
An asymptotic expansion for the solution
of the generalized Riemann problem.

Part 2 : application to the equations of gas dynamics

A. BOUR GEAD E, P
h. LE FLOCH and P. A. RAV IART

Mathématiques Appliquées, École Polytechnique, 91128 Palaiseau Cedex, France

l f 

Vol. 6, n° 6, 1989, p. 437-480. Analyse non linearie

w e apply Lo me gas uynamics equations me general
method of approximation for the generalized Riemann problem proposed
by Le Floch-Raviart [6]. We both consider the equations of gas dynamics
in Lagrangian coordinates in slab symmetry with a source term and the
equations in Eulerian coordinates in plane, cylindrical or spherical symme-
try. Explicit formulae are derived for the first order approximation of the
solution of the generalized Riemann problem. Such an approximate sol-
ution may be easily used to construct a second order version of the
numerical Godunov method.
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RESUME. - Nous appliquons au systeme de la dynamique des gaz la
methode generale proposee par Le Floch-Raviart [6] pour l’approximation
du probleme de Riemann generalise. Nous considerons a la fois les equa-
tions de la dynamique des gaz en coordonnées lagrangiennes en symetrie
plane avec terme de source et les equations en coordonnees eulériennes en
symetrie plane, cylindrique ou spherique. Des formules explicites sont
obtenues pour l’approximation du premier ordre de la solution du pro-
bleme de Riemann generalise. Ces resultats peuvent etre facilement utilises
pour construire une version d’ordre 2 de la methode de Godunov.
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1. INTRODUCTION

_ __ ~,_ _ - __ _ _ _ ~ ~-_~ _r _ . _____,_ ~____~_~ L- LL- -----

of the solution of the generalized Riemann problem. We study here theof the solution of the generalized Riemann problem. We study here the
gas dynamics system in both Lagrangian and Eulerian coordinates and
we apply the general method of approximation proposed in Le Floch-
Raviart [6].

In the first part [6], we have considered systems of conservation laws of
the form:

J v V V

problem for ( 1. 1) consists in solving the associated Cauchy problem with
the initial condition:

ITIx_ 0)= IT.. (xl if TT~ if x~(1_ ll _ 21

system ( 1. 1) is strictly hyperbolic; each characteristic field is supposed to
be either genuinely nonlinear or linearly degenerate. First, we consider the
following classical Riemann problem:

a __~ a _ ___~_ - __~ _ _ - .. - - . -.

f (U°l = f (0, 0. U°),

there exists a unique entropy solution of (1.3)-(1.4), depending only on

the self-similarity variable 03BE = x, which consists of p + 1 constant states
t

separated by p elementary waves (shock wave, contact discontibuity or
rarefaction wave).

Then, let us recall that the problem (1. 1)-(1.2) admits an entropy weak
solution U = U (x, t), locally defined in the neighbourhood of the origin
(x, t) _ (o, 0), which has the same structure as that of U°. For details, we
refer to Li Tatsien-Yu Wenci[8] and Harabetian [5].

In [6], we looked for an asymptotic expansion for the function U in the
form:

_ _ .. r, _ _t_ .~ , b ., x , _ .... _
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say x = (p (t), has also a Taylor expansion of the form:

( 1. 6)

cient (1k. 
w 

Furthermore, we have given error bounds for the approximate
solutions constructed from ( 1. 5)-( 1. 6).

In this paper, we consider first the equations of gas dynamics in Lagran-
gian coordinates and in slab symmetry with a source term and a general
equation of state. We study next the system of gas dynamics in Eulerian
coordinates and in plane, cylindrical or spherical symmetry with an equa-
tion of state which is a generalization of that of a polytropic perfect gas.
In both cases, we determine the first order approximation of the solution
of ( 1. 1)-( 1. 2), i. e. we derive explicit expressions for the function

( ~) of the expansion (1.5). These results are in fact identical with
those of Ben Artzi-Falcovitz ([1], [2]) who have used a fairly different
method.

Finally, let us recall that the approximate solution of (1. 1)-{ 1. 2) may
be easily used to construct a second order version of the Godunov scheme.
Such a numerical scheme appear to be very efficient in the numerical

computation of very strong shocks ([1], Van Leer [10]).
An outline of the paper is as follows. Section 2 is devoted to the

techniques of asymptotic expansion of Le Floch-Raviart [6] for a nonlinear
hyperbolic system under a general nonconservative form. Then, in
Section 3, we consider the system of gas dynamics in Lagrangian coordina-
tes. In Section 4, the Eulerian system is treated.

