (£2) and
Ké’“’ (Q2) be defined by (4.12) and (4.13).

PROPOSITION 8.1. — Let U be a vector subspace of L} _ verifying

loc

(1.3) = (1.5); for every bounded open set Q let K (U, Q) be a subset of U
verifying (1.13)+ (1.15), (1.19), (7.8) and let C be given by (1.22). Then

KU, QNC'CKL(Q) for every bounded open set . 8.1

Proof. — The proof immediately follows by Lemma 7.4. W

We now prove, by various steps, the reverse inclusion in (8.1).
To do this we need to assume that

K (U, QnNWh™ is Wb (Q) closed in W, >

loc loc

for every bounded open set €. (8.2)

LEMMA 8.2. — Let U be a vector subspace of L}, satisfying (1.3) + (1.6);

loc

let {K (U, Q) : Q bounded open set} be a family of subsets of U verifying
(1.13) = (1.16) and (1.19)=(1.21).
Let C be given by (1.22), then for every bounded open set S its results

u piecewise affine function on R™, } 83)

ue KG> (Q) =>ueK (U, Q).
Proof. — Let €) be a bounded open set and let u = Z (uz; + 55) xp,
j=1

be a piecewise affine function on R™.
Since u € Ké"’o (€2), it turns out that

z; e C forevery j=1,..., m, (8.4)

C being given by (1.22).
By (8.4) and (1.13) we soon get that

u,; +s; € K(U QN P;) forevery j=1,..., m, (8.5)
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hence by (8.5), (1.6) and (1.16) we obtain

‘uEK(U, QN P;) forevery j=1,..., m. (8.6)
At this point by (8.6) and (1.20) we deduce that

we K (U, onl 1%) (8.7)

j=1
O\ (Q nJ Pj)
j=1
the thesis follows. I

Let U verify (1.3)+(1.5) and let {K (U, 2) : ©Q bounded open set}
be a family of subsets of U verifying (1.13)+(1.15), (1.17), (1.19) and
let C' be defined by (1.22).

Then by Proposition 7.2 C' turns out to be convex.

Let us observe that it is not restrictive to assume that, if C' # &, 0 € C;
in fact, if this is not the case, taken zg in C, it is sufficient to consider the
sets K' (U, Q) = K (U, Q) —u,, and C' = C — z,.

Let ¥ (C) be the vector space generated by C and let v (< n) be its
dimension, then it is soon observed that C possesses interior points in the
topology of ¥ (C) and that, by using the same argument as before, it is
not restrictive to assume that

and finally by (8.7) and (1.21), once recalled that

0 €C the interior being taken in the topology of ¥ (C). (8.8)

If v < n let us denote by 0,, respectively by 0,_,, the origin of R¥,
respectively of R™7".

Let R : R® — R" be the identity transformation if v = n and an
orthogonal linear transformation such that

R(Z(C)) =R x {0} 8.9)
if v < n.
For every function u in W, let us define the function v’ as
u(y) =u(By) yeR", (8.10)

then since RT = R~! we have that

Dy’ (y) = Dyu (R™'y)- R~ = D,u(R™'y) - RY
= (R-Du (R 'y)")7, y € R™. (8.11)
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Let T € R”, let B be an open ball of R™ centered at z, then for every
u in Ké"x’ (B) by (8.9), (8.11) and the convexity of B, it follows that
u' effectively depends only on (yi,..., ¥,) wWhen (y1,..., y,) varies in
RB, RB obviously being an open ball centered at 4 = Rz.

Hence we can define the function 4 as

: Sy v) it v=n
U(ylj.“’yy)-{ul(yla“wyv,yu+17"'a§n) if v<n

(Y1, w) ERY. (8.12)

By (8.12), (8.11) and (8.9) it soon follows that

Dﬂ‘(yla"w yu) € PTV (RC)
for every (y1,..., ¥,) € Pr, (RB), (8.13)

where Pr, is the projection function from R™ to R” defined by

Pr,(y1,e- s Yn) = Wis--s ¥) (Y1,--., Yn) € R™; (8.14)
moreover by (8.8) and (8.9) it follows that
0, € (Pr, (RC))". (8.15)

LemMa 8.3. — Let U be a vector subspace of L}, satisfying (1.3)+(1.6)
and let {K (U, Q) : Q bounded open set} be a family of subsets of U
verifying (1.13) = (1.17), (1.19) = (1.21) and (8.2).

Let C be given by (1.22), then

KL (Q)C ﬂ K (U, Q) for every bounded open set 2. (8.16)
e>0

Proof. — Let us first prove the following stronger inclusion
K¢ (B)C K (U, B) for every open ball Bof R™. (8.17)

To this aim let B be an open ball of R™, let u be in K} (B) and let @
be the function deduced from u as in (8.12), then obviously (8.13) holds,
moreover we can assume (8.15).
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Let €' be a bounded open set with Lipschitz boundary such that ' 3 B,
let ¢ €]0, 1] and let {&p}s be a sequence of piecewise affine functions

such that
G, — t0 uniformly on Pr, (R'), } (8.18)

Diiy, — tD4 in L, (Pr, (RSY))

loc

(see for example Proposition 2.1 at page 309 in [39]).

By (8.13), (8.15) and Proposition 3.4, applied with m = v and
G = Pr, (RC) (the convention that dist (z, &) = 400 for every z € R™
is adopted), we get the existence of 6 > 0 such that

dist (¢D1 (y1,--., ¥u), OPr, (RC)) > §
for every (y1,..., ¥,) € Pr, (RB), (8.19)

hence by (8.18) and (8.19) we soon obtain that

Diy, (y1,-.., y») € Pr, (RC)
for a.e. (y1,..-, ¥.) € Pr, (RB), h € N sufficiently large. (8.20)

Let us define now the functions uj and wuy as

ulh(ylj"'a yn) :ﬁh (y17'~'7 yu)
for eve ,eees Yu) €ERT
ry (1 v ) 8.21)
up (T1,--, zn) = up, (B (z1,-.., Tn))
for every (z1,..., z,) € R™,

then, by (8.21) and (8.18), the functions w;, are piecewise affine and
up — tu in WH > (B); (8.22)

moreover, by (8.20) we have

Duy, (z) € C for a.e. z € B, h € Nsufficiently large. (8.23)

At this point, by Lemma 8.2 we get that

up € K (U, B) for every h € N sufficiently large, (8.24)
hence, by (8.22), (8.24) and (8.2) we soon obtain that

tu € K (U, B) foreveryt €]0, 1]. (8.25)
Finally, by (8.25) and again (8.2) we deduce (8.17) as £ — 1.
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By (8.17) the thesis easily follows, in fact let {2 be a bounded open set,
let £ > 0 and let B!,..., B* be a finite covering of {27 made up of open
balls such that BY C ) for every j € {1,..., k}.

By (8.17) we get

KL (B C K (U, B7) forevery je{l,...,k}, (8.26)
hence by (8.26), (1.20) and (1.19) we deduce

k k
KL(Q)C ﬂ KL (B) C () K (U, BY)

J=1

k
CK (U, U Bj) C K (U, QD). (8.27)
j=1

Since (8.27) holds for every £ > 0, inclusion (8.16) follows by (8.27). W

We can now prove the main result of this section.

THEOREM 8.4. — Let U be a vector subspace of L} _ satisfying (1.3) + (1.6).

loc
For every bounded open set +. let K (U, Q) be a subset.of U verifying
(1.13) = (1.17), (1.19) =(1.21), (8.2) and let Kév (Q) be defined by (4.12)
with C given by (1.22).
Then

K (U, QnC =K. (Q)
for every bounded open set 2 with Lipschitz boundary. (8.28)

Proof. — The proof follows by Proposition 8.1, Lemma 8.3 and
Proposition 6.1 applied with H () = K (U, Q) N C!, V = C! and
o (Q) equal to the C! () topology, once observed that, with these choices,
(6.7) trivially holds. W

Let us observe that assumption (1.21) has been utilized directly just to
prove one step of the proof of Theorem 8.4, i.e. the one performed in
Lemma 8.2.

In the rest of the present section our goal will consist in replacing
condition (1.21) with assumption (1.27) suggested mainly by the existing
studies in literature on gradient constrained problems (cf. [2], [5],
[19] + [21], [26], [30], [39]) and prove again the thesis of Theorem 8.4.

A first consequence of (1.27) is proved in the following result.

PrROPOSITION 8.5. — Let U be a vector subspace of Lj,, verifying

(1.3) = (1.5); for every bounded open set ) let K (U, Q) be a subset
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of U verifying (1.13)+(1.15), (1.19), (7.8), (1.27) and let C be given by
(1.22). Then

C* £ @. (8.29)
Proof. — Let Qg be given by (1.27) and let =y be in .
Let us denote by L., the operator defined by
L., : u € C* (Q) — Du(zy) € R™, (8.30)
then it is clear that L, is a linear, continuous operator onto R™, therefore
by (1.27) and the open mapping theorem we obtain that
(Lo (K (U, Q)N CY))° # O (8.31)
By Lemma 7.4 we have
(Ley (K (U, QNCH) CC, (8.32)

hence by (8.31) and (8.32) the thesis follows. W

We now study the properties of the interiors in the C* (Q2) topology of
the elements K (U, Q) N C! when  is a bounded open set.

To do this we need to assume (1.25).
LEMMA 8.6. — Let U be a vector subspace of L}, verifying (1.3), (1.4),

(1.25) and let, for every bounded open set Q, K (U, Q) be a subset of U
such that (1.13), (1.14), (1.16), (1.19), (1.20) and (1.27) hold.

Then there exist zg € R™ and ¢y > 0 such that

Q bounded open set, 8.33)
wE O : fJu—uyllor @ < €0 = u € K (U, Q) CL. (&

Proof. — By (1.27) let ug be in the interior in the C' () topology of
K (U, Q) nC

Let zg € €. For every h € N let B, be the open ball centered at xq

and with radius — dist (zg, 9€) and let {u}, be a sequence of functions
such that

up € C*, uy, affine in By, up — ugin C! (Q0). (8.34)

By virtue of (8.34), for h large enough, the functions u, will be in the
interior, with respect to the C'? () topology, of K (U, §2p) N C*. Let us
denote by 1o one of such functions, say 4y = up,, and set Bg = B, then
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g is in the interior in the C! (§2) topology of K (U, §2,) N C?,
- . (8.35)
g affine in By.

By virtue of (8.35) let zp = Diyg (20), let 9 > 0 be such that

uECl : ”u—ﬂ()“cl (S0) <3€0=>U€K(U, Qg)ﬂcl (8.36)

and set § = diam (By).
Let us first prove that

B open ball centered at xp, diam (B) < 6, (8.37)
v e Cl :”’U—uzO”cl(B)<3€0:>'U€K(U, B)ﬂCl. '

To do this let B and v be as in (8.37), then since B has C'* boundary
there exists a function w such that

w e Ct, w~: v 4 U (@o) — Uz, (%) in B } (8.38)
and ”U) — UOHCI (Q0) < 350.
By (8.38) and (8.36) we get
we K (U, Q)N CH, (8.39)
hence by (8.39), (1.19), (8.38), (1.16) and (1.13) we obtain
ve K (U, BynC?, (8.40)
that is (8.37).
Let us now prove that
B open ball, diam (B) < §, 8.41)
veC i lv—uyllcrmy <3¢ = wveK(U B)nCL. (8-

Let B, v be as in (8.41) and let yg € B, then it is clear that

HT [yo - 1"0] v—=T [yo - .’l?[)} Uzo“C” (zo—yo+B)

=T [yo = zo] v = (20, Yo — Z0) = Uz, |lc1 (zo—vorB) < 30, (8:42)
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that zo € =g — yo + B and that diam (zg — yo + B) < §, hence by (8.37)
we obtain

T [yo — zo] v — (20, Yo — x0) € K (U, 2o —yo + B) N C*. (8.43)

By (8.43), (1.13) and (1.14), (8.41) soon follows.
We now prove (8.33).

To this aiE let Q, u be as in (8.33) and let {B,},=12. . be a finite
covering of 2 made up by open balls such that

diam (B) < 6, 0sc u < €, OSC Uz, < €p

s

for every s € {1,2,..., m}, (8.44)

then by (8.44) we have that
lu = uzller (B,) < 3eq forevery s € {1,2,..., m}, (8.45)
hence by (8.45) and (8.41) we obtain

ue K (U, B,)NC* forevery s € {1,2,..., m}. (8.46)

At this point by (8.46), (1.20) and (1.19) we get

uEﬁ K (U, Bs)ﬂcng(U, ﬁ Bs)ﬂcl

s=1 s=1

CK (U QncC, (8.47)

hence by (8.47) the thesis follows. M

We can now prove the analogous of Theorem 8.4.

THEOREM 8.7. — Let U be a vector subspace of L}, satisfying (1.3) = (1.5)

and (1.25). For every bounded open set Q2 let K (U, Q) be a subset of U
verifying (1.13)+(1.17), (1.19), (1.20), (7.8), (1.27) and let K} () be
defined by (4.12) with C given by (1.22).

Then

KU QnCt=KL(Q) foreverybounded open set Q. (8.48)
c
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Proof. — Let us prove that

KL(Q)CK U QnCL (8.49)
To this aim let u € K} (£2), let zo and &g be given by Lemma 8.6 and
let 7 € [0, 1.

Let t € [r, 1] and let Q%,..., QF,, be open cubes centered respectively
at the points z,..., zf, € Q with Q C U Q% and such that, by setting
g=1
for every j € {1,..., m:} 2§ = TDu (2%) — 720,

1-1¢ ”T (U- uzo) -7 (U (‘Tj) = Uz ($§))

+ uz]q (m;) — UZ;HCJ @) < &g
forevery j € {1,..., m;}. (8.50)

Let us now observe that obviously 2z € C and that, since

Du (z) € C for every z in £ and C is convex, we have

1 T T
ZU+¥Z;:—DU($;)+(1—Z)20€C for every 7 € {1,..., m},

hence by (1.22) and (1.13) we obtain

1
Uz + Tt € K (U, Q%) forevery je {1,..., m}. (8.51)
At this point by (8.50), Lemma 8.6, (8.51) and (1.17) we infer

Usg + 7 (U= Uz) + 7 (u(T5) = s (7)) + us: (2)

1
=1 uZD—f—ZuZ;

+(1-1¢) (Uzo L T(u—uy) + 7 (u (ml;)__t Uz, (7)) + st (5”;))
€EK (U, Q) foreveryje{1,..., m}, 3.52)

therefore by (8.52), (1.13), (1.20) and (1.19) we obtain

Usg + 7 (4 —uyy) € ﬂK(UQ CK( U@)gK(U,Q)

for every 7 € [0, 1]. (8.53)
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As 7 — 17, by (8.53) and (7.8) we get (8.49).
Finally by (8.49) and Proposition 8.1 the thesis follows. W

9. THE GENERAL CASE

In the present section we prove a complete characterization of the sets
K (U, Q).

LemMma 9.1. — Let U be a vector subspace of L},, satisfying (1.4), (1.25)
and let, for every bounded open set Q, T () be a topology on U verifying
(1.7), (1.9), (1.10) (i) and (1.12).

Let {K (U, Q) : Q bounded open set} be a family of subsets of U
verifying (1.14), (1.16) = (1.19). Then

KU, Q< (U 7(Q) - (KU, Q7 )nC 9.1)

e>0

for every bounded open set Q such that (U; T () is sequentially complete.

Proof. — Let Q be a bounded open set such that (U; 7 (£2)) is sequentially
complete and let » be in K (U, Q).

Let e > 0 and y € B.. By (1.14) and (1.19) it follows that
Tylue K(U Q-y) C K (U, Q), 9.2)
hence by (9.2) and (1.17) we have
conv({T'[ylu : y € Bc}) C K (U, Q7). (9.3)

Let us now observe that, by (1.9) and (1.18), K (U, £_) is also
T (2)-closed in U, hence by (9.3) we deduce that

(U; 7 () —cl (conv ({T [ylu : y € B:})) C K (U, Q). (9.4

By (1.10) (i) the function «(-) T [e-]u is continuous with compact support
from R™ to U, therefore, by Proposition 2.4, Proposition 3.2, both applied

with 7 = 7(£2), and by (9.4) we obtain that the integral / a(y)T[ey]udy
Rn
exists and that

/ a(y)Tleyludy € K (U, Q). 9.5)
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We now observe that by (9.5), Proposition 3.1, (1.25) and (1.16) we
obtain

ue € K (U, 27)N C* for every &> 0, 9.6)

hence by virtue of (9.6) and (1.12), once observed that from (1.19) it
follows that £; < e, implies K (U, 7,) € K (U, §,), we have

ue (U; 7(Q)—c (K (U, Q-)NCY) for every £ > 0. 9.7)

By (9.7) inclusion (9.1) follows. W

We now prove the reverse inclusion to (9.1).

LEMMA 9.2. — Let U be a vector subspace of L}, and let, for every
bounded open set S, T (2) be a topology on U satisfying (1.9).

Let {K (U, Q) : Q bounded open set} be a family of subsets of U
verifying (1.18). Then

W ()=~ (K (U, Q7 )ynCHYC () K (U, 9F)

e>0 e>0
Jor every bounded open set ). 9.8)

Proof. — The proof follows easily once observed that, by (1.9) and (1.18),
for every € > 0, K (U, Q) is also 7 (Q)-closed in U. W

We can now prove Theorem 1.1.

Proof of Theorem 1.1. — By (1.18), (1.8) (i) condition (7.8) holds, hence
by Proposition 7.2 the set C' in (1.22) turns out to be closed; moreover
by (1.17) it is also convex.

Let €2 be a bounded open set with Lipschitz boundary such that (U; 7(2))
i1s sequentially complete.

We observe that by (1.10) (ii) and (1.11) condition (6.7) holds, hence
by virtue of (1.10) (i), Lemma 9.1, Lemma 9.2 and Proposition 6.1 applied
with V =U, 0 () =7 (), and H () = K (U, Q) we get

KW, Q=)KU Q)
e>0

= (WU; 7(Q) —c (K (U, Q)N CH). 9.9)

e>0

Let us now observe that for every € > 0 we can find an open set with
Lipschitz boundary €. such that Q7 € Q. Q,, therefore by (1.19)
we deduce
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() (U; () —cl (K (U, Q7)nC")

e>0

= WU; 7(Q) — e (K (U, )N CH). (9.10)

e>0

At this point we observe that, by (1.6) and (1.8) (i), the assumptions of
Theorem 8.4 are satisfied, hence it turns out that

KU, Q)nC' = K} (Q.) forevery e > 0, (9.11)

the sets K} () being defined by (4.12); therefore by (9.9) = (9.11) we get

KU, Q) = (U; () —c (KU, Q)nC")

e>0

= (" (U; 7 () — el (K& ()

e>0

= () W 7(2) — &l (K& (27)). (9.12)

e>0

By (9.12) and Proposition 5.1, once recalled that by (1.6) K} (97) is
contained in U for every £ > 0, equality (1.24) follows.

Finally the last part of the thesis follows by Proposition 4.4 and by
(1.8) (i). W

By using the results of the last part of section 8 we can now prove
Theorem 1.2.

Proof of Theorem 1.2. — We observe that by (1.18) and (1.26) condition
(7.8) holds, hence by Proposition 7.2 the set C in (1.22) turns out to be
closed and convex, moreover by Proposition 8.5 it also results that C has
nonempty interior.

Let © be a bounded open set with Lipschitz boundary such that
(U, 7(Q)) is sequentially complete, then by virtue of (1.10) (i), Lemma 9.1,
Lemma 9.2, (1.10) (ii), (1.11) and Proposition 6.1 applied with V = U,
c(Q)=7(Q) and H () = K (U, ) we get

KU, Q) =KW Q)= U 7(Q)—c(K (U Q)NC). 9.13)

e>0 e>0
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Let K} (Q) be defined by (4.12), then by (9.13) and Theorem 8.7 we
obtain

KU, Q) =()(U 7(Q)—d(K:(QD)), (9.14)
>0
hence by (9.14) and Proposition 5.1, once recalled that by (1.23) K} (Q7)
is contained in U for every € > 0, equality (1.28) follows.
Finally the last part of the thesis follows by Proposition 4.4 and by (1.8)
(ii) once observed that if &‘75 & then obviously K (U, 2)NC! has nonempty

interior in the C! (Q2) topology for every bounded open set 2. W

10. SOME PARTICULAR CASES

In this section, by using the results of section 5, we specialize
Theorem 1.1 and Theorem 1.2 to the case of the most common function
spaces.

TueoreM 10.1. — Let p € [1, +o0] and let {K (LE_, Q) : Q bounded open
set} be family of subsets of LY verifying (1.13) +(1.20) with U = LY _ and
7 () equal to the L? () topology if p € [1, +o0[ and to the w*-L™ ()
one if p = +o0.

Let C be defined by (1.22) with U = L7 ..
Then C is closed, convex and

a) if in addition (1.21) too is satisfied, it results that
K (L} ., Q)= {u e LV - —/ uDyp € C for every ¢ € C§ ()
Q

with @20,/ <p:1}
Q
for every bounded open set Q with Lipschitz boundary; (10.1)
b) if in addition (1.27) is satisfied, it vesults that C has also interior
points and that (10.1) holds.

Conversely, given a closed convex subset C of R™ it turns out that
conditions (1.13)+(1.21) with U = L} _ and 7 (Q) equal to the L? ()
topology if p € [1, +oo[ and to the w*-L*> () one if p = +oo are satisfied
by K (U, Q) = K% () and that if in addition C has also interior points
then (1.27) too holds.

Proof. — The proof follows by Theorem 1.1 and Theorem 1.2 applied
with U = L and 7 () equal to the LP (Q) topology if p € [1, +o0]
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and to the w*-L> () one if p = +oo, once observed that, for every
bounded open set 2, (L}, LP (Q)) if p € [1, +oo[ and (Lf2,, w*-L>= (Q))
if p = +oo are sequentially complete Hausdorff locally convex topological
vector spaces. W

In the case of BV}, functions the following result holds.

THEOREM 10.2. — Let {K (BVipe, 2) : ) bounded open set} be a family
of subsets of BVi,. verifying (1.13)+(1.20) with U = BVj,. and 7 (Q)
equal to the w*-BV (Q) topology.

Let C be defined by (1.22) with U = BVj,. and Ko (Q) by (4.14).

Then C is closed, convex and

a) if in addition (1.21) too is satisfied, it results that
K (BVipe, ) = Kc ()
for every bounded open set Q with Lipschitz boundary; (10.2)

b) if in addition (1.27) is satisfied, it results that C has also interior
points and that (10.2) holds.

Conversely, given a closed convex subset C of R™ it turns out that
conditions (1.13)--(1.21) with U = BVj,. and 7 (Q) equal to the
w*-BV (Q) topology are satisfied by K (U, Q) = K¢ (Q) and that if
in addition C has also interior points then (1.27) too holds.

Proof. — Let us first observe that, for every bounded open set Q
with Lipschitz boundary (BVi,., w*-BV (Q)) is a sequentially complete
Hausdortf locally convex topological vector space.

Therefore the proof follows by Theorem 1.1 and Theorem 1.2 applied

with U = BV, and 7 (2) equal to the w*-BV (Q) topology and the
Proposition 4.3. M

We now treat the case of W27 functions.

THEOREM 10.3. — Let p € [1, +00] and let {K (WP, Q) : Q bounded
open set} be a family of subsets of VVIZ’CP verifying (1.13) = (1.20) with
U=Wpg? and 7 () equal to the WP (Q) topology ifpel, +oof and
to the w*-Wh = (Q) one if p = +c0.

Let C be defined by (1.22) with U = W5 and K5? (Q) by (4.13).

Then C is closed, convex and

a) if in addition (1.21) too is satisfied, it results that

K (Wi, Q) = Kg* (Q)

for every bounded open set Q with Lipschitz boundary; (10.3)
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b) if in addition (1.27) is satisfied, it results that C has also interior
points and that (10.3) holds.

Conversely, given a closed convex subset C of R™ it turns out that
conditions (1.13) + (1.21) with U = W2 F and 7 () equal to the WP (Q)
topology if p € [1, +oo[ and to the w*-W' > () one if p = +oc are
satisfied by K (U, Q) = K& (Q) and that if in addition C has also interior
points then (1.27) too holds.

Proof. — Let us first observe that for every bounded open set 2 with
Lipschitz boundary the spaces (W F, WL? (Q)), p € [1, +oo], and
(Wh o w*- W % (Q)) are sequentially complete Hausdorff locally convex
topological vector spaces.

Hence the thesis follows by Theorem 1.1 and Theorem 1.2 applied with
U =WSP and 7 (Q) equal to the w-W1 7 (Q) topology if p € [1, 4+o0]
and to the w*-W?1 > (Q) one if p = +0co, and by Proposition 4.3. W

In the case of C! functions the following result holds.

TueoreM 10.4. — Let {K (CY, Q) : Q bounded open set} be a family of
subsets of C* verifying (1.13) +(1.20) and (1.27) with U = C* and 7 (§2)
equal to the C* (Q) topology.

Let C be defined by (1.22) with U = C! and K} by (4.12).

Then C is closed, convex, has nonempty interior and

K (CY, Q) = K& ()  for every bounded open set Q. (10.4)

Conversely, given a closed convex subset C' of R™ with nonempty interior
it turns out that conditions (1.13)+(1.20) and (1.27) with U = C! and
7 () equal to the C* () topology are satisfied by K (U, Q) = K} (Q).

Proof. — The proof follows by Theorem 8.7 and by Proposition 4.4
applied with U = C? and 7 (2) equal to the C! () topology, and by
Proposition 4.3. W

11. AN APPLICATION

In the present section we apply some of the results obtained in this
paper to the problem of the homogenization of the elastic-plastic torsion
of a cylindrical bar.

As already mentioned in the introduction, in the theory of homogenization
of the elastic-plastic torsion of a cylindrical bar it is interesting to study
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the “convergence” of sets of the type

K2(Q)={ueW,.™ :u=0 on 89,

loc

|Du ()| < ¢ (hz) for ae. xin 2}, (11.1)

h being an integer number, §2 a bounded open set and ¢ a function verifying

¢ : R™ — [0, +00[, pbounded and 1-periodic in each variable z;, (11.2)
to a set of the type

K. () ={ucWo™ :u=0 on 89,

loc

Du(z) € Cy forae. zin}, (11.3)

C. being described by the formula

Coo ={z € R™ : there exists w € W

loc

with w 1-periodic in each variable x;

and |z + Dw (z)| < ¢ (z) for ae.zin]0, 1[*}. (11.4)

This study is just the one we want to carry out in this section by using
Theorem 10.3 together with I'-convergence theory (cf. [32], [34]).

