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ABSTRACT. - A general "Mountain Pass" principle that extends the
theorem of Ambrosetti-Rabinowitz and which gives more information
about the location of critical points, is established. This theorem also
covers the problem of the "limiting case", i. e. when "the separating
mountain range has zero altitude". It is also shown how this principle
yields localized versions of recent results of Hofer and Pucci-Serrin con-
cerning the structure of the critical set.
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RESL’ME. - On demontre une extension du theoreme de col d’Ambro-
setti-Rabinowitz dans laquelle une information auxiliaire sