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ABSTRACT. - The equivariant theory for harmonic maps is extended to
anifolds with indefinite metrics. We apply it to produce many new
xamples of harmonic maps and global solutions for the associated Cauchy
roblems.

RESUME. - La theorie equivariante pour les applications harmoniques
st etendue aux variétées avec metriques indéfinies. Nous l’appliquons
our produire beaucoup de nouvelles applications harmoniques et solu-
ons globales pour les problemes de Cauchy associes.
Mots clés : Harmonic maps, Cauchy problem, hyperbolic systems, lorentzian manifolds.

INTRODUCTION

This paper deals with global existence problems for harmonic maps
tween manif olds with metrics of (p, q)-signature.

Classification A.M.S. : 58 E 20, 35 L 15, 58 F 99.
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have been studied since 1964 [ES] and global results of great interest in
geometry and physics have been obtained by using many different methods
(see [ELI], [EL2]). This paper deals with the equivariant method: roughly
speaking, this method consists in exploiting the symmetries of certain
maps in order to reduce the existence problem to the qualitative study of
an ordinary differential equation.
We call a manifold endowed with a metric of signature of type (p, q) a

(p, q)-manifold.
The class of (p, o)-manifolds coincides with the class of riemannian

manifolds; (p, I)-manifolds are called lorentzian manifolds. Because of
their significance in mathematical physics, harmonic maps between (p, q)-
manifolds are certainly a developping subject. However, at the present
time, only a few global existence results have been obtained (see [CB],
[G 1], [G2], [GV], [HL]): this lack of general global existence results consti-
tutes one of the main motivations for introducing the equivariant method
in this context.
The paper is organized as follows: in section 1 we describe a general

theoretical setting for equivariant theory on (p, q)-manif olds and establish
a Reduction theorem.

In section 2 we describe many examples of equivariant maps: in particu-
lar, we produce two examples where the domain is the Robertson-Walker
space-time.

In section 3 we prove a global existence theorem for the Cauchy problem
for harmonic maps from Lorentzian into riemannian manifolds: this special
case is particularly significant in mathematical physics (see [CB], [G2]).

Section 4 is devoted to maps between (p, q)-manifolds, p, q > 1 : we

obtain existence and non-existence examples: in particular, we represent
harmonically each homotopy class of maps from to 

In section 5 we obtain qualitative results about the harmonic maps
produced in sections 3 and 4.
The results of sections 3, 4 and 5 are based on the qualitative study of

ordinary differential equations of physical interest.

1. (p, q)-EQUIVARIANT THEORY

Given a (p, q)-manifold W, its Chrystoffel symbols are defined anal-
ogously to the riemannian case: similarly, let f : be a differen-
tiable map between two (p, q)-manifolds: thus the second fundamental
form V (df) is defined and f is said to be harmonic if

Trace o ( df ) = 0. (1.1)



505

where W 1 is a (p, q)-manif old, p, q _>_ 1, the system (1.1) has substantially
different features from the riemannian case: in particular, the investigation
of the existence of global solutions is much harder because this branch of
the general theory for hyperbolic systems is much less advanced than the
corresponding elliptic theory.
The equivariant method appears to be suitable to study global properties

3f (1.1) in quite many important cases, as we will see in sections 3, 4
md 5. Here we present a theoretical setting for this method.
As for equivariant theory for riemannian manifolds we refer to [Ba],

:KW], [R2], [S2].
Before giving the general definitions we describe a simple but instructive

example.
Let (M, g), (N, h) be riemannian manifolds of dimensions m, n. We

consider warped products

UBB L L~~ u~. w.m.a.y

~V1 and W 2 are respectively a lorentzian and a riemannian manifold.
We will be interested in maps f : W2 of the following type:

/*. fn) . ~r .~ n 1

i.~ Ct 

Lnd a: Il~ -~ (I~ is a differentiable function.

The symmetries of f provide reduction of (1.1) to an O.D.E. : more

precisely, the map f is harmonic if and only if the function a (t) satisfies
A i !~1 ~1 .. ~/~B n /-. !~B1 17 i ! __ l~11

Therefore in this case the existence 01 global solutions 01 the hyperbohc
ystem (1.1) is reduced to the qualitative study of the ordinary differential
quation (1.4).
In this order of ideas, we can proceed to the general definitions. Let

M, g) be an m-dimensional riemannian manifold on which there exist
listributions S~ of dimension m J, j =1... k such that:

/ ~ B
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product as well.
Let M J be the integral submanifold associated to the distribution S J and

g~ be the induced metric on M~ ( M~, gj in general make sense only locally).
Let i be the complex number such that i2 = - 1.
We consider the following two classes of functions:

v (t) ( 1. 5)

some open, not necessarily limited, real interval (a, b). We will develop
(p, q)-equivariant theory on the following class of (p, q)-manifolds:

f- - ... ’ .^~.. ~~~ ._ -,

~~~ ~.(.ll~.i ~~~ oj

are as above. 
‘ ’ 

’ B.
Let J be the set of indexes j such that A~ is of type (1.5) and assume

for instance that h (t) be of type (1.6): then the manifold in (1.7) is a

(p, q)-manif old with

D= ~’ m:_ a=m + 1-D 

We call a manifold as in ( 1.7) an equivariant (p, q)-manifold.
In order to study maps between two equivariant (p, q)-manifolds, we

use the above notations for the domain; for the range, we denote our
equivariant (p, q)-manifold as follows:

/ I B

.. a..~" i ., ‘..~ .~.), yT ‘,, J, 1,. lL) yiu) ~.11V 1 V1V ~u.~ vl, 

h (t) in (1.7) and hr are associated to distributions Tr in an analogous way
to gj to Sj above.

Let 03A6 : M ~ N and a : (a, b) -> (c, d) be smooth maps.
A map f of the form

f. ~l ~

_ __ _ _ _ _ __ _ 

1____ 
___ ______ 

_____‘ 
-- - _ __- - _ -_________

(S;) ~ T~: for some r~ _j =1... k.
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~ s is harmonic with constant energy density e (~);, j =1... k. (1.12)

More explicitly, condition (1.12) means: write x E M as ..., xk), with
Xi E Mi, i =1... k. This is possible locally because of assumption iii) and
(1.12) is a local condition.

Let us fix xi E Mi for all and consider

~ _~ m ~ ~~ B

nergy density e (03A6)j which does not depend upon the choice of £; « M;,
~ j.
A straightforward computation leads to

Reduction theorem ([R2], pp. 147-150)

L~ M x (~ ~), N x (c, ~) ~ equivariant (/?, (1.7), (1.9);
and let /: M x (a, b) ~ N x (c, J) be an equivariant map as in (1.10).

Then f is harmonic if and only if the function a (t) satisfies
r ~ A ~ /~B L~ /~B i

particular case of the Reduction theorem, with (a, b) _ (c, k = r = l,
(t)~i, K(t)~ 1.

Remark (see [Ba], [R2]).
There are cases where (p, q)-manifolds as in ( 1.7), ( 1.9) are open dense

subsets of other manifolds; each connected component of the complement
of such an open set is usually called a focal variety.
In these cases global properties are usually achieved by imposing bound-

ary conditions on a (t) and using regularity arguments.

2. EXAMPLES OF EQUIVARIANT MAPS BETWEEN
(p, q)-MANIFOLDS

First of all we introduce the equivariant (p, q)-manifolds that we will
be interested in.

Vol. 6, n° 6-1989.
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Lei ~r ne tne p-dimensional unit euclidean spnere and l~~ T 1, q T 1 tne

(p + q + 2)-dimensional real vector space with inner product
p+l p+q+2

_ r __ _ _ _ _ __ _ _ _ ~ 
.. 

t-~~~ __ ~ r _ ____

as

z = cosh tu + sinh tv l2. 31

If q > 0, then it is easy to see that Sp° q + 1 is isometric to

cosh2 tg,

The locus t = 0 is a focal variety homeomorphic to SP.
