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ABSTRACT. - The nonlinear heat-transfer equation with a nonlinear
boundary flux condition is investigated. The medium is assumed heterogen-
eous (i. e. the coefficients may depend on space variables) but piecewise
homogeneous. The enthalpy formulation is employed. Existence of a weak
solution is demonstrated, using an approximation by the Rothe method
and a certain regularization of the contact conditions between the homo-
geneous subdomains. Phase transitions described as multiphase Stefan
problems in some subdomains are also admitted, and a degeneration of
the parabolic type of the equation is covered, too.

Key words : The Stefan problems, heterogeneous media, weak solution, existence, approx-
imation.

RESUME. - Dans cet article le probleme de la conduction de chaleur
ians un milieu heterogene (avec des parts homogenes) est etudie. L’equa-
tion parabolique, formulee en version enthalpique, et la condition aux
imites sont non lineaires. On prouve l’existence de la solution faible en
itilisant la methode de Rothe et une certaine regularisation de la condition
iu contact entre des subdomaines homogenes. Un probleme multiphase
ie Stefan et une degeneration de la parabolicite sont aussi consideres.

Classification A.M.S. : 35 K 55, 80 A 20.
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This paper deals with the nonlinear heat-transfer equation with spacia
and temperature dependent coefficients:

i~  ~v _i__ w~w _~ ~ ~__in m~

6 = 8 (x, t) is an unknown temperature field, x ~ 03A9, t E (o, T), T > 0,
c=c(x, 8) is the heat capacity multiplied by the mass density (depending
on space and temperature), and k = k (x, 8) is the heat conductivity. On
the boundary h we assume a nonlinear Newton condition:

the heat flux through the boundary r. We will pay our attention to the case
when the properties of media depend discontinuously on x E SZ, confining
ourselves to the case when the medium is piecewise homogeneous. For
this reason we divide the domain Q into m disjoint parts i =1, ..., m,
m E N, and suppose that the medium is homogeneous on each SZi:

(1.3) c (x, 6) = ci (8) and k (x, 6) = kL (8) for x E S~i.

described by means of Dirac distributions in the coefficients c~. E. g. an

M~phase Stefan problem in i-th subdomain S2~ is created by putting:

with the support at o = o, and 03B8il and Lil is the temperature and the latent
heat, respectively, of the transition between the I-th and (l + 1 )-th phases
of the material that occupies the i-th subdomain.

Such problems arise very often in engineering applications and in nature
too. Let us mention, e. g., the temperature field investigated in geophysics,
where the temperature ranges many hundreds degrees (thus the material
cannot be considered as linear) and the properties of different plates of
the lithosphere differ from each other, hence the material is discontinuously
heterogeneous. Another example is the temperature field within metal

casting, when one of the subdomains SZi is occupied by molten metal while
the other Q~ contains sand. Of course, in both examples we neglected
convection of the materials and many other physical events.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



483THE STEFAN- PROBLEM

certain simplification of situations which may appear in nature. Also usual
boundary conditions, which neglect the temperature field outside the

domain Q, should be understood as such a simplification. Thus the media
that are simultaneously nonlinear and discontinuously heterogeneous are
of great importance not only from the viewpoint of applications, but also
from a theoretical viewpoint. It is interesting that in this case we are

forced to use a technique that does not check the time derivative of the
temperature and the quality of the temperature field thus obtained is
worse than the quality that can be obtained (under some regularity
assumptions) in the linear or "smoothly heterogeneous" case, see [6];
cf also Remark 4.1 below. As a side effect, this technique covers also the
case where some coefficient ci is not greater than a positive constant, it
means that the equation is not of a strongly parabolic type.
An efficient method to solve the nonlinear heat-transfer equation is

based on the enthalpy and the Kirchhoff transformations, and there is a
large, ever-growing amount of literature about this method; the references
at the end of this paper represent only a short sample. The heterogeneous
case has been already investigated by Niezgodka and Pawlow [6], but
only for the case that the coefficients c (., 8) and k (., 8) are continuous
(and even smooth). In the homogeneous case, the degeneration of the
parabolic type of the equation has been investigated in [7].
The crucial difficulty in our problem can be outlined as follows: In the

linear or the homogeneous case the spacial part of (1.1) represents a
monotone [according to the scalar product of the space L2 (S2)] and
potential operator with respect to the temperature or to the temperature
after the Kirchhoff transformation, respectively. However, this operator
is neither monotone nor potential in the nonlinear and heterogeneous
case; cf. Remark 3.1 below. For the homogenous case and the Dirichlet
boundary condition, a monotonicity according to the scalar product of
the space (Q) has been demonstrated in [4] Sec. II. 3, but such mon-

