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ABSTRACT. - We study the function u (x) - v (y) - ~ v ~ ~ x - y ~ ~ 2 to second
2

order, when u is u. s. c. and v is l. s. c., near a where the
maximum is attained. We obtain a sharpening of a result of P.-L. Lions
and H. Ishii which implies comparison results for fully nonlinear elliptic
equations of second order.
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RESUME. - On etudie au second ordre la fonction

u(x) - v(y) - 03BB 2~x - y~2, quand u est s. c. s., vest s. c. i., au voisinage d’un
point (x, ) ou elle atteint son maximum. On en deduit notamment des
resultats de comparaison pour des equations elliptiques non lineaires du
second ordre.
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420 M. U. CRANDALL

INTRODUCTION AND STATEMENTS OF RESULTS

second order semidifferentials of functions which lies at the heart of the

study of viscosity solutions of second order fully nonlinear elliptic equa-
tions. Moreover, around this kernel we weave an exposition of some basic
facts concerning the comparison problem for viscosity solutions which we
hope will make the recent important developments in this area more
accessible than heretofore.

Let us recall the notions and attempt to motivate the statement. Let Q
be a bounded open subset of tR", S" x" be the set of real symmetric n x n
matrices and u, v : Q --~ R where Q is the closure of Q. One of the principal
methods in the viscosity theory of fully nonlinear elliptic equations was
born in the study of first order equations and involves the consideration

of the function u (x) - v (y) - 03BB 2~ I x - .v I I 2 near a maximum point

(, j) eQ x Q, so we assume that

/iB _. ~__~ _. i_.v a’ I I __ .. II 2 ~ ,, l~~ _. ~r.~ ~’ II ~ .^, II 2 ~~.. _. _.... n

Above and later ( . , . ) and [[ . [[ are used to denote the Euclidian inner-
product and norm.

If we assume that u, u are twice differentiable at (x, y) in the sense of
having second order expansions about of the form

I ~, ~ l_. 1J , ~J, H ~2014 u u 1.11V 111.1.1V V 11V 1.(.i.1.1V11 ~~tj

usual meaning, we would deduce from (1), (2) and the fact that first
derivatives vanish and second derivatives are nonpositive at a maximum
that p = q = ~, (~c - y) and

. -. /X 0 

.. __ _ ---- 

__ _._____a 
-- _~ _ _ __~__ -- 

~~~~_~___ _ .~__~..,_ .. _ ---- _.... ~.__

extent we can make a similar statement if u, v are not smooth - indeed,
we consider the situation when u is upper-semicontinuous and v is lower-
semicontinuous.

The variants of the notions of derivatives we need are described next.
In view of the fact that we are dealing with semicontinuous functions, it
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will be necessary to nave a notation tnat recoras iuncuon values as wen

as first and second order information. A point ( u (z), p, S) E R" x S" "" is a
(second order) superdifferential of u at z ~ 03A9 if

... ., , _ , . _ 1,2014~ .... ,!! II 

- - ~.==w~. ~~~ w==v v=w.v.v r v. vrr , sa.av 7 vi rrl, ~~ v

let D2, + u (z) denote the set of second order superdifferentials of’ u at
z, i. e.,

(5) ~2~ + u (z) _ ~ (u (z), t~. S) E (~" X that (4l holds ~.

and reversing the inequality in (4), which amounts to

~2~ - v (z) _ - ~2~ + ( - v) (z)). The functions ~2° +, ~2~ - map Q to subsets
of R x [R" x n. If M is any metric space and h is any map of SZ to the
subsets of M, we define its graph G (I’) _ ~ (x, and
its closure r by G (r) = G (r) where the overbar always stands for closure.
Thus the closure ~2° +, ~2, - of ~2~ +, ~2, - are defined. We also use the
notations Dcp (x) to denote the gradient of a (classically) differentiable
function and to denote the second derivative matrix of a twice
differentiable function tp. We are going to prove the following results:

THEOREM 1. - Let u, v : ~ ~ u be bounded and upper-sem icontinuous
and v be bounded and lower-sem icontinuous. Let 03BB > 0 and (.z, y) ~ 03A9 x Q
satisfy (1). Then there are X, such that

. __ . _ 
. /I 0~ _ ~X 0 1 _ .. ~ ~ I - I~

(7l (u (~

the comparison problem for viscosity solutions of fully nonlinear second
order elliptic equations. Let be continuous and

satisfy

(9) F (x, r, p, X)  F (x, s, p, Y) whenever r  s, Y  X,

and boundedness properties assumed in the theorem and, moreover,
assume that F (x, u (x), p, S) _ 0 [respectively, F (x, v (x), p, S) >_ 0] for al!
x ~ 03A9 and (u(x), p, S) ~ D2, + u(x) [respectively, x e Q and
(v (x), p, S) E ~2° - v (x)] - in other words, we assume that u (respectively, v)
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is a viscosity 

M. G. CRANDALL

speak of sub- and supersolutions. For example, if F (x, r, p, S) =
r-(trace(S))3-f(x), then (10) is the Notice
that if F is lower-semicontinuous (respectively, upper-semicontinuous),
then ~ 2 ° + ~ 2 ° - may be replaced by ~ 2 ~ + ( respectively, ~ 2 ~ - ) in the

inequalities defining subsolutions (respectively, supersolutions), so we may
do both since F is assumed to be continuous. The comparison problem
for the Dirichlet problem (for example) for ( 10) is to show that if u and v
are a subsolution and a supersolution of ( 10) and u _ v on then u _ v
in Q. The strategy for doing this is to assume to the contrary that

u (x) > v (x) for some It is then easy to see (using the assumption at
the boundary) that for large ~, > 0 if (x, y) has the property (1) then

x, y E Q. In view of the Theorem 1 and the assumptions, we then have

l l l l F l x_ ~~-~Y a. lx - vl_ Yl

_ _ _ _ __... _ _ 

-’ 
_ 

~t-’B~.’ 
__-_ __ _.__ _ _. _ .. _ 

r _ _ _ _ _ _ __ _ _ ’ 
_ _ 

__ _-_ __Q 
__

contradiction as ~, -~ oo (which, of course requires some structure condi-
tions on F, etc.). We give examples of this in Section 2. We remark that
in practice it seems that the simpler structure of the assertions concerning
the existence of a Z as at the end of the theorem suffices to treat many
possibly degenerate equations, while the more detailed information in (6)
is needed in strictly elliptic equations. The constants are sharp in (8) and
perhaps not in (6) -one worsens the bound above from (3) in order to
have a lower bound, and we do not know if the constant in the lower
bound is sharp for a given upper bound, but this does not seem important.
The reader will see from the proof that if the constant 2 in upper bound

in (6) is replaced by 1 and the 4 in the lower bound is replaced by -
where 0  2 E  1, then the result remains true (6) results from e==- ). The
application of Theorem 1 indicated above does not use the possibility that
(x, x Q) allowed in the Theorem. However, this possibility is

important for discussing more general boundary conditions as was pointed
out to us by H. Ishii, and we are grateful to him for recommending the
more general formulation (see also Remark 3 below for a still more general
variant suggested by Ishii).
The first part of Theorem 1 is a sharpened version of Lemma IV.1 of