2. OUTLINES OF THE GENERAL THEORY

Let us begin by recalling the techniques of asymptotic expansion of
Le Floch-Raviart [6]. For the sake of simplicity, we shall restrict ourselves
to systems of the form

x ~

aai i.r .. iii VV lriiV wVV iiViiVViiVVl 

variables V such that
T T - rh l Vl ,") ")B

~*j U. tj~~ ~ 2014 u, ~i

states Rl c RP. We first need to express the results of [6] in terms of the
Vol. 6, n° 6-1989.
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U of the generalized Riemann problem (2 . 1)-( 1. 2), the system (2 . 1) is

equivalent to the nonconservative system:
av . . ,~ n av ~ , ~ n ," ~B

’ 

~

strictly hyperbolic, so that the eigenvalues of the matrix B (V) are real and
distinct:

~,, (~  (~  ...  (V’), d v E ~.

eigenvectors and by {li(V)T} 1 ~i~p a basis of left (row) eigenvectors, i. e.

r; ~V) _ ~~ (V) r~ (~~ li ~~~ B ~V) _ ~i ~v) 

genuinely nonlinear

D~,I ( V) r; ( V) ~ 0, VV E ’~
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«

~/ ~~

T~

of the form

- - ~-. , ./xB

~i Ol w OA B~’ ~/ B~ * 2014~7* ~ 

eroth order term V0=V0(03BE) in (2.6) is given by
~ 7~

where U° (x, t) = IJ° (~) ~ _ ~- is the entropy weak solution of the classicalt

Riemann problem

~T To ,

rarefaction waves, shock waves or contact discontinuities. We denote by
Q? and ?~ the lower and upper bounds of the speeds of the i-wave

VoL 6, n° 6-1989. -
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t -*- ! ! - ~ ~~~L~~~ ~’~7 -*" t B 2014 ____ ~ --~ ~  ~~~~ ~ t-~ j ~ F ~~~~ ~~~~~ ~~~~~~ t~ ~~~ ~~~t~ m. m ~J~JL~~ ~ . TT ~~ V ~~ ~~~

a shock wave or a contact discontinuity, we get
rr9 = fr9 - fT9

to [9]. 
Next, we note [8] that the function V has the same structure than the

solution V° in a neighbourhood of the origin. The (p + 1 ) smoothness
domains of V are separated either by a smooth curve denoted by x = cpi (t)
such that

, -, - d .__ no

_ 

~ 
__ _____. ____ _ __ ____ ______

~ (x, t)E (F~ x I~ +; 

such that

_ 

_ _ _ _ _ __ 

__ _~ 1 _ _ _ _ 
_ 

1 
__ _ _ __- _ _ _. _ . __ _ _ - 

Ti B-_-_ 
_-

cpi, in the form

cn: (t~ _ ~’ ( 2 . 91

jr 
-- - 

jt. 
------ - 

B2014 ~

~-... /~

in a more complicated way..
Replacing V by the expansion ( 2 . 6) in ( 2 . 3), we derive as in [6] the

ordinary differential equations satisfied by the function V’~, k >_ 1. We
obtain:

_ ~ _ _ _ .~ _ _ _

matter to check as in [6, Lemma I], the following property: if V1 is a

polynomial of degree less than 1 for Olk-l, then the function § t2014~ a"‘ (~)

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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is a polynomial of degree less than k - 1. For k = 1, we have

1~ W tL... 1 1l 111 ~11V 

Since for W2 in the function:

i~ a a vau u v asar.v y ~ , !~ ~ . r 

C=C(W1, W2) such that a Lt

‘Li ~ 7 

- _ _ _ _______ _ _-_ _ 

_j __ __ __ _ ‘ . - _ / 
. __ _.._ _ _ . _ _ __

the function V°.
For integrating the differential system (2. 13), we have to distinguish

between the two types of intervals: ]~°, a° 1[ and ]~°, ~°[. Let us first
consider the case of an interval ] a°, ~° 1 [ where the function v° takes
the constant value V?, with the convention that ao = - ~, 03C30p+ 1= + oo .

We have the analogous of [6, Lemma 2] :

LEMMA 2 1. - Assume that ~ belongs to the interval ]a°, 1[, 0 _ i _ p.
Then, for all k >_ 1, the general solution of the differential system (2. 13) is

given by
t1k /~1 - /~ ~ !t1°llk Dk /~1 l’! 1 A1

..rrvr v ~ ’ YV WrV WI J vJ wa I "l ai. ilrfLilWiVaa

of degree _ k -1 with values in !~p which depends only on V °, ... , Vk -1.
Moreover, for k =1, we have

P~ = h (o, V°). ( 2 . 1 S)

to an i-rarefaction wave for V°. It is easy to verify that:

h . iV° I § 1 1 = E

_ ..___a .,__.....,...»... v~ ’I’ ’I’ ~ J 1 ~ I ~ ~ ’1"’1" v vv v

p p

. va. vj u 
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i 

,. d .

1 m- .w , ___~_~.~~~~ ~~~ --la t - i . lv . Ja " ..- ~_ - -

1 iVlIVV’ y V V V 4H.i11

’.,, t

- 

--~-7 
_-_- ---- _ . _ . 

_____ _ ~ . ‘ ~ r i n

{ ~I p 1

..__-_ _ _ 

_i B . t 7l/ "-;17 
_ 

J 
~ 

~

P

that in (2. 19) 03B2ii is equal to 1. By differentiating the relation

B ri (~~) _ ~ ri 

/ - dVOB

. -.----------- -- - -.------ __ _ _ ~~__T _ _-~J__ 
__- --_- _ _
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~yo
Since 

20142014 
is proportional to r~(V~), we have

/

Thus we find

auu 

LEMMA 2. 2. - Assume that ~ belongs to the interval 6i L. then, the
differential system (2. 13) is equivalent to the algebraic equation (2. 21 ) and
the (p -1 ) coupled differential equations (2. 18) for j ~ i.

In order to obtain the function Vk, we need to determine the vectors
introduced in Lemma 2 . 1. Let us then consider the jump

relations satisfied by a function Vk at a discontinuity of V°. First, at a

shock or a contact discontinuity, we may write the Rankine-Hugoniot
jump relation corresponding to the hyperbolic system (2. 1):

__ / /~1 fT n r Y* !T TBl /~1 ~1~1B

diffeomorphism O, we obtain
,., +i rm «rii - r r m « n ii 1

[6, Lemma 4] :

LEMMA 2. 3. - Assume that V° contains an i-shock wave or a i-contact
discontinuity. Then for all k >__ l, there exists a vector qi‘ E which depends
only on V °, ..., and ..., ~ -1 such that

l - 6°~k+ i Vk ,

Vol. 6, n 6-1989.
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r k =1, we have

q~ = (V°) C~’~V°) - a°) h C~~

Recall that and are the smooth characteristic curves

which bound the corresponding rarefaction zone of V. We set

~i(t)- ~ ~k. i-+1~ § i (t) ~ £ 8f . P ~ ~ .

Lemma 5] :

LEMMA 2.4. - Assume that V° contains an i-rarefaction wave. Then, for

qk =

the initial data VL, VR defined by

VL(X)=

LEMMA 2. 5. - For all integer k ? 0, we have

vo - vL, vR.

result:

THEOREM 2.1 (Le Floch-Raviart [6]). - Let k >__ 1 be an integer and

suppose thet the function V1= Vj (~) and the numbers ai or the pairs
(a~, 6i), 1 _ i _ p, have been already determined for t =1, ..., k -1. Then,
if ‘ is small enough, there exists a unique function Vk = V~‘ (~) and

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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. t tr . ~ Ir ~ bw ~ i . i 1 _ .

equations (2.13), (2.14), (2.23), (2.25) and (2.26).

3. THE GAS DYNAMICS EQUATIONS IN LAGRANGIAN
COORDINATES

We begin by considering the gas dynamics equations in Lagrangian
coordinates and in slab symetry with a source term [4] 

’

aT a~. I

the internal energy per unit mass, the total energy per unit

mass, and the constant h represents a source term. We supplement the
system (3.1) with an equation of state of the form

_ ~ ,_ _.

~ i, u, S} where the specific entropy S is defined by

(3.1) becomes:
, ,

and q = q (T, S) by
an ari I an

Vol. 6, n" 6-1989.
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? "~~C3

~ ~* ~

-- 
________-______ ___-__ __ ____ 

_J___~ ~__-)

~1 n m Y’

- 

-- - - -_--- . 
-- --- - - ---- 

----- -- - , . , -- -

- --- ---- --- ---- 

--w--- --w--- . ------ -- - ’ . J

/ I ’ ,’ 1 ’

G114 

nonlinear and the second one is linearly degenerate.
As an example, we consider the following useful generalization of the

equation of state for a polytropic perfect gas
- -2 i _ v

we have equivalently

_ _ _ _ __ _ __ ~ 

C72014’7 ’ 
.. _ 

a_ _

~r
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t

Now, for each state V°=t / u° , the components (ai) 1 ~ t ~ 3 of a state
B So

/’B
V = (u S) on the are given by

or equivalently

. i7V .... V 1161. y..., 1.11V 

h - -

.. .., ..... _,.,_.
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t

- 2014~ ~~~~ ~~~~~M~ ~A~~~~~j ~~~*At~~~ ~i± ~. 

the first order approximation

Here p = 3 and we denote by To, u°, p°, co, gO,... (respectively i 1, u 1, pB
cB gi, ... ) the quantities associated with the state V ° (resp. Let us
recall that the zones of smoothness of V° are numbered from i = 0 to i = 3.
(See Figs. 3.1 and 3.2.)

Since V° is the entropy weak solution of the classical Riemann problem
for (3.1), it consists of four constant states separated by i-waves, 1 __ i __ 3.
Recall that the 1- and 3-waves are rarefaction waves or shock waves,

while the 2-wave is a stationnary contact discontinuity x = 0 . Moreover
the velocity u° and the pressure p° are continuous at the contact disconti-
nuity. Let us denote by u* and p* their respective values In the
sequel, we will assume that the functions V° has been determined explici-
tely : see for instance [4], [9].

Let us now compute the function of the expansion (2.6)
associated with the system (3.1). As in Section 2, we set

V i l ~ ~ - ~’ rv l ~ 1 r  T ° l ~ 11 ~ ~.- ILD 
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h 0!’1 T /~1 !1 ’t 17 N /1T1 1~ 1~1 !1 IV ~ N l y . 1 ‘ 1 ‘ 1 11 !11 in1 /r

Lemma 2.1, we deduce the general form of the functions a~ in an interval
where V° is constant.

LEMMA 3.1. - In each interval ] a°, a° 1 [, i = 0, 1, 2, 3, there exists three
real 2, 3, such that

_.__ _~ ". h

rarefaction zone 63 [ = ] gi, Then using (2.18) and Lemma 2.2, we
obtain the following expressions for the a~’s.
LEMMA 3. 2. - Assume that V ° contains an i-rarefaction wave (i =1 or

3). Then, there exist two constants bl, 2 and for i = l, and b3,1 and
b3, 2 for 1= 3, such that for i =1 and ~ E ] - g° [

VoL 6, n° 6-1989.
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~r~~ ~~ /~~ 
_ . ~~,. ~._.__.._ua s_~_~ ~~.." ___~_~_~_~ ______~___-_ 

_-_ __ _-___

-- 

~___ _ ____-__J _~ 
_-__ _-

t / ~ (1

we know that

d _
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( ~) becomes here:
/ a~ B o a ,~o / L 

-

(3.15). In fact, (3.15 b) is an ODE for the function a2, whose general
solution is obvious. Next, knowing (3.15 c) gives an ODE for a3 which
is again easily solved. Finally, the algebraic equation (3.15 a) gives ai ..

In the particular case of the equation of state (3.6), we can obtain more
explicit formulae.

LEMMA 3.3. - Assume that (3.6) holds. Then, the functions of
Lemma 3.2 are given for ~ E ] -gL, g°[ by

.. , , ,

-~ -----
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~~o -Or L,.

know that

C‘~ r~l _ ~.~o __ o r~~ _ ~

~ 2 Y/~Y ’~ 1 ) /.

and

~ 
- 

__ 
____ 2014 2014201420142014 

_____~ ___r________ 
2014~ 2014 ____ _______.. _ 

~B~ 

wi B’O ~ ~0B 

so rnar

rr c 

1
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auu

on /

Let us now derive the boundary relations satisfied by the function
V~ at the discontinuities of V°. Consider first rarefaction waves. From
Lemmas 2.4 and 3.2, we have:

LEMMA 3.4. - If yO contains a I-rarefaction wave, the constants 
and bl, 3 of Lemma 3.2 satisfy

~ 2014 ~. 1 o~

. _...._. ~ .._ ._~.._ ____ 

______._____~ r. ~r__ 
____ 

~_ ~ o

.... /’ .,.0 n~ - _. i .~0 ~ n~ , - ~ z

Jtt T ~H~ ~~ ~ t~~ ~ ~~

Lemma 3.2 satisfy
~ ~ - n ~~o~

~ ~.~o ~ ~,~o - n1 ; - 1 ?