otonicity is preserved for our heterogeneous case with the Newton bound-
ary condition only under somewhat restrictive conditions; see Remark 4.2
below. Also an m-akretivity in the space L1 (Q) [it means that the corre-
sponding Rothe operator is a contraction in L1 (Q)], which is valid in the
homogeneous case (see E. Magenes et al. [5]), cannot be transferred to
our nonlinear heterogeneous case.
In this paper we will demonstrate existence of a weak solution of our

heterogeneous Stefan problem. We will employ an enthalpy formulation,
a regularization of contact conditions that appear between the subdomains
~~ and Qy, the Rothe method and the Schauder fixed-point theorem.
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For every i =1, ..., m, let us consider the functions oci, Pi: R such
that

l ~ t ~ d«’i -1 ~~ ..~ r_ 

distribution, (2.1) is to be understood in the sense of distributions. Then

(1.1) restricted to the i-th domain can be rewritten into the form:

8 (x. tl = a: (w ~x. tll

~i~ (w) is the temperature after the Kirchhoff transformation, we will say
briefly the Kirchhoff temperature is the Kirchhoff transforma-

tion, is the so-called enthalpy transformation). In three-dimensional
problems (i. e. n = 3) the physical dimension of enthalpy, temperature, and
the Kirchhoff temperature is J m - 3, K, and respectively. The
boundary conditions ( 1.2) can be now rewritten as:

I  ~ 
~ 

1~ ~ w~ 1 m ~ v t iv /..AB_n 1 ~~ v 2014T~ ~~ 1 ~r~

(2.2) for i ~ ~ ..., m are to solve we must impose still the so-called(2.2) for i = l, ... , m are to solve ( 1.2), we must impose still the so-called
Hugeniot contact conditions on the boundaries Q, between the
i-th and the j-th subdomains:

._.. a_._ a~._

.J " ~ ~

conditions (2.4) and (2.5) express the requirement for the heat flux and
the temperature not to have jumps on Of course, the system should
be completed by an initial condition:

( 2_ f~l w (x. 0i = w° lxl on S2_

f 1 B /

(1.2) we have got an unknown enthalpy in the system (2.2)-(2.5). The
formulation based on the enthalpy is more sensible especially in the case
of the Stefan problem, where some may be a multivalued mapping.
Let us remark that usually only the Kirchhoff temperature (and thus only
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a function fi;) appears in the enthalpy formulation. ln the homogeneous
case it is good enough, at least from the mathematical point of view, but
in our heterogeneous case temperature and the Kirchhoff temperature
must be distinguished from each other because they differ qualitively (the
latter may have jumps on rij, while the former may not). For an example
of the functions a; and i in a case of a certain type of steel we refer to
[8].
Let us derive a weak formulation of the system (2.2)-(2.6). We assume:

Q, Qi are bounded Lipschitz domains, i = 1, ..., m,
r~ w ~ _ ... _. m

The standard norm ana the scalar product 01 a Hilbert space L (0396) will
be denoted by ]] . and  . , . ~y, respectively; e. g. u)Q
will mean Let us denote by the usual Sobolev space

of all functions that belongs together with their first distributional
derivatives to L2 (Q). For every zEH1(Q) we have by (2.2):

/ ~... B

where 03A3 denotes the summation for == 1, ..., m. Now we use the integra-
f

tion per partes in time and Green’s theorem in space. By (2.3), (2.4) and
(2.6) we get

/ / ~-B B

where me integrals over Li are 10 oe unaerstooa in ine sense 01

traces. Let us note that the terms of the type ( 03B2i (w), do not

occure in (2.8) because of (2.4) and the fact that the traces on 03A3ij of the
functions z ~Q~ and z IQi are the same since (Q~. We will use the
following convention : (w) denotes the function defined a. e. on Q by
rt(w) (x, t)) if Analogously we define a. e. on Q,
g (x (w)) a. e. on 03A3 = F x (0, T), etc. The integral identity (2.8) can be then
rewritten as follows:

/ -

VoL 6, n° 6-1989.
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(2.2)-(2.6). Note that the condition (2.5), which has not been included into
( 2. 8), is reflected in (2.9).