It is clear from (2.4), (2.5) that Sp° q+ 1 minus the focal variety t = 0 is

an equivariant (p, q + 1 )-manifold as in ( 1.7).
If q = 0, one sees easily that, up to an isometry,

cosh2 t - dt2l. (2.61

--- ___ _ _ __ _ _ _ __ _ - _ _ _ __ _ _ _ _ ~_ . ~_ _ _ _ 

J _

An important example of equivariant (3,1)-manifold is the Robertson-
Walker space-time (see 

Let (M, g) be a simply connected 3-dimensional space form of curvature
c (c E {0, + 1, -1}) and let A (t) be a positive, strictly increasing, differenti-
able function defined on (0, + oo).
Then

a lll l7 ’ll

These space-times are important in general relativity because they are
employed to construct cosmological models. Apparently, we have three
different classes of Robertson-Walker space-times, according to the value
of the constant c; but, when one actually uses these models to study
cosmological phenomena, he finds that all three types make similar predic-
tions for all observable effects.
Then nowadays the most common approach consists in studying all

the Robertson-Walker space-times together as a one parameter set, the

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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--- - 

----0

interest are those corresponding to constant positive values of q, which
can be obtained by choosing

A lrl-ts n ~ ~ ~ ~ i l7 0l

t ~~~ *~ ~ ~~.~~ ~*~~f~ ~.T Jt.~.~ ~~.~~t.tj 

the associated space-time is usually called Einstein-De Sitter space-time. ’.
For our purposes it is convenient to employ the model of spatial

curvature + 1; that is to say (M, g) = S3 in (2.7) and we write

def _ _ _

4111,.~U ~~ AtJ

seful to recall some parametrizations of Sm and Hm, the m-dimensional
yperbolic space.
We write every point c= x !R in the form

~ _ ~, ~, r~ 1 1 v

This determines an identification between Sr + 1 minus the two poles and
Ze warped product

x (0. 03C0), sin 2 v g + d03B32) (2.121

__ _ _ _ 

~ 
... 

__ __ __ _ _ _ ~

Similarly, we write every point z E + ~ 
~ ~r + ~ X ~S + ~ as

~ - cin v v -4- rnc v m  1

~~ ~ ~~ ., t/ 

Then ~’’ + S + 1 minus the loci y=0, y = x/2 is isometric to

~~--~-- 0.1’ ~~ ~ ---- Vl U , 1J .

The hyperbolic space Hr+ 1 can be characterized in the following manner:

H’’+1-~Y~~r+~,~ . ~Y YB - 20141 ~ f9 1W

;very point as

." ,, i ,...~1.~ l’7 1 ~l

’ol. 6, nC 6-1989.
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+ sinh2 v Q

Now we are in the right position to give some examples of equivariant
maps between (p, q)-manifolds and associated reduction equations.

In all examples below, the map u -~ ~ (u) will denote a k-homogeneous
harmonic polynomial Sr; thus ~ is a harmonic map with
constant energy density e (~) _ ~,/2, ~, = k. (k + p -1 ). Important examples
of this kind are the Hopf fibrations; other examples arise from orthogonal
multiplications or as gradients of isoparametric functions. A discussion of
these maps and their properties is given in sec. 8 of [EL1].
Example (a). - f : - 1.
By using (2.6) and ( 2.11 ) we define

f : Sp’ 1 -~ Sr + 1 1 . - . _.

application of the Reduction theorem we have that the condition of

harmonicity is the following ordinary differential equation for a (t)
_ . _ - _ a., _ _

Let H : S3 -~ S2 be the Hopf fibration: then H is a harmonic 2-homogen-
eous polynomial map with X = 8.
By using ( 2.10), ( 2.11 ) with r = 2, we define 

’

r. R ~ ~3 )

LH 
- - ---- - ---------- -- 

-------------J -

-_______r 
-_ 

~_~_ ~ _ - _ .

Let Ir + 1 be the hyperboloid

__ ~ , def __ -

By using ( 2. 6) and ( 2. 22) we define

f. 1 -~ T’’
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a

By using (2.6) and (2.16) we define

By using (2.10) and (2.16) with r = 2, we define
, ~. ~ T ~t 1

’~ .c ~

-__~_._r 
-- 

~~ ~- ~ - ._ 
~ _

By using (2.6), we define
- 4 . D~ 1 Cf,l

Let 03A61: SP - Sr and 03A62 : Sq ~ SS be two harmonic homogeneous polyno-
ials with associated eigenvalues 03BB2.
By using (2.3) we define

jf 1

W L - V.

Vol. 6, n° 6-1989.
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T 1 .. 1 

- J ~~~~~~ ‘~~ ." ‘~. a, ---- ---- .. ~ v W .a.s.aaa 

of harmonicity
I a 1

Let ~ 1, ~2 be as in example (g).
By using (2.3) and (2.13) we define

f: Sp, q + 1 ~ sr+s+ 1

The condition of harmonicity is
r n t

The condition of harmonicity is

+ ~ n 2 - m 2 ) ~ 

parametrizations of the space forms and Rp + 1, q + 1 or by introducing
suitable warped products.

3. THE CAUCHY PROBLEM FOR HARMONIC MAPS FROM
LORENTZIAN INTO RIEMANNIAN MANIFOLDS

The Cauchy problem for harmonic maps from lorentzian into rieman-
nian manifolds consists in the determination of a harmonic map from its
value, and the value of its first derivative, on a space like submanifold of
the source.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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global existence for tnis proDlem nas been obtamea m some particular
;ases: maps from ~1° 1 to complete manifolds (see [G2]); maps from !?"’ 1, n
)dd, to complete manifolds provided that the Cauchy data are sufficiently
mail (see [CB]).
On the other hand, for large Cauchy data Shatah has constructed

examples of maps from (1~3~ 1 to S3 where global existence fails [EL2]. Here
ve consider the case of equivariant Cauchy data: for equivariant maps as
n examples (a)... (e) of section 2, the Cauchy data are determined by the
Lssignment of three real numbers (t, ao, more precisely, given
;t, ao, does there exist a globally defined solution a (t) of the harmonic-
ty equation such that

N~~’1-N / ~Z 11

)f the Cauchy problem follows from well-known results on ordinary
lifferential equations; but in the general case the question whether there
;xist local solutions of the Cauchy problem is very delicate (see [CB]).
We prove the following

Global existence theorem:

Consider the Cauchy problem with equivariant data (3.1 ) for the examples
a)... (e) of section 2.
Then there always exists a unique global solution.
Proof - The proof is a case by case study of examples (a)... (e). As

or examples (a) and (b), our assertion follows immediately by writing the
’elevant equations (2.19) and (2.21) in vector form with x=(oc, a’) and
Lpplying the following 

’

LEMMA 3.1 (See [Ha]). - Consider the system
t ’~ 71

_- _ ~ ~ ~ - 
__ 

~__~ _/ 
______ _ . _.. _ _ 

~",~~ ~~ 
"_ _Y __ 

__ JJ-. 
_______~_~ 

J___________

denote the euclidean norm of ~2.
Assume that

, _ _ _________ 

.-- ~ ....~,~,~.~ ~~~~, ~y~~.

Then every solution x (t) of (3.2) is defined for all t E (a, b).
Now we occupy ourselves with examples (c), (d), (e).
It is convenient to make the substitution u E (~, in equation (2.28)

of example (e): we call ~3 (u) _ ~c (e~), so that (2.28) becomes
R" ~,.1-a- - 11 R’ ~,.1 ~ Q ~(2 - 2 S) u ,.:r.~. a ~~r~. a ~..v - n .. - rm ~ ~ w i

ui.o,n 
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. 

, , 
- .. 

, , J 
_ _ 

_-__~_~ 
_- _ _ - _ _ 

_- _____ r __ _ _ _ 
.

theorem it is clearly sufficient to see that all solutions of (2.24) and (3.4)
are globally defined.
Both these equations are of the form

n" (tl ~ T) ftl n’ ~tl ~ G nc ~tl n ltl -(1 ( ~_ _Sl

____~ - 

~_~~ - ~_~ 
~--_ _ _______ 

____________~ , ‘_, _ _ 
__ _ __ _ ___

Equation (3.5) is of physical interest: in fact, let C be the curve in the
cartesian 2-plane ( x, y) parametrized by

x = v = c~c F (3_61

~ 

/ 

the Newton law 
’

S21

two forces F1 and F2 as follows: we require that Fl be a damping force

F, _ - D (tl a (tl T- ,., ( 3. 91

~ v .~ - w 

x -~v 1V, , n

w 1 lx~ y1 1J Gl 111 1 - ‘.~., y J LV 1.111r J1.~Q.1~1.7 

as in figure 1.
Then it is easy to see that (3.8) along the direction takes the

form (3.5)..
Now the sign of G (t) is crucial: we notice that in both equations (2.24)

and (3.4) G (t) is positive, so that the gravity force F2 is directed as in

figure 1.

Standard theorems on ordinary differential equations tell us that a

solution a (t) of equations of type (3.5) can cease to exist in some t if and
only if lim a (t) = oo .

t--.r

But it is physically clear that this cannot happen if G (t) is positive, for
in this case the gravity pushes the moving particle toward the position
a=0: a detailed mathematical proof can be performed by comparing

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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-- 

In fact, if one supposes that a solution a (t) of (2.24) or (3.4) blows up
at a finite time t, then, D (t) being bounded, it is not difficult to show

that also equation (3.11), with a suitable K2, would have solutions which
blow up at finite time. But this is not possible, because equation (3.11)
has the following prime integral

l~ 121

Now it is clear that (3.12) forces a solution a (t) to remain for
all t in some closed interval about the position a = o, contradicting
lim 03B1 (t) = oo .
t - t

Remark. - If G (t) is negative in (3.5), then things drastically change:
in fact it is well-known that equation

a" K 2 sinh cosh a l~l = 0 ( 3.131

menon will lead us to cases where harmonic maps are not globally defined
(see section 4).

Vol. 6, n° 6-1989.
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In this section we study examples ( f ), (g), (h), (i) of section 2. We start
with

Example (i). - f : T 1 ° 1 ---~ S 1 ° 1.
The set [T 1 ° 1, SI, I] of homotopy classes of maps from to is

Zx Z.
We observe that the constant function =0 is a periodic solution

of the harmonicity equation (2.37): its associated harmonic map of type
(2.36) represents the homotopy class ~m~ x ~n~ eZ x Z; this simple remark
proves the following

PROPOSITION 4.1. - Each element of 1, x Z can be repre-
sented by a harmonic m ap.

This proposition answers affirmatively to a question raised in [HL].
Remarks. - The constant solution a((p) = 0 is the only periodic solution

of equation (2.37) if and only if m2 >__ n2.
By contrast, if n2 > m2, then the condition of harmonicity is

a" (cp) + (n2 - m2) sinh a f(D) cosh a (m) = 0. (4.1) i

t’* !!i 1 ""’1--~"’-"’’’’ I ~~~-~~JH~~~/~T 

period 2 x which can be used to define interesting harmonic maps
f : T 1 ~ 1 -~ ~. All these solutions have the same image, which is a closed
interval symmetric with respect to 0: it is easy to see that the image of
these harmonic maps can be made arbitrarily large provided that T 1 ° 1 is

given a metric of the form

r2 dA2 - d(n2 ~4 9~

Reduction to equation (4.1) occurs also when one studies equivariant
maps f : T1° 1 ~ I2, where I2 is the hyperboloid defined in example (c) of
section 2: therefore also in this case one can use non-costant periodic
solutions of (4.1) to define an infinite family of harmonic maps.
We also remark that analogous results hold if one replaces the map

8 ~ m 8 in (2.36) (with by any harmonic homogeneous polynomial
ST .

Example ( f ). - f : Sp~ 1 -~ S’° 1.
We show that in this example there are solutions of the harmonicity

equation which are globally defined and others which are not.
The relevant equation (2.30) is again of type (3.5): but the function

G (t) is negative; thus, if one visualizes the situation as in

Figure 1, he finds that now the force F2 is oriented in the direction of the
x-axis: this fact, according to the Remark at the end of section 3, suggests
that there may be solutions which blow up at finite time.

’ 

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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(2.30) : simple inspection shows that under this assumption the function
a (t) = t is a globally defined solution of (2.30) which solves the Cauchy
problem

~ ln~ - n ~~ rn~ - ~ i 

. ,- v. --------- ---- --------- -- 

,-J -- ,-.- -, 
------- - 

-J - -----J 
----

-.in’ - n -.’ n / - , I iA Ai

! 1 111 1.11(~f.l. 1.11V 

ned by (4.4) satisfies |03B1 (t) 0 and therefore it is globally defined:
the physical meaning of this comparison is the following: take two particles
Pi, P2 which move on the curve C in (3.6) and assume that at a given
time t the two particles are at the same position: if the speed of Pi at
time t is less than the speed of P2 at time t and P2 increases monotically
toward + oo, then PI will always be behind P2.

Similarly, in the case where À 7~ p, the solution determined by (4.4) is

globally defined provided that s is sufficiently small. By contrast, now we
exhibit initial conditions

N!’r’1~N N~I 1’1~N N N B 11 ~/1 ~1

.I B 1 - ./ B / 1

at finite time.

Our assertion follows if we produce a supersolution F ( t) of (2.30) in
the following sense: we require that F (t) satisfy

N IV B n .

In fact, if both (4.6) and (4.7) hold, the comparison method of J
shows that the solution ex (t) of (2.30) determined by (4.5) satisfies

a (t) >_ F (t) T); thus the blowing up of F (t) at T forces a (t) to
blow up as well at some point T E (t, T].

In order to produce a function F (t) which satisfies (4.6) and (4.7) we
consider the following function

def _ _ _ _

v ~ _ 
____ _ _ _

Vol. 6, n° 6-1989.
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1 f~ . 1 1 ~

. 
ia AJU ~-r. i ~ 

the identity sinh x cosh x = tanh x he obtains

fi - M’" r . _.... , .. _

for s > 0 small.

Therefore, by construction, the function F (t) defined by (4.8) satisfies
both (4.6) and (4.7) with

t=1 -F_ T=1_ nr.~=F~1 -~l_ 

THEOREM 4.2. - Consider equivariant maps f : -~ as in (2.29)
and fix Cauchy data for the harmonicity equation (2.30).

Then the existence of a global solution of this Cauchy problem depends
upon the choice of the Cauchy data.

Similarly, for maps f : -~ as in example (g) we have globally
defined harmonic maps, but also cases of blowing up of solutions at finite
time. We conclude this section with some facts about

Example (h). - f : ~ 

In this example, the harmonicity equation (2.34) describes the motion
of a pendulum with variable gravity and damping: according to (2.33),
we must look for solutions a (t) of (2.34) which are defined on (0, + oo)
and also satisfy

lim a ~t~ _ ~ I2. (4.10)

_____~ __r __ 
__ _______________ _ 

, ~ 
- . 

__i_ 
___ _ . __ 

r______-__ __

constant gravity and damping: being ~,2 > 0, we can conclude that there
exist solutions of (4.11) which satisfy condition (4.10); thus the same holds
for equation (2.34). Finally, as an application of Lemma 3.1, we can
conclude that all solutions of (2.34) are defined on the whole (0, + o~):
therefore our construction (2.33) yields globally defined harmonic maps
from into 

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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5. S OME QUALITATIVE FEATURES
OF GLOBAL SOLUTIONS

are always explicitly defined in terms of a function a (t) and homogeneous
data on the cross section: thus the qualitative study of a (t) provides a