Define the function p 1= p 1 (~) by p 1= op ~ ,r 1 + ( -~- ) S 1. Then at the
B as

contact discontinuity, we get

LEMMA 3. 5. - 7he functions u 1= u 1 (~) and p 1= p 1 (~) are continuous at
~=o.
Proof - At the contact discontinuity, the Rankine-Hugoniot jump

relations for the system ( 3.1 ) become
r i r i m

f~.~ ~ t~..i ~ 1.

and

VoL 6, n° 6-1989.
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~ r - n r

3 3

~rt 1 ~ ~Tt 1 ~T~

Lemma 3.1 f or i = 0 and i = 3.

LEMMA 3.6. - We have for 1  i  3

shock discontinuity of V". Let us assume that a state {i, u, p) is connected
to a state (ia, ua, pa) by a shock discontinuity. Introducing the Hugoniot
function H~ (T, p)

H _ fi_ (3.251

L J

1:=

By writting
... =G~~Q + ..., P° +tPa - .., ... )~

UO + t u
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~ _t_ _ _t_ ~’--~~~’2014--’~-- --- L ____ __..

_1 -1/ -O , r~B _1 _1 i-O n~ -~-

~1 2014~1/~0 n~

Vl 611V Vl ......- 

LEMMA 3.7. - When the pressure p is given by (3.6), the relations (3.28)
and (3.29) may be written :

/ r. B

ana

and

___.__~..__ 

_ .r_ ~.~_ _.~__~.._~a ~___.~___~~, .._ 
..~_ ~__ _~___ __ _ ____

(see [4], again) for a I-shock wave

Vol. 6, n" 6-1989.
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we obtain

Now, we have

~ 
. 

J~- 
~ - ~ ~ ~ ~ . ~ ~ 2014

~ / 1 B 1 1

nm
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function G

x T

logether witn this gives

,o I Tv - 11

cum -

We are now able to determine explicitely the function V1. By
Lemmas 3.1 and 3.2, we have only to compute the constants ai, j, 1  i, j  3,
of Lemma 3.1. We have already noticed in Lemma 3.6 that and a3, ~,
1  j  3, are known. Using Lemma 3. 5, we may set 

’

~,i - ~.1 /~YB ~,1 - ~i /o ~oB

and p*. Next, we will show how to compute the coefficients from u*
and p*. It is worthwile to notice that in the construction of the second
order accurate version of Godunov method of approximation of (3.1), as
developed in [1], we need only to compute the pair u~, p* without cons-
tructing the whole function V 1.

THEOREM 3.1. - l . If the function V ° contains a I-rarefaction wave, we
have

where

~-. AJ v 1+ rvc 

~ 1 /0 t

___ 

_, _ _ _____
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(’ / a B01 f / a B~ 1

I

f / a B01 f -~~ / ~ B01

/

~" B-~* ’*/ ~-~.~~-~~ f~~ tH~~~ ~~~ .7*" "20142014*~-~ ~’ A~ mFMA t 201420142014 i~.~2014

/ ~ B 0 

~ ’ ~~~* ~-~~~~t~~~~~~jL ~~~~~ B*’* ’/

and Lemma 3.1, we have on one hand
L
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ana, oy

 / _ 1

auu 

and 3.4 we have

,

n i n ~ , .., of _f)

we nave

, i > i v

(3.39). The case of a 3-rarefaction wave is similar. 
’

Consider next, the case of a 3-shock wave (say !). We may write from
(3.28):

Vol. 6, n° 6-1989.
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 . i.~ ~.m ~.~ t i^ ~ i~ " ---- 1_ ____

amu

hand, we have in a similar way

_ - ~

- 

-, - -, - - -

, , - ’ , « , ’Irr.
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f.1.11Bi L/ (,/,~. ~ ~ V’; ~~ V(~.11 ~~~ 

from their values at ~=0: 1 .J:
/n v ~.. ~ iB t~

ana

yields ( 3.42 a) ..
We emphasize that the 2 x 2 system given by Theorem 3. 1 is always

numerically solvable. After having determined u* and p*, we now compute
the constants ai, J.

THEOREM 3. 2. - For i = 1, 2, we have
i f ~,1 1

no

ana

~j ’ v~.~..w~.~... w r.wvvi mv Jrrrw

~~ _ _ - ~ r’~C’’T ~ ~ ~ .

Vol. 6, n" 6-1989.
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I

For a1, 2 or a2, 2, we first consider the case where for instance the function
V° contains a 1-rarefaction wave. By Lemma 3. 4, we have

a, (-~°+Ol=a, (-~°-0~.

and

J B / ~ x /

contains a 3-shock wave, we use Lemma 3. 7 and we write

. , " .. ~ aG ~° , . " __ ~ aG ~° , . " __ ~ aG ~° , . " __

~1 (~°+0) _~’°. ,~~

,~1 ‘~0-O~

Finally, as a trivial consequence of Theorems 3. 1 and 3. 2, we obtain
COROLLARY. - The values o.f the function i 1 at 03BE = 0 are given by

..1 ln ~ - 
1 

f..l L 1 « cc~
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~l~

Let us close this section by computmg tne constants ansmg m 1 neorem

3 .1 in the case of the equation of state ( 3 . 6) . As a direct consequence of
Lemmae 3.3 and 3.7, Theorem 3.1 and (3.36), (3.37) and (3.38), we
obtain:

THEOREM 3 . 3. - 1. If the function V ° contains a I-rarefaction wave,
the constant CL in (3 . 39) is given by

, , " 1 ,

If V contains a 3-rarefaction wave, the constant CR in (J . 40) IS given
by

- , , , ,

3. If V" contains a 1-shock wave, the coef f icients o~ the equataon 41 )
are explicitely given by

.... ,., "

and

4. If - V" contains a 3-shock wave, the coefficients oJ the equation 42)
are explicitely given by

, _ . " ~ - n n

VoL 6, n° 6-1989.
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zs i a.aas va awmr i 1 ..._. ~ . ~. v ~.~a~ v v v s~ ~ ,-- ---

Let us now consider the gas dynamics system in Eulerian coordinates
and in plane (v = 0), cylindrical (v =1) or spherical (v = 2) symetry [4]:

~ - i 
~ 

i - , .’ 1 ~...-n l~ 1~1

v

variables have the meaning defined in Section 3. For the sake of simplicity,
we assume the equation of state (3 . 6).

Using the nonconservative variables ( p, u, S), the system (4 . I) becomes

I I , , v , , - ,

/ rB v c~t ~ -

U

. _. ~ n . /~t~
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~ ,

n _ n _ n ~ _

~ ~-~ ~ ’ ~~ - /

A state V°= t / M° B t being fixed, the characteristic coordinates (K,)i§.~3
of any arbitrary state V= t M !, L e.

3

Vol. 6, n 6-1989.
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»

V J

1 t_. ~T1 _. --. - 
/__ 1~T~11

approximation

,__ _, ~T~ lxl .. ~r, 

(4. 1). The notations are as shown in Figure 4. 1 and 4.2. In order to

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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determine the function Vl (~), we introduce as before its decomposi-
tion on the basis of eigenvectors 

~’ ", t~1 ~ c - -

w e begin oy deriving ine general form or tne functions 03B1j=03B1j(03BE) in an
interval where the function V° remains constant:

LEMMA 4. 1. - In each interval 1 [, i = 0, 1, 2, 3, there exist three
real constants ai, =1, 2, 3, such that

corresponding to a I-rarefaction wave of V°.

LEMMA 4.2. - Assume that V° contains a I-rarefaction wave. Then
there exist two real constants b 1, 2 and b 1, 3 such that for all ~ cr°[ :

/YB

where c" = c" (~) is the sound speed in a 1-raref action zone. The functions
M° = M° (c°) and NL = NL (c°) are defined by

" .,&#x26; i  1

and



,It 
- - , ,..

/ U~ P~ ° ’

and u° 1 ~ c (p, S) dp are constant and
u° - c° = E.

d

/ 1

C° r, = r, l V°1 + 3
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un tne oiner nana, we aeauce me uenvauves oi irum ~~ anu

4.13)

t’lnally, usmg (4 . 14) . (4 . 15), the ordinary dmerential equations (2. 1 ~)
becomes

The integration of (4. 16 d) is stralightforward and gives (4 . tu b). t nen,

replacing a2 by its expression (4.10 b) in (4. 16 c), we obtain an O.D.E.
for the function whose solution is given by (4 . 10 c). Finally (4.10 a)
follows from the algebraic equation (4. 16 a)..
Then, we treat similarly the case of an interval

63[ _ ]u2 + c2, uR + cR[ corresponding to a 3-rarefaction wave of V°.