DEFINITION 2. 1. - A function w E L2 (Q) will be called a weak solution
of the Stefan problem in a heterogeneous medium, i. e. of the problem (2.2)-
(2. 6), if
l ~ 9l ~ T 2 tn T. ul rn»

z ( . , T) = 0 (in the sense of traces on Q x (T)):

following manner: due to (2.9), a (w) I~ belongs to the space
LZ (0, T; (I-’)), and thus it belongs to L2 (E) as well. It is weaker than
the usual understanding of traces (i. e. for z ~ H1 (Q), z |03A3 ~ H1/2 (E)). As
usual, L 2 (0, T; . ) denotes the space of squared integrable (in the Bochner
sense) functions of the interval [0, T], and HI/2 denotes the corresponding
Sobolev-Slobodeckii space.

3. A REGULARIZATION AND AN APPROXIMATION
OF THE PROBLEM

The Stefan problems are usually treated by means of a regularization
of the functions a; and f3i (then the regularization of is a singlevalued
or even smooth function). We will not need such a regularization here,
but what we need is a regularization of the contact condition (2.5) of the
Dirichlet type by replacing it with a condition of the Newton type:

,.," __ ,__, __ ,__, _ -- -

orientation is important). Note that (3.1) is symmetric with respect to the
indices i and j if (2.4) and the orientation of v are taken into consideration.
The parameter p > 0 represents a thermal resistivity of the surface rij (its
physical dimension is m2 for three-dimensional problems). The
original problem can be understood as a "limit" case of the problem (2.2),
(2.3), (2.4), (2.6), (3.1) when the thermal resisitivity of the surfaces 
tends to zero. It should be pointed out that the problem with p > 0 has its
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a weak solution for p > 0 and a convergence for p ~ 0.
Let us define:

nf TTl /~TBB

1.11V111 V~ l.liV O~.G1.11~.L6Ll~ 11V1111J, l. V.

~~ (ul, ..., (~~1 t~~ -(~i ~~ ui ~~H1 t~i~)1~2 and analogously for ~1 (Q). We
will consider HI (0) imbedded continuously into ~1 (SZ) by means of

..., um) with Similarly c For 
and i ~ j let us denote by ~~~ u E the difference between the traces
on r~~ of and It is evident that belongs to H 1 (Q) if
and only if b~~ u = 0 for every By using the per-partes integration in
time and Green’s theorem in space, we get the following definition of a
weak solution for p > 0:

DEFINITION 3 . 1. - A function w03C1 ~ L2 (Q) will be called a weak solution
of the Stefan problem with thermal resistivity p > 0, i. e. the problem (2.2),
(2.3), (2.4), (2.6) and (3.1), if .

T. 

F ‘~ 

z(., T) = 0 (in the sense of traces on 03A9 x {T}):
/ a~~ ~

Now we employ the approximation by means ot the well-known Kothe
method, which is based on a time semi-discretization (hereinafter consi-
dered as equidistant, 11 > 0 will denote the lenght of a time step, 
integer).
DEFINITION 3. 2. - A f unction E L2 ( ~ will be called a Rothe approxi-

mate solution of the Stefan problem with thermal resisitivity p > 0 if
for a. a. x ~ 03A9 and  t  k =1, ..., T/~

(thus is picewise constant in time), where E L2 (Q) are functions such
that a (w~,~) E (SZ) and the following recursive integral identity holds for
every v E 1 (Q) and all k = l, ..., .-

rk n
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nonlinear problem in a heterogeneous medium. Put and 
and subtract (3.4) for these two choices. We thus get the terms

n )  V (B (wj - B V v ~...

term may have generally an arbitrary sign even if 03B2i are nondecreaing.
For the choice the situation is converse, it means that
the second term does not preserve any sign. In no case we get any
monotonicity, and that is why usual methods for homogeneous meadia
fail in our heterogeneous case. It causes also serious difficulties concerning
uniqueness of the weak solution, its continuous dependence on the data,
and efficient numerical methods. It is quite surprising because the "discon-
tinuously heterogeneous" nonlinear heat-transfer problem is physically
reasonable. Thus it is a challenge to develop new techniques for this

problem.

4. EXISTENCE AND CONVERGENCE RESULTS

We impose the following assumptions on the data g, and w°. We
assume that there are real constants 8max, 0  gmax > 0
such that:

(4.1) b’ i =1, ..., m : a;, J3i: R - R are continuous, nondecreasing
functions such that 1 is an absolutely continuous (single-valued)
function, (2.1) holds in the sense of distributions or a. e., respectively,
ct ( 8) >_ 0, i (8) >__ kmin for a. a. Oe and lim I a~ (w) = oo,

(4.2) is measurable, ( g (x, t, 8) I  for a. a.

(x, t, 0) E E x 8max], g (x, t, . ) : (F8 ~ R is continuous and nondecreas-

ing for a. a. (x, and g ( . , . , 8min)  0 and g(. , . , 8max) > 0 a. e.

on E,

(4.3) E L x (Q) and 03B8min ~ 03B1(w) C 03B8max a. e. on 03A9.

(hence c~ contains a Dirac distribution), is a multivalued mapping
because xi is then constant on an interval with a lenght equal just to the
latent heat of the phase change in question. Of course, since ~ii ~ should

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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oe a smgievaiuea mapping, ~i must ne constant on ims interval too; c~. tne

example in [8].
Note also that, since ci may approach zero, the equation need not be

of a strong parabolic type. To avoid some technical difficulties, we have
not admitted c~ to be zero on an interval of a positive lenght [in such a
case at and Pi would not be singlevalued mappings as assumed in (4.1)],
but the results below could be extended to this case too.
Now we are going to prove existence of some approximate solution w~

by means of the Schauder fixed-point theorem.

PROPOSITION 4.1. - Under the assumptions (2.7), (4.1 )-(4. 3), for every
p > 0 and 11 > 0 there exists at least one Rothe approximate solution w03C1~
due to Definition 3.2. Moreover,

(4.4) 03B8max a. e. on Q.

Proof - We are to prove that, for every such that

03B1(wk-103C1~) ~ 03B8max there exists at least one wk03C1h E L2 (Q) satisfying (3.4)
for every and such that Now we pull the
subdomains Q, apart, considering the following m problems: for

find such that

~/1 G 1 ?’1 / ~7 R / 1A7 ! B/ 11 B 4 / 1t7 11 1

noias tor every i =1, ..., m. it is evident tnat, 11

(4.6) 8:; = oc (w:~ (r.. for everv i, i, i # i,

Putting we can Wpq iX ) # Wi iX ) I UE the form of a variationalPutting we can rewrite (4.5) into the form of a variational
inclusion (realize that, by (4.1), is a multivalued mapping with a
maximal monotone graph):

~, ~~,~ ~"~ ~ / RW 1,~1 iB

than the usual necessary conditions for yi E H1(03A9i) to be a minimizer of the

Vol. 6, n° 6-1989.
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_______:~__ r-

defined by:

.. ~.. - .. n II - t ~ .. ,

wnere

and

convex with respect to y, hence Ji is actually a convex functional on
H1 (S2i). It is evident that (4.8) is equivalent to the fact that 0 belongs to
the subdifferential aJi at yi. Without lost of generality we may and will
suppose that there is some i, such that 0393ij has a positive (n -1 )-
dimensional measure. Roughly speaking, it means that every SZi is "con-
nected" with some other If it would not be true and some Oi would
be isolated, we could divide such Qi into two subdomains connected with
each other. By this assumption and (4.1), the first and the forth terms in
(4.8) ensure a uniform convexity of Ji with respect to the norm of H~ (Qi),
from which follows particularly a coercivity of Ji on Suppose, for
a moment, that g has been changed outside the interval [8min, in
order to have a linear growth. It ensures the continuous dependence of
the third term in (4.8) on yt. The other terms are continuous evidently,
therefore the whole functional Ji is continuous, and thanks to its convexity
it is also weakly lower semi continuous. Existence of its minimizer yi then
results from reflexivity of H Taking some w~ such that ~~ 
we obtain a solution of (4.5). Moreover, the uniform convexity ensures
uniqueness of the minimizer yi of J; and the (even uniform) continuity of
the mapping from H -1 ~2 ( rl~) to H 1 
Now we will prove that the mapping is completely con-

tinuous from to itself. Let ~8r;~1 E ,~ be a sequence in 

converging weakly to aij. As the imbedding of into is

compact, this sequence converges strongly in H -1~2 (I’=;), and therefore
strongly in H ~ yi and y~ denote the unique solutions of (4.7)

Annales de l’Inrtitut Henri Poincaré - Analyse non linéaire
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corresponding to 8g and 03B8ij, respectively. As tne sequence

(y~)~l E ~ is bounded in H~ (QJ, we can take a subsequence (denote
it by the same indices, for simplicity) such that ai o (yD = --~ 9i
weakly in H1 (Qi). Therefore 03B1i (wi) ~ 03B8i strongly in LZ In view of the

continuity of the Nemytskii operator induced by (note that, thanks
to (4.1), ai o I~ -~ R is continuous with a linear growth), we can see
that 03B1i(wli) ~ 03B1i ° = ai (wI) in L2 (03A9i), which shows that 03B8i = 03B1i (wi)
and the whole sequence converges weakly in to 8~.
Thus the respective traces on converge strongly in L 2 

Let us define the mapping ~ : ~ L2 (rij) - fl L2 (rij) by prescribing
i~j i~j

with Iri . where wi is a solution of (4.5).
We have already shown that C is completely continuous. We have assumed
that emin C 9max. By the maximum principle, which holds for
the nonlinear heat-transfer equation as a consequence of the monotonicity
of ai, ~iI and g, and by the assumption (4.2) it can be proved that C maps
the set M = {q = (8i j) ~ 03A0 L2 i ~ j : 03B8min ~ 6,,  into itself.

i~j

As ~ is convex, closed and bounded in the reflexive separable space
IT and 03A6 is completely continuous, we can see is

strongly compact, and therefore we can use the Schauder fixed point
theorem to get some such that q = ~ (q). From the defini-
tion of C it is evident that (4.6) is satisfied, and then constructed as
described above solves (3.4). Starting with (4.3), we can verify recursively
that a (wP,~) ~ 8max, and thus also (4.4). The existence of some Rothe
approximate solution by Definition 3.2 has been proved..
Now we are to state and prove some a priori estimates. Let us denote

by e C° (0, T; L2 (Q)) the linear interpolation of over the intervals

[k ~ - ~, k ~], that means wP,~ (x, . ) is linear on each of these intervals,
and wjp,~ ( . , for k=O, ..., T/q. For fEL2(Q) let us put

i 1 , , , >

L2 (0, T; H1 (03A9)) endowed with the standard dual norm. Also we will
use the known fact that L2 (o, T; H1 (Q))* is isometrically isomorphic to
L2 (0, T; H 1 (SZ) *), where is the dual space to HI (Q); for f E L 2 (Q)
we put

~ .... , _ _ .

L2 (4, T; ~ 1 (Q) *) is treated analogously.
PROPOSITION 4.2. - Let (2.7), (4.1)-(4.3) be valid, and w03C1~ be a Rothe

approximate solution due to Definition 3.2. T’hen there are some constants

Vol. 6, n° 6-1989.
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the coercivity of all a;; see (4.1).
We may put into (3.4) and sum (3.4) for k = 1, ..., We

obtain:

~ ~- r

- _ " ".. I i - "..

v i v~

the term I1 is non-positive and can be replaced by zero. Denoting by AI a
primitive function to ai, we can rewrite the term I2:

.. n / .. 1 . ~ r1 .. _ n_ .. ^r ~_. _ .

and (4.4), we obtain an estimate for I3, namely
| I3| ~ measn03A3 max {{ 03B8min|, | 03B8max|} gmax, where measn denotes the n-dimen-
sional Lebegue measure. It completes the proof of (4.10) and (4.11).
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m ow we go on r irst, ior every we can 

into the form :
1 A B ___k-1v i__ __ __ v

I ~ I

we nave usea the estimate ana tne inequalities: v ~0393 ‘ ; II v IIK1 (n)and ~03B4ijv~0393ij  Cij ~ v ~1 (n), which hold for all i ~ j and every v E 1 (Q).
It yields the estimate (4.13):
II ~ _ - il 1

11 ren m ana mererore ine last term in 

vanishes. Thus we obtain the estimate (4.12):
II a II 1

L

[amin’ increasing and Lipschitz continuous such that

gl (x, t, ( . )) : (~ --~ (F8 is linear for a. a. (x, t) E E.
Let us remark that this condition does not seem to be a considerable

restriction for g. E. g. it admits the boundary conditions of the Stefan-
Boltzmann type: let 0 and

~ r__ .~ n~ - .. ~o _. i__ ~BB . L ~__~ ~04 _. i__ ~B4B

vol. 6, n~‘ 
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, ~ ~ * .  .

w ‘rvl = v’ v B.m/ = v? w ‘rv’ v j av 

(4.15) is satisfied with

L = 2. ~, (x. t. 8) = a (x) (8 - u (x. tO. a, (81= 8.

(i) Let p > 0 is fixed, and o be a sequence of Rothe approximate
solutions by Definition 3.2 with r~ ~ 0. Then there is a subsequence (denote
it, for simplicity, by the same indices) such that:

a --~ a weakly in L2 (0, T; ~1 (SZ)),

thermal resistivity p > 0 due to Definition 3.1.
(ii) Let ~wP,~~~, ,~ ~ o be a sequence of Rothe approximate solutions by

Definition 3.2 with 0, ~ 1 0, and r~2 f p -~ 0. Then there is a subsequence
(again denoted by the same indices) such that

fX -~ a (w) weakly in L2 (0, T; ~1 (Q)),

heterogeneous medium by Definition 2.1. 
’ ’ 

Proof. - Let us take a test function z for (3.3), it means 
and z ( . , T) =0. As C~ (0, T; ~ 1 (Q)) is dense in ~ 1 ( ~, we may and will
suppose that z e C  (0, T; ~1 (Q)), that means t - z ( . , t) is a continuously
differentiable mapping from [0, T] to ~ 1 (~). Put v = vk -1= z ( . , 
into (3.4). Then sum (3.4) f or k = 1, ... , T/~ and use the discrete analogy
of integration per partes:

T/~ T/n

- ’ 
_ 

0 _ _ _

T/~
_ _ _. ~--, _ ~.._ _

intervals [k ~], and by z~ E L~ (0, T; 1 (Q)) the piecewise constant
(regarding time) function defined by z,~ ( . , t) = z ( . , k ~ - ~) for

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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k r~ - r~  t  k r~, k =1, ..., We can rewnte {4.1b) as louows:

/ ~ B

Comming back to tne original test function z, we gcu
/ ~ B

where denotes the remainder:

p ~ (wj I QL ~ kmax C 1 [cf ( 4 . 1 ) and (4.10)] ] and because

V(Z-Zl1) for ~  0 since T; 1(03A9)). Also the term

R(2)03C1~ converges to zero if 0 because of (4.9) and because ~ ~tzI~ ~ ~z ~t in
L2(Q) as a consequence of the assumed smoothness of z. Using the

linearity and continuity of the trace operator, we can see that

z ~~ E C1 (0, T; L2 (I~’)) and z C1 (0, T; L2 It yields the estimates:

I ( = o (~) and I = o The last estimate uses (4.11). Summar-

izing, we have got:
/~ ~ ~ ,» ~ n __ __ _ __~ ~ _ ~ ~ . ’" /~ ~~ ~~ ~j ~~ ~~ n ;~ ~.:~oa

subsequence of o with ~  0 (indexed, for simplicity, by the same

indices) such that
t ~ ~ . ~.r1 i~ T i~~ /!1B JnB ~ T 7 /~1B

and
, , ~~*B
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- r_ _ ~ ~ .~ ir~B ~2014~ ~ a

nuity of 03C3l assumed in (4.15).
The following assertion is well known (for more general case we refer

to J.-L. Lions [4], Chap. I, Theorem 5. 1): If Bo, B, Bi are Hilbert spaces
such that Bo c c B c Bi, then

T; Bn) n HI (0, T; B,) cc T; B),

respectively. We employ this assertion by the following manner: since

H 1 ( S2) c ~~ L 2 ( SZ), we have L2(03A9) ~~ 1(03A9)* c H 1 (Q)* if

identifying L~(Q) with its own dual, and we can put 
B1=HI(0)*. Then (4. 20) results in

(4.26) wj"~ ~ w" strongly in L2 (o, T; ~1 (S~)*).

, , .- ~ .- ..- ...._ .

(4.1?), which yields the identity:
, ......, ~--~ . ~ ~ , ~ , I aZ v _ .. "

from ~1 (SZ) to L2 (I~’~~), and thus also from L2 (0, T; ~1 (SZ)) to L2 (Et~),
and, being linear, this operator remains continuous with respect to the
weak topologies, as well.

It is obvious that the part (i) of the theorem will be proved if one shows
that

(4.281 a. e. on O.

(3.3), we observe that we are to show, besides (4.28), also

(4.29) a. e. on Q,

(4.31:

such that wE -~ wo strongly in L2 (Q for s B 0 and a (w) E L2 (0, T; (Q))
for all E > 0. Such a sequence can be obtained from wo by the mollifier
technique. Now suppose that s > 0 is fixed. From (4.21) and (4.26) it

follows that

wo,,~ - w~ > converge to « 

_
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L2 (o, T; and L2(0, T; ~ 1 (SZ)) *. Since LZ ( ~ has been imbedded
into L2 (o, T; (SZ))*, we can even replace « . , . > by ( . , . ~Q because
wE, This trick concerning dual spaces has been already
used by A. Visintin [9], Sec. 2.