complete description of the associated equivariant harmonic map.

Therefore in the equivariant case it is possible to give fearly complete
answers to fundamental questions such as

(i) What is the image of a harmonic map?
(ii) How does the choice of Cauchy data determine global properties

of solutions?
This is important because, at the present, questions such as (i), (ii)

above are very poorly understood in the general case ( 1.1): in this order
of ideas, now we present some qualitative results concerning examples
(a) and (b) of section 2; all other examples of section 2 can be studied as
well by using similar methods.
Example (a). - f : -~ 

In section 3 we showed global existence for any choice of Cauchy data:
now we concentrate on two particularly interesting cases:

oc ( Ol = ~t /2. = oc , _ a , 1 > 0 ( 5. .11

ifold SP x {0} respectively into the equator of and into its North pole.
We notice that, in both cases, if al = 0, then the associated global solution
a (t) is constant. In the following two propositions we study how things
vary when a 1 > 0.

PROPOSITION 5.1. - Consider maps f : .~ Sr + 1 of type (2.18) with
equivariant Cauchy data (5.1 ).

Then there exists b > 0 such that:

(i) if al > b, then the image of the associated solution a (t) contains the
closed interval [0, ~]; in particular, if the cross section S’ is

surjective, then these global solutions are surjective as well.
(ii) if al = b, then the associated solution a (t) is strictly increasing and

satisfies
lim oc (t) = 0, lim a (t) _ ~

global solutions cover Sr+ 1 minus the two poles. 
’ 

Vol. 6, n° 6-1989.
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- - -

~2014~2014~ -’~ ~~t v v, BVI YV 

and satisfies 
1 

‘ ’ ‘Js
lim a (t) = E, lim (5.3)

PROPOSITION 5.2. - Consider maps f : Sp,  1~ Sr+1 of type (2.18) with
equivariant Cauchy data (5.2) and assume for simplicity 03A6 : Sp ~ S’ surjec-
tive : then

(i) If al is sufficiently large, then the associated global solution is surjec-
tive.

T’here exists al such that the image of the associated global solution
is exactly the Northern open hemisphere.

Proofs. - The proof of these two propositions is rather long and
technical: the method of proof is an adaptation of ideas introduced in
[PR], [R 1], [S2] and therefore we limit ourselves to an outline of proofs.
We start with proposition 5.1: it is convenient to make the substitution

[3 (t) = a (t) - ~/2 ( 5. 4)

respectively

. r-- .- t * n i~~ _ _ _ n iw n ir ~B

study on [0, + oo ) : the physical system described by (5.5) is a pendulum
with damping D (t) = p tanht and gravity G (t) = - ~./cosh2 t.
The function D (t) is positive on (0, + oo): therefore the damping force

reduces the speed of the motion on (0, + oo); the gravity force G (t) acts
in the direction indicated in Figure 2.

It is obvious that, if a i is sufficiently large, then the solution of the
Cauchy problem (5.5), (5.6), which we denote reaches x/2 in
finite time.
On the other hand, the fact that lim G(t)=0, together with the

presence of the damping force, tell us that it makes sense to look for

strictly increasing solutions f3 (t) with image contained in ( - ~/2, x/2).
It is worth noticing that the system in Figure 2 is qualitatively much

different from the system arising from the study of harmonic maps between
spheres. In fact, in that context, the damping force D (t) is negative for t

large, and thus it increases the speed of motion; but the gravity force
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Figure 2.
We define a set j3 + (0) by

~ Pf

can be achieved through the following steps

Step 1. - ~i 
+ 
(0) is an open set and, if b > 0, then the solution ~ 1 (t) of