Let us briefly recall the definition and the main properties of
I'-convergence. We refer to [34] and [2] for complete references.

Let (U, 7) be a topological space satisfying the first countability axiom
and let Fp, h € N, F and F’ be functionals from U to [—co + o0].

Let v € U, we say that

F'(u) =T7 () liminf Fy.(v) (11.5)

Vs

if for every {up}n, € U such that uy I w it results
F' (u) < lihminf Fy(up) (11.6)
and if there exists {vp}n C U sucﬁ that v, — wu and

F' (u) > liminf Fy(vp); (11.7)

h—oc
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we say that

F"(u)=T7 (7)limsup Fi(v) (11.8)

h— oo
v—u

if (11.6) and (11.7) hold with the operator “lign inf” replaced by “lim sup”.

h—oc
When F’ (u) = F"(u) we say that there exists the limit
= (n) lim  Fj (v).

We recall that the functional F’ and F” in (11.7) and (11.8) are 7-lower
semicontinuous on U and that, if in addition (U, 7) verifies the second
countability axiom, it results

there exists {F}, }x € {F}» such that the limit
I'7 () lim Fy, (v) exists for every u € U. (11.9)

v—u

For every subset S of W" ™ we set

loc

oo 0 if s
Is tueWh™ {+Oo ;f Zés (11.10)

and prove the following result.

THEOREM 11.1. — Let ¢ be as in (11.2), let C, be given by (11.4) and,
for every bounded open set () and h € N, K} (Q) by (11.1) and K% (Q)
by (11.3).

Assume that

(C)° # @, (11.11)
then

Ikg (o (w) =T7 (C°(Q)) lim lxo (o) (v)

for every bounded open set Q, win W ™. (11.12)

We remark that the convergence result in Theorem 11.1 turns out to

be equivalent to the Kuratowski notion of convergence for sequences of
sets (cf. [45]).

Moreover we observe that a sufficient condition on ¢ to get (11.11) is
the following one proposed in [20]
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there existm > 0, 8 € [0,

o |

[ such that

1

m < ¢ (z) for a.e. zin]0, 1[”\]5 -8, %4—9[ . (11.13)

Let ¢ be a function as in (11.2), for every bounded open set 2 and
h € N let us define the set

Ki(Q)={ue W5 :|Du(z)| < ¢ (hz) forae zinQ} (11.14)

and its characteristic function 1, (£2,-) = Ik, (@) (), moreover let us define
the following limits

(11.15)

loc

F'(Q, u) =17 (C°(Q) liminf I, (Q, v) uwe WS>

vou

loc

F'(Q,u) =T (C*(Q)) limsup I (2, v) we W™,  (11.16)

v u

We are going to prove that for every u in VVI{,’C"O the inner regular
envelopes (see Section 6 for the definition) F’ (-, w) and F” (-, u) of the
functionals in (11.15) and (11.16) agree for every bounded open set and that
they are equal to the characteristic function o, (2, -) of a set of the type

Ko () ={ueW.,> : Du(z)e Cyp foraezinQ}, (11.17)

loc

C., being an explicitly described closed convex subset of R™.

By virtue of this we will prove that for every bounded open set 2
the " (C° (€2)) limit of the sequence {Ixo ()} exists and is equal to
ko (), K& () being given by (11.3).

From this result the “convergence” one for the sets in (11.1) to the one
in (11.3) will follow.

For every h € N let us set o, (z) = ¢ (hz), z € R™.
Let us prove some properties of F' in (11.16).

LeEmMMA 11.2. — Let @ be as in (11.2) and let F"' be given by (11.16).
Then

F" (Q — zo, T [zo]u) = F” (Q, w)

for every bounded open set Q, uwin W2 and z¢ in R™. (11.18)
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Proof. — Let €, u, xo be as in (11.18), let us prove that
F"'(Q — o, T [zo] u) < F” (Q, u). (11.19)

To do this we can assume that F” (2, u) = 0. Let A, B be open sets
with B € A € Q and let {u,}» € W, be such that us — u in C° (4)
and |Duy| < @, ae. in A.