Ishii and Lions [3] which in turn was deduced from an argument of Ishii
[2] which in turn relied on results of Jensen [4]. The statement of Theorem 1
is less mysterious than that of Lemma IV.1 of [3] and has the virtues that
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the lower bound does not contain a large parameter 1 depending on u, v

E

in an uncontrolled way and the statement concerns every (x, y) for which
(1) holds. While the range of application to equations like (10) is not

really increased by these ameliorations, the tasks of writing proofs and
discovering structure are less onerous when working with the cleaner
statement and this is pleasing. Indeed, Theorem 1 (including such variants
as will appear as the need arises) appears to us to be the right way to
summarize the information needed for the uniqueness theory of viscosity
solutions. As regards this theory, there have been recent significant
advances following the path breaking (and now obsolete) results of Jensen
[4]. Ishii and Lions [3] present a comprehensive overview from a point of
view consistent (but necessarily a bit more complex in the absence of
Theorem 1) with the remarks above, while Jensen [5] offers a competing
presentation from another point of view as does Trudinger [8] in a special
case. The reader is invited to consult these works and their references to
obtain a balanced image of the area (the bibliography of [3] is large).
To the expert in this subject, the principal contributions of this note

consist, perhaps, of the formulation of Theorem 1 and the following
lemma concerning quadratic forms which corresponds to the fact that the
theorem is true in the quadratic case:

LEMMA 2. - Let X, satisfy

( 14~

, ____.

(16i X7V and

Section 1 assuming the validity of the lemma. Addressing the experts, we
point out that a principal feature of the lemma is the following: while the
set of matrices satisfying ( 12) is unbounded, the regularization processes

Vol. 6, n° 6-1989.
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, , , , ° 

related (as in ( 14)) to the original ones in the ordering from the point of
view of semidifferentials and this provides ample compactness for various
arguments. Finally we mention that there is another path to the proof of
the first part of Theorem 1 which parallels the route taken by Lions and
Ishii rather closely and this path is also outlined in Section 2.
Having dispensed with the experts, we offer the novice something more.

We will outline a full proof of Theorem 1 (although we will call on two
results - one from Aleksandrov [1] and another from Jensen [4]) in a way
we like (certainly no real news here, as this proof is largely a cleaning
up of arguments from the references given above), thereby conveniently
collecting the essential points needed to understand the uniqueness theory
of viscosity solutions. Indeed, for example, with this proof, Theorem 1
and the sample use of this theorem in this context given in Section 2 in
hand, one may peruse [3] quite comfortably and simplify other of the
arguments there as well. In the very brief Section 3 we formulate a version
of Theorem 1 appropriate to the discussion of fully nonlinear parabolic
equations.
We have kept this note as brief as possible consistent with a certain

completeness and remark that we intend to consider appropriate variants
arising from changes of variables, unbounded domains, infinite dimen-
sional considerations, etc., elsewhere.
The author would like to thank Carl de Boor for useful discussions in

the course of this work.

1. THE PROOF OF THEOREM 1

We begin the proof of Theorem 1 by noting that we may replace u, v
by and reduce to the case ~, =1 and we do so herafter. We will
sketch the proof in a sequence of steps.

S tep 0. - We may assume that ( x, y) E SZ. Indeed, if we choose a

sufficiently large constant M and extend u, v to functions ue, ve on !R" by
setting ue (x) = - M, ve (x) = M on R"/Q, then a check of the definitions
shows that (1) holds for in place of u, v and a full neighborhood N
of Q in place of Q and, moreover, for  ~ 03A9, (ue(), p, X) ~ D2, + ue()

(closed as a graph on N) if and only if (u (x), p, X) E 
+ 
u (x), etc.

Remark 3. - In fact, +, ~2, - are local objects by their definitions
and the above reduction does not require "Q" to be the closure of an
open set. Thus one can treat the situation in which u, v are defined on an

arbitrary locally compact subset of M".

Step 1. - We show that the result holds if u and v are twice differentia-
ble at (x, y) in the sense that (2) holds. In this case we know that