LEMMA 4. 2 bis. - Assume that V ° contains a 3-rarefaction wave. Then,
there exist two real constants b3, I and b3, 2 such that for all ~ E ]a3, we

have 
~ 
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M° = M° (c°) is defined by (4 . 11), and the function NR = NR (c°) is given by

discontinuities of V°. We consider first rarefaction waves. As a direct
consequence of Lemmas 2. 4 and 4. 2, we obtain:

LEMMA 4 . 3. - Assume that V ° contains a 1-rarefaction wave, Then the
constants b 1, 2 and b 1, 3 of Lemma 4 . 2 satisfy

b, ~ _ - a~ ~ . (c°) - Zo’‘ - l ~(4 . 19)

+

N ~"o - ~o - n~ - r" ~,.o - ,~o _

and b3, 2 of Lemma 4. 2 bis satisfy
b ~ ~ = a ~ ~ (e~°) - 2~cY -1 ~, (4 . 22)

. 

already studied in the previous Section 3 (see Lemma 3. 7). It remains to
consider the contact discontinuity corresponding to § = u* (u° = As in

Annales de l’Institut Henri Poincaré - Analyse non linéaire



473AN ASYMPTOTIC EXPANSION FOR THE GAS DYNAMICS

Section 3, we define the function pl by
/ a~.Bo / 

auu ~c ~

LEMMA 4. 4. - The function ul and pl are continuous at the point
~=u°.
Again, define the coefficients and aR, J, 1 _ j _ 3, by

r’ _ __ lzT01 ~"’ .. _. 

Lemma 4 .1 f or i = 0 and i = 3:

: I ~ ~ ~ i . ~ Y

1BGlll.~,(I l4. - V ‘T . V J GillB.1. ‘’T , 1.11V 1 VliV ’11’’11’ llis VAY11V11-

formulae for the constants ao, i
11 / i __ ~ v

dnu

For obtaining the function it remains to determine the constants
of Lemma 4 . 1 for i =1 and i = 2. Thanks to Lemma 4. 4, we can set

i i __~ ~__n~ i 1 _1 ~__ov /~ ~~B

and p;.
THEOREM 4. 1. - 1. If the function V° contains a I-rarefaction wave, we

have
__1 _t 1 L

/oL b, n 
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* * / _. . ~ ... In n , ~Tn. ..

7 ~ i ~ J ~ a ~r y~i L ~ V r

( 4 . 1 ~) and (4 . 20) (resp. (4 . 11 ) and (4 . 12)).
2. If the function V ° contains a 3-rarefaction wave, we have

- u* ~ p* 
- R /-o,3 - y>12 y - 1>

(4 . 22) . (4. 23) (resp. (4 . 11 ) and (4 . 18)).
3. If the function V ° contains a I -shock wave, we have

.. n ~ / n n , ~n ~ ~ 1 - a1°-uO 1 
~ .-.n 1 ~

T~O /20140 . 0B 1 / ~ 
. 2~0 B ) I /20140 0B ~1 1 t

J J /

r -, _o ~_o __o~ ~.o ~ _ 1 . ~ -~~3-u~~ 1 
. ’

t~0_/20140 ..0B..l / 1 ...2~0 B ) I /20140 . 0B ~1 i B

tion wave (the derivation is similar in the case of a 3-rarefaction wave).
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ana usmg d~ ana we nave aiso

 / 1 m., ~ v .

ihus, we o btain

rience, io n suinces [0 aetermme now me constant al, 3.

Thanks to (4 . 21), the function (Xg is continuous at ~ = u~ - c°. Therefore,
using (4. 9) and (4.10), we have
~

wmcn yieias ai, 3.
Next, we consider the case of a 3-shock wave (again the derivation is

similar in the case of a 1-shock wave). Lemma 3. 7 gives the following
relation between ul + 0), pl + 0) and pl + o):

/1’

~~ B~~ p,11r l~Brl 1111.i1.i V ~ ‘J . JG~ . ‘J . J J J .