Let us emphasize that need not be non-

negative. However, it is obvious that

= V Y - 1, 9 * * *9 LW

the term I2, by means of (4.10) we can estimate:
I T I ~ /r ’ I II ". ~.., ~ II 1 _ B II...J ,., 11 1 .

TV 

II _1

’It TTB tr ) ~ /r~ . I I1 ", ~~., ~ II ,.. ~ 

for r~ B 0, we get:
, .., ", ~ ~ ~ , , - -

w. LV ~ Y V. YVE - B~/

and the Nemytskii operator is continuous in L2 (Q), we can see
that - a (wo) strongly in L2 (~. From (4.33) we thus obtain:
(414) w - w.. W > (1

Minty trick.
By the similar way we come to (4.30), using (4.21) and the estimate

(I ~L2 (O, T; 1 (03A9))  C1 instead of (4.22) and the estimate (4.10).
Now we are going to (4.29). As L2 (S~) is continuously imbedded into

L2 (0, T; H1 (~)*), from (4.20) and (4.25) we can see that wp,~ --~ wp and
wp weakly in L2 (0, T; H 1 (S~) *) as well. Using (4.12) we can obtain

by the same manner as above the estimate
I I ,.,I ,. ~ 1 I - , ~ ~.-, ~’’ / N

Vol. 6, n° 6-1989.



498 a . aw v 

and monotonicity of the functions that for all 1=1, ..., L :
a. e. on Q. In view of (4.28) we can see that 

a. e. on Q. Particularly the traces on 03A3 of sl 03C1 and 61 are the same.
Let us put gz (x, t, t, (s)). From (4.24) we get the weak

convergence of the respective traces in L2 (o, T; (I-’)), hence in L2_(E)
too. As t, . ) is linear [see (4.15)] and the Nemytskii operator s H gl (s)
is continuous in L2 (E), this operator is also weakly continuous in L2 (~).
It yields that weakly in L2 (E). Since

g (a (a and g (Bp) _ (~p)) - (Sl p), we have
got that g (a (wp,~)) -~ Comparing it with (4.23), we obtain just (4.31).
The proof of the part (i) is just completed.
The part (ii) requires only slight modifications in the preceeding proof.

First, instead of T; ~ 1 (SZ)) we can suppose T; H 1 (SZ)),
hence 03B4ijz=0, and also 03B4ijz~ = 0, and thus the respective terms in (4.16),
(4.17), (4.18), and (4.27) vanish. As now both p and 11 tend to zero, we

choose a subsequence of 
n > o 

such that ~ w weakly in

H~ (0, T; HI (Q)*) n L2 (SZ), and analogously we modify also (4.21)-(4.25),
the respective limits being denoted without the subscript p. To prove that
R(4)03C1~ ~ 0 for p B 0 and ~  0, we employ the assumption ~2/03C1 ~ 0 (recall
that we have shown I RP~~ ~ = o (~/~)). This assumption is employed
also for (4.32) to prove the modification of (4.33), it means

In this way we get the integral identity (2.10).
Since p B 0, from the a priori estimate (4.11) we get additionally that

for all i ~ j, which proves (2.9). Thus w obtained in the
above manner is actually a weak solution of the Stefan problem due to
Definition 2.1..

We join Theorem 4.1 with Proposition 4.1, which gives immediately the
following existence result:

COROLLARY 4 . 1. - Under the assumptions (2.7), (4.1 )-(4. 3), and (4.15),
there exists at least one weak solution w of the Stefan problem in the

heterogeneous medium due to Definition 2.1 and, for every p > 0, at least
one weak solution wp of the Stefan problem with thermal resistivity p due
to Definition 3. l.

Assuming uniqueness, we can obtain also the following convergence
result:

COROLLARY 4. 2. - Let (2.7), (4.1 )-(4. 3), (4.15) be valid and, for every
p > 0, the weak solution due to Definition 3.1 be unique. Then there is a

subsequence (denoted by the same indices) of > Q with p >, 0 such that:

-~ ex (w) weakly in L2 (0, T; ~1 (Q))

Annales de l’Institut Henri Poincaré - Analyse non linéaire



499

t~t ~~~

rv rvc.un.. av~~.s.~..v.~ vJ msc ~m yr~ imt.

heterogeneous medium due to Definition 2.1. I_ f; in addition, the solution w
due to Definition 2.1 is unique, then even the whole sequence ~w~~p ~ o
converge to it.