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~~iw1 v ~ veB.-~2,+ 11/YI 1t11 f1 V " ,~r~~

with XE, YE in place of X, Y. In order to produce Z with the properties
of the final assertions of the Theorem, we simply use the final assertion
of the lemma. Notice that we don’t need to use the closures of ~2° +,
~2 ~ - here.
To obtain the general case, we make several approximations and take

limits.

Step 2. - We show that if the result holds when the inequality ( 1) is
strict for (x, ~) 5~ (x, y), then it holds in general. We replace u (x), v (y) by

..LJViV V / V VV riivfrY a.a. 

Assuming that the result is true in this event, we have the existence of
X ( ~), Y ( S) such that
~~W ~ / ~W .... t7~C~W _%~.7_+ ~W !__ ~W ~ ~ ~r~C~W _%12_- 

----

(u l xl_ X ( F~~ +. 2 F~II F ~ 2 ~ + u (xl_ (v ( vl_ Y ( ~l - 2 ~ Il E

is compact, we may pass to a subsequential limit as 03B4 ~ 0 to obtain the
existence of X, Y with the desired properties. The existence of Z follows
similarly.

Step 3. - In this "step" we recall some standard facts. While not all
of these facts are needed here, they tell a complete story. The utility of
the approximation about to be introduced in this arena was first pointed
out in Lions and Souganidis [7] and Jensen, Lions and Souganidis [6]. Let
f~ c IRm be open and bounded. Let W : C~ ~ !R be upper-semicontinuous and
bounded

. va. v~ u v arvi.
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t

,..~. ’B __ _~ . _ r__ _ .

(i) W ~ W£ _ where C is from ( 19).

(iii) WE is twice differentiable a. e. on U. This follows from (ii) and
the result of Aleksandrov [1] asserting that convex functions are twice
differentiable a. e.

(iv) Since W is upper-semicontinuous, for each there is a point
y~, x ~  such that

(22) r-x ~~ 2 E2C.

(vi) If cp E C2 and

(24) W

of WE, while (25) follows from the immediate fact that if WEC2 and 
has a maximum at z, then + W (z) and (26) then
from the fact that all the values of ~2~ + W can be so obtained.

(vii) Let Br(y) be the ball of radius r centered at y and Br=Br(O). If
(p E C2 and (23) with strict inequality for holds, then for
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~=~rB~.r~ - 

[4] (which is itself a variant of earlier results by Aleksandrov and others).
Recall, in applying this lemma, which may be read quite independently of
the main text of [4], that convex functions are locally Lipschitz continuous.

(viii) If and has a maximum at then for

every 6 > 0 there exists p E Bs such that x H WE (x) - cp (x) +  p, x ~ has a
maximum at a point and W~ is twice differentiable at xp. This
follows at once from (vii) and (iv).

(ix) If

then x~ ~ , W~(x~), W(y~, x~), ~ W () as 8 1 0. To see this, observe that
TT T l _ _1 ,- /_ _1 !»1 t ~~1 ~~ TT TE ,oo !_.E1 ~~ tZ 1 l .. 1 ~,. 

__ /’B ,- 

and we conduce tnat x = x. Moreover, choosing x = x = x, we learn that

W (.Y£, x£) ~ ~ W t x).
(x) The reader may skip this point at this time as it is not used except

in an alternate proof of Theorem 1. If (!) is convex and ~, E, ~ > o, then
/ ~~B ~ ~ v w n ~?~

- 

-------- ,-- , ----- .. - 
-- --- 

-~~- -,------ j ----,----~ 
.--- -------.---

i i ix n e - I ix TXa

B " ~~j~~~~ ~~~ 1.1 %~~ /Y / il J / VS 

l v l -’ l ,r.l

process on the left and using the definitions provided that ? is convex (or
that a point y for which one has

1

voi.o,n 
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.1.1.1 V ~.

Step 4. - We complete the proof. Assume that u (x) - v (y) - 

has a strict maximum at ( x, y) in Set a = SZ x SZ and

W (x, y) = u (x) - v (y) on a (so the pair (x, y) plays the role of x in the

discussion of Step 3). Then (by (ix) above), W~ ( x, y) 1 ~~ x - y ~~ 2 has
2

a maximum at a point (x~, yJ and (x, y) as E ~, 0. Moreover, by
(viii) and (ix), there are points p£, q~ ~ Rn of norm at most s such that

W (x, x~ + q~, y ) has a maximum and two deriva-
2

tives at a point y~ which is within 8 of y~. Since

(where uE is defined via (20) and vE = - ( - v~)), we
conclude from Step 1 that as soon as ~ is sufficiently small (as it also

must be several places below) that there are X (~), Y (E), such that

- ~ ~ ,.. _ . -

..... --- - --

~" J

y~, ~E) -~ (x, y) [by (iv)]. One shows that u "~) -~ u (x),
XE) -~ v (y) just as in Step 3 (ix) and then concludes that any limit

point ( X, Y) of ( X ( E), Y ( £) ) as e j, 0 satisfies ( ~, ( 7) ( recall that we put
~, =1). The existence of Z is demonstrated similarly, and it’s over.
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2. THE PROOF OF LEMMA 2 AND AN APPLICATION OF

THEOREM 1

To prove Lemma 2, we observe several things. First, if ( 12) holds, then

f (i) X  I_