:he Cauchy problem with al = b is increasing and satisfies
lim (3 (t) = ~/2.
-.+~

Step 2. - b>0.

Step 3. - If 0  a 1  b, then (31 (t) is increasing and

(3, (tlE(0. ~c/2l. dtElO. +ool.

of [S2].
Step 2 is more delicate: it can be proved by producing an explicit

subsolution F (t) in the sense of (4.6) and (4. 7) with ao = 0, F=0, T = +00
and lim F (t) = x/2 in (4.6); and  replaced by > in (4. 7) (see [PR]).

t-++oo

Step 3 follows from a direct inspection of equation (5.5) together with
a comparison argument as in [R1].

Vol. 6, n° 6-1989.
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discussion is omitted.

Example (b). - f : S3.
This example and its companion example (e) are important because

they describe harmonic evolutions of a space time into a 3-dimensional
space form.

Global existence of solutions of the Cauchy problem was obtained in
section 3: here we will prove a stability result.

It is convenient to make the substitution t = e", u E R, in the harmonicity
equation (2.21).
We call @ (u) = a (e"): in terms of 03B2 (u), equation (2.21) becomes

s v r , r

monic map is the constant map which sends the whole space-time RS into
the North pole of S3.

In particular, the function ~i (u) - 0 is the solution of the Cauchy
problem

A ~n~ - n a~ ~n~ - n ~ c o~

~. B / ~/ 1

~ (0) = @’ (0) =

We have the following stability result

PROPOSITION 5. 3. - Assume 1 /3  s  1; and let S > 0 be an arbitrarily
fixed number.

Then there exists s > 0 such that if E, then Pi (u) E [ - ~, ~],

Proof - It is helpful to visualize the situation on Figure 3 below by
thinking of a particle moving about the position @ = 0 under the influence
of a gravity force G (t) directed as in the figure.
To simplify the notations, we will write 03B2(u) instead of 131 (u); also we

assume both ao and (Xi positive: the other cases are similar.
It is obvious that, if the initial velocity (Xi is small, then 13 (u) increases

only until the time u reaches a certain value UI, for which we have

P (u 1 ) = o. Moreover, it is clear that if ~ > 0 is chosen sufficiently small,
then ao, E force 8.

In order to end the proposition, it is sufficient to show that the amplitude
of the oscillations around 0 decreases.

After the time 1~1 the function 13 (u) obviously decreases; suppose that
13 (u) keep on decreasing until, at a certain time u2, it reaches the position
~ (u2) _ - ~ (ul): we show that this is not acceptable.
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we obtain

Vl J, l.Vllll 111 1.11V t71.i111 ‘J. 11 j 1J

positive or zero.
After the substitution (3 (u) =z, the third term in takes the form

~-~~A~tt~ J F 1, r.J ~~~~ L-1, -2J, 1 ~.illV 1.1V11 V 1~7

decreasing on [~i (u2), ~i (u ~ )] V 1.
Thus also (5.12) is positive and this contradicts (5.11); therefore we

must have (3’ (u) = 0 for some u before the position - 03B2(u1) is reached
and this proves that the amplitude of oscillations decreases and so the
proposition.
Remark. - A stability result analogous to Proposition 5.3 holds for

example (e): this follows just by observing that, is small, then
sinh J3 (u) cosh J3 sin J3 (u) cos 13 (u); therefore equations ( 5. 8) and (3.4)
have the same Qualitative behavior for small values of f3 (u).
As for equation (5.8), one can also investigate the stability of the

constant solution f3 (u) = x/2; this solution solves the Cauchy problem
a rw - .~ m 
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1 2014’ ~

By contrast with proposition 5.3, it is not difficult to show that any
arbitrarily small perturbation of (5.13) of type

r~~rn~-~,_ jT~ ~a~
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