Let {mp}r C Z™ be such that li}{n mp/h = zg; for every h € N we

define the functions v, = uy ( +%), then obviously v, — T [%o] u in
C°(B - zy) and

m
Do (@)] =| Dun (2 + 52 ) |< 0 (ha + ma) = o1 (@)
for a.e.zin B — zp and every h € N. (11.20)

By (11.20) we have that v, € K, (B — ) for every h € N, that is
F” (B—.’L'[), T[.’L‘()]u) =0

for every open set B with B € (, (11.21)

hence by (11.21) inequality (11.19) soon follows.
Finally, by simmetry, (11.18) follows by (11.19). W

LeMMA 11.3. — Let @ be as in (11.2) and let F"' be given by (11.16). Then
1

for every bounded open set 2, u tn VVI{)’C‘X’ andt >0. (11.22)

Proof. — Let Q, u, t be as in (11.22), let us prove that
1
F (Z Q, 0, u> < F' (Q, u). (11.23)

Obviously we can assume that F” (2, u) = 0. Let A, B be open sets with
Be A€, let {up}n € W > and let {kx}5 be an increasing sequence
of integer numbers such that u;, — u in C°(A) and |Duy, | < @4, a.e. in A.

Let {¢tn}r C N be such that li}{n th/kn = t; for every h € N we

k t
define the functions wy = t—h Up, (Eﬁ ) then obviously wy, — O, u in
h h
1
(o (z B) and
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t
Duy, (k—}; m)

1
for a.e. x in 7 B and every h € N. (11.24)

|Dwp, (z)| = <@ (thz)

1
By (11.24) we have that w;, € K, (z B) for every h € N, from

which we obtain

1
F (? B, O, u) =0 for every open set B with B € , (11.25)

hence by (11.25) inequality (11.26) soon follows, once observed that
f;.}é% F <% B, Otu) = sulp F'(E, Oyu).
Ee; Q
Finally, by simmetry, (11.22) follows by (11.23). W
We can now prove the representation result for 7 and F”.
For every bounded open set {2 let us set

Ko (@) ={ueWl>: Du(z)€Cyx forae.zinQ}. (11.26)

loc

ProPOSITION 11.4. — Let o be as in (11.2), let F/, F" be given by (11.15)
and (11.16), Cw by (11.4) and, for every bounded open set Q, K., ()
by (11.26).

Assume that (11.11) holds, then

FI_ (Q, u) = Fi/ (Q, U) = |]Kco (D) (U)
for every bounded open set 0, u in WL (11.27)

Proof. — Let us preliminarly observe that by (11.9), since we are going to
describe explicitly the inner regular envelopes of the functionals in (11.15)
and (11.16) for every bounded open set £, it is not restrictive to assume that

F (Q, u)=F"(Q, u)
for every bounded open set €2, v in Wh >, (11.28)

loc
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By (11.28) it is clear that for every bounded open set €2 there exists a
subset K (Q) of W, such that

FL(Q, u) = F"(Q, u) =g () (u)
for every bounded open set 2, u in W, (11.29)

By (11.29) the family {K (2) : £ bounded open set} satisfies all the
assumptions of Theorem 10.3 with p = +o0. In fact (1.13), (1.16), (1.19)
trivially hold, (1.14) and (1.15) respectively follow by Lemma 11.2 and
Lemma 11.3, (1.17) follows by the convexity of F” (£2,-), (1.18) by the
C° (£2) lower semicontinuity of F” (Q,-) for every bounded open set 2;
moreover (1.20) comes for example by (11.11) and Proposition 2.5 in [26]
and (1.27) by Proposition 3.5 again in [26], both applied with f = 0.

By Theorem 10.3 we deduce the existence of a closed convex subset C
of R™ with nonempty interior such that

K(Q) ={ueW,™: Du(z)eC forae zinf}

loc

for every bounded open set  with Lipschitz boundary, (11.30)

moreover, once recalled that

F'(Q, u)
= sup {F” (A, u) : A open set with Lipschitz boundary, 4 € Q}
for every bounded open set Q, uin W;> >, (11.31)

loc

by (11.29), (11.31), and (11.30) we obtain

K(Q) = N K (A)

A
A with Lipschitz boundary

={u €Wy : Du(z) € C forae. zinQ}
for every bounded open set £, (11.32)

hence in order to complete the proof we only have to verify that
C=Cu. (11.33)
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Equality (11.33) follows by (11.29) and Lemma 4.1 and Lemma 4.3 in
[26], both applied with f = 0. W
We can prove Theorem 11.1.

Proof of Theorem 11.1. — Let €, w be as in (11.12).

If » = 0 on 92 the proof follows by Theorem 11.3 and Proposition 2.4
in [26] applied to f = 0.

Otherwise the thesis follows once observed that lxo () (u) = +oo and
that for every {un}n C VVll’ *° such that up — » in C° (€) it must result

oc

that up ¢ Ky () definitively in . W
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