~~~~~~~~ ~~~ . ~~~ . i1I’ ~~~~~t / 

are equivalent to (12). We work below with parts (ii) of these relations - the
other pair are entirely similar. Let us first note that ( 12) is equivalent (by
definition) to

(14) Vx. 

(35) XI, Y-I and X~Y.

r r

such that Y z = - z. Putting x = z, y = az in (12) then quickly yields a
contradiction.

The second inequality in (33) (ii) is true for scalars y > -1 and so for
Y, and the first inequality in (33) (ii) follows from minimizing the right-
hand side of

"X x_ 

r ‘ 
- 

_ _ ~ _ r 

-X~, Y~ are just given by the appropriate versions of (20) with (~ = (~")
and so the asserted equivalence is evident. Next we assert that for E  1.
l ~t1 / a _v v ~ ii ~ a _v ~r ~ i ~ . / a _v ~r v - 1 / a ~B~jr/~ . ~ ~r1 - 1

the inequality is valid by (33) (ii). From the equivalence noted above, we
conclude from (36) that

//i 1 ~.1 Y n B / T TB

and note the algebraic fact that

VoL 6, n° 6-1989.
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~V J w 

n ~

(IS). The relations X _ X£ and Y£ _ Y are obvious.
In order to produce Z as in the second assertion of Lemma 2, we

consider more generally the problem of whether or not we can solve (16)
given only the information

(39) X_Y, X_I, -I_Y

~-~~ / 1/.rl. i 11 V6 W ~ ~~JH~~ ~ ii ~ ~ ~ i

commute. Indeed, we may then assume that X and Y are both diagonal
and the problem reduces to the scalar case. However, if X, Y X  1,
-1  Y, and X _ Y, then either Oe[X, Y] (in which case we choose Z=0)
or Y _ 0 (in which case we choose Z=Y) or X >0 (in which case we
choose Z = X). In all 
Next we recall (33) (ii) and that and use the case just

discussed to conclude that there is a Z satisfying
- T  7  T

It is interesting that the commutativity assumption is essential in a very
strong way as is shown be the next example. For small E > 0 we define
X. Y, as

~ 

o . .... 
-

that if then ZE must be unbounded as (The reader will
not appreciate the pain involved in producing this example.)
We remark that there is nothing really finite dimensional in the discus-

sion of Lemma 2 and the result is true in Hilbert spaces.
We also remark that the identity in (36) is a general (nonlinear) fact;

indeed, it corresponds to part (x) of Step 3 in a slightly different technical
setting ( G~ = This observation corresponds to another proof of the
first part of Theorem 1 parallel to the arguments leading to Lemma IV. 1
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of [3]. We sketch this path in a rather elegant manner which makes things
quite transparent.

Let (1) hold with ~, =1 and assume, (without loss of generality, since
the phenomenon under study is local) that Q is a ball centered at (x, y).
Replacing u (x) by v(y) by
v (y) - v (y) -  x - y, y - y ~ and then translating (x, j~) to the origin, we
achieve the following situation: u, - v are bounded and upper-semiconti-
nuous on Q, which is a ball centered at the origin, and

" O o« j ’---* ww , o ## , o w j #-w#~+o. m #-o#-, vv "-- ".o w- v -w -« m#-o--#-g~,

I V

’fl+ fi C ’ 11

t3~/~ ./ 2014 ~~~ ’~ 20142014- ~~ ~ t ~ -*/ -’2f

since by (28) (or it’s equivalent version for the
subscripted approximations), and then continue as in the proof of

Lemma 2 above to conclude quickly that (41) holds. Hence

has a maximum at the origin (0, 0).
(1 20142s) 2

Using various parts of Step 3 of the proof of Theorem 1, one sees that there
are X, for which (0, 0, X) e~’ ~ M~(0), (0, 0, Y) e~’ ’ ~(0) and

i /T r~B /v ~ B i / T i B .

J~ ~/Vill ~.a7 ~7~ (d~~

u at some points o, y£, o) such that
02

nearly sansly ims relation. we can assume mat it is tne

only such point upon replacing u (x), v(y) by and 

(which doesn’t affect the semidifferentials at 0), and sketch is complete. We
finally remark that we did not choose this (with appropariate expansion) as
the primary presentation for several reasons. First, it does not seem to us
to be the best way to reach the conclusion of Step 1 (the twice differentiable

VoL 6, n° 6-1989.
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Step 1 holds is "really" Lemma one does not get theStep 1 holds is "really" Lemma 2. In a similar vein, one does not get the
insights provided by Lemma 2. Finally, we would need to introduce a
matrix lemma to obtain the conclusions involving Z in any case, and this
would decrease the unity of the presentation.
We turn to a typical comparison result one may obtain from Theorem