A sketch of the proof - As the a priori estimates (4.9)-(4.13) do not
depend on rl, we can obtain the corresponding a priori estimates also for
wp by passing with 11 to zero. Thus we can see that there is a subsequence
with p B 0 such that weakly in L2(0, T; and 

strongly in L2 (o, T; (SZ)*). Similarly as above we can prove that

0=a(w). As L2 {o, T; (SZ)) is a separable Hilbert space, the weak

topology on its bounded subsets is metrizable; let us denote by d some
metric inducing on bounded subsets the weak topology. Thus

_ . ~ n r~,. ,. ~ n

m 
av wvvwaaavw.v vv w ~~r~,~,~ vJ v. i’ V 1

Theorem 4.1 (i) we can choose ~ _ ~ ( p) > 0 such that: .~:
,-I !~. l,., 1 r,. l,., 11 ~ ~ ~ .., ... I I . ~ ,.

1 1 Y~ _ t", V. 

weakly in L2 (0, T; (SZ)) and ~p~ 
-~ w strongly

in As ~ (p)2/p .-~ 0, all the assumptions of
Theorem 4.1 (ii) are fulfilled, and we can see that w is a weak solution by
Definition 2. 1..
We have met the affair of uniqueness of the weak solution. Unfortu-

nately, in general the uniqueness remains as an open problem, though it
does not seem that there is any actual reason for the weak solution not
to be unique. The original technique by Kamenomostkaya [3] to prove
uniqueness has been used in [6], but only on assumptions that r is smooth
and the medium is "smoothly heterogenous".
Remark 4.1. - The problem is considerably simplified by the additional

assumption:
/~ ~c~ o i___v ~_l11 __ i_._v ~ I 

means that the thermal conductivity ki (9) does not depend on the

temperature e, being equal just to the constant kf. Then the approximate
solution wPTI due to Definition 3.2 can be obtained simply by minimizing
(successively for k =1, ..., of strictly convex functionals of 
over ~ 1 (Q), without using the Schauder fixed-point theorem. Thus we
get also uniqueness of Also it can be demonstrated by modification
of the method [5] that the corresponding Rothe operator is a contraction
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the boundary term in the proof of Theorem 4.1 can be performed as
proposed by A. Visintin [9] without the condition (4.15). Under some
regularity assumptions on the data g and w° and under the assumption

> 0, we can even use techniques checking the time derivative
of the temperature; see, e. g., [6], [8] and [9], Sec. 3. Thus the weak

convergence in L2 (o, T; ~1 (S~)) in Theorem 4.1 and Corollary 4.2 can be
replaced by the weak convergence in ~ 1 (Q), and the proof of Theorem 4.1
can be considerably shortened.
Remark 4.2. - A particularly simple case appears when, in addition to

(4.35), the boundary heat flux is linear, having the form :

(4.36) g (x, t, (x). t) with gi (x) > 0 on r.

JL ~ ~ L -t

a homogeneous medium and the Dirichlet boundary condition. In our
case it can be demonstrated that the operator ~ : ~ (~) --~ H 1 (S~) *, where
~ (~) _ ~w E L2 (SZ); defined by

_00 luul ~~~1- ~’ ~ ~ R V -~- ~ u. nr 

by  ~, ~ ~> _~ (A -1 (E,)) with A : H1 (S2) --~ H~ (Q)* defined by
A (8) (u) _~.  ~ 8, ~ u y. + ~ ~, 8~ u ~r.

a (w) E ~ 1 ( S~) ~, by 
..

-~ ~...~ ~_.~ __ r’ i c~ ri ~...~ ~ i ~ _. i_ ..~ _. v , 
1 r’ ~ ~ ". ~...~ ~ ., v

defined like previously but, instead of A, by means of the operator
~ 1 (S~) -~ ~ 1 (S2) * defined by
.. ,~ , . ~ c-~ . ~ , .. r..~ ., ..... , I c-~ , ~. ,., ~.. ’"

~ 

= .s~ and 

of the operators j2/ and d p enables to use standard techniques (see [4]),
particularly it yields uniqueness for both wand wp; cf also [8], Remark 4.5.
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