We begin by computing the right hand side of (4. 35). Using (4. 7) and
(4. 9), we get

"1 ~~o ~ n~ - ~a / - N ~o ~ ~ ~ ~ ii

Then because 01 ana (4. /), we nave

r .i

voi. o, n 
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r

and

Now, we compute the left hand side of (4. 35). Again using (4. 7) and
(4. 9), we obtain

~ ~ __n .,. n f _ ~ _n ~ . _ _ ~ _n B~

... ~~ i ~, J

u* and p*. We may write by Lemma 4. 1:

W _ -1~~1Z ln_ _ ..~n_ _1
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that is

me values 01 u - ana p - are:

rnnally, noting that ~4J

We are now able to determine the whole of constants 

THEOREM 4 . 2. - For i =1 and 2, the constants ai, 1 and ai, 3 are given
~y:

When V ° contains a k-rarefaction wave, we have

;I

s.l. 6. n‘ ;-19$9.
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-- ~ - --

.______ ___~ ____________~ 

_J ____ J__________ - 
- 

_ , , ,

Proof - Formulae (4. 38) and (4. 39) were previously demonstrated in
the proof of Theorem 4. 1. To prove (4. 40) [it is similar for (4. 41)], we
have by (4. 9)

r,i_ l -~~l- -h~.~»~l n_ _

v, ‘ ~ . i v~

~*~~HL*~~/ B’* ~2014~/ B ~ -~2014201420142014~ 201420142014201420142014 2014- 20142014

constant ~i, 2~
. ~ n~- ?/~2014 ~~ f nB- ~/~2014 i~ t PL jPL (

‘’T . ’TV~.
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in zne case wnere v ~ nas a snocK wave, say a ..1-wave, 

gives a relation between pl + 0) and pl + 0):
_

pi ± 0) and get:
B~

and

u sing ~ 4 . i ) . ~ 4 . y), we als o determine 

l r,i . s. r,r _ ~ r.. 1 l rr ~ - (11

i l 1

Finally, as a trivial consequence of Theorems 4.1 and 4.2, we get:

COROLLARY. - T7~ value of the function p~ at ~=M~ are given by
n i

Vol. 6, n° 6-1989.



480

-- - ---

sible Fluid Dynamics, J. Comp. Phys., Vol. 55, 1984, pp. 1-32.
[2] M. BEN ARTZI and J. FALCOVITZ, An Upwind Second-Order Scheme for Compressible

Duct Flows, Siam J. Sci. Comp., Vol. 7, 1986, pp. 744-768.
[3] A. BOURGEADE, Ph. LE FLOCH and P. A. RAVIART, Approximate Solutions of the

Generalized Riemann Problem and Applications, Proceedings of Saint-Étienne
(France), 1986, Springer Verlag, No. 1270.

[4] R. COURANT and K. O. FRIEDRICHS, Supersonic Flows and Shock Waves, Interscience
Pub. New York, Pure Appl. Math., Vol. 1, 1948.

[5] E. HARABETIAN, A Cauchy Kovalevska Theorem for Strictly Hyperbolic Systems of
Conservation Laws with Piecewise Analytic Initial Data, Ph. D. dissertation, Univer-
sity of California, Los Angeles, 1984.

[6] Ph. LE FLOCH and P. A. RAVIART, An Asymptotic Expansion for the Solution of the
Generalized Riemann Problem. Part 1: General Theory, Ann. Inst. H. Poincaré, Nonlin-
ear Analysis, vol. 5, n° 2 (1988), pp. 179-207; and Note aux C. R. Acad. Sci. Paris,
T. 304, Série I, No. 4, 1987, pp. 119-222.

[7] Ph. LE FLOCH, Sur l’étude théorique et l’approximation numérique des systèmes hyper-
boliques non linéaires, Thèse, École Polytechnique, janvier 1988.

[8] LI TATSIEN and YU WENCI, Boundary Value Problem for Quasilinear Hyperbolic
Systems, Duke Univ. Math. Series, 1985.

[9] J. SMOLLER, Shock Waves and Reaction Diffusion Equations, Springer Verlag, New
York, 1983.

[10] B. VAN LEER, Toward the Ultimate Conservative Difference Scheme, V, J. Comp. Phys.,
Vol. 32, 1979, pp. 101-136.

(Manuscript received May 16, 1988.)

Annales de l’Institut Henri Poincaré - Analyse non linéaire

A C~~~~~-~~ ~4 ~*~~~~4«


	An asymptotic expansion for the solution of the generalized Riemann problem. Part 2 : application to the equations of gas dynamics