1. Let F satisfy (9) and, in addition, assume that there is a y > 0 such that

( 43l F ( x. r. n. S) -F(x. s. D. 

nonnegative function co and a number 8e(0, 2] such that r~ (o + ) = 0 and

(44) F(v, r, r. ~Cx- v), 

prove, for completeness, the following result. It is the variant of [3]
Theorem IV. 1 which arises from replacing their Lemma IV. 1 with our
Theorem 1. The enormous scope will be evident upon perusing [3], as will
the way to proceed with other variants. It is worth pointing out a couple
of simple examples from [3]. The condition (44) holds with 0 = 2 if

F (x, r, p, X ) = r - trace (A (x) X)

exponent > 1 2 and is strictly positive on Q (a strictly elliptic case) or has
the form A ( x) _ ~ (x) E (x)* where E : Q - sn x m is Lipschitz continuous (a
possibly degenerate case). Moreover, one may form inf03B1 sup03B2 F03B1, 03B2 given a
family each of which satisfies (44) with the same co and remain within
the class, producing highly nonlinear examples.

THEOREM 4. - Let F satisfy (9), (43), and (44) with 9 = 2. Let u, v have
the continuity and boundedness properties of Theorem 1, and be, respectively,
a subsolution and a supersolution of (10). If u  v on aSZ, then u - v in Q.
Moreover, if one of u, v is locally Holder continuous in Q with exponent
~ E (0, 1], then it suffices to have 8 > 2 - ~.
Proof - Assume to the contrary of the assertion that u (x) > v (x) for

some the reader may easily check that then for large 03BB we have ( 1)
for some point (x, and, moreover,

(45) as 

have the existence of X, Y satisfying (6) such that (11) holds. Small
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manipulations using the conditions assumed on F yield

w w u t.~,) - v ~..v. J - u ‘y J - cr ~y J 1 Vi ..v. C ~ 4, lJ v - ~, ~~t.~), 

imply that u _ v upon letting ~, ~ oo, a contradiction. If, for example, u is
Holder continuous with exponent cr, the relation ( 1) with x = y = y shows
that
.._.., ~)!2014

jj I ~ V .r6V IV ~ ~~-~ 

the standard remark that then (47) provides a bound on ~, (x -y)
and we only need (44) to hold when this bound is satisfied by ~, (x -y).
We will not pursue further applications here, but let us remark that the

first part of the proof of the strictly elliptic case in [3] can be eliminated
using Theorem 1.

3. THE PARABOLIC CASE

As a last topic, we briefly consider the case of parabolic equations and
formulate a corresponding version of Theorem 1. If Q is as above and

T > 0, we put T] x Q and T] x SZ.
We consider a typical "parabolic equation" F (t, x, u, ut, D u, 

in aT where D u, D2 u refer to differentiations in the x-variables. Here
TT . trn

(48) F ( t, x, r, a, p, X) _ F { t, x, s, b, p, Y) whenever r  s, a  b, Y  X.

Let u : ~. We denote by ~2’ +, °~’2’ - the variant of the semidif-
ferentials +, ~2’ - we will use in this parabolic situation and

(u (t, x), a, p, X) E R x x S""" lies in ~2’ + u (I x) if (t, 
and

__ r~ L v ~ r. ~B . r..v . i 

is bounded and upper-semicontinuous and
11 v ../- v ~ ‘ ~ ,rv 
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~L _ ~~._1 ~._~_~.. -.-

F is coercive in ur in the sense that 

(51) lim F ( t, x, r, a, p, S)= ± ~ unif ormly for bounded t, x, r, p, S.
a -~ t m

We have:

THEOREM 5. - Let u, v : be, respectively, sub and supersolutions

ava rv? y. ~s wmw v ~ v - . asvv ‘rr i’ i~~ i ~ v 

t~at

,~.,~ , OB~(X 0 B~’"’,,( I -1B

( 5~i1 

and

(55l 

be given. Observe, however the difference in the f ormulation - we assume
here that u, v are sub and supersolutions of an equation for which (51)
holds and no corresponding assumption is made in Theorem 1. The way
this condition is used in the proof is just to obtain a bound on the

t-component of the first order superdifferentials of (approximations of)
u (t, x) - v (s, y) at maximum points of

~l B ~_ v _ ~w ~~r/, v2 i 112

Theorem 3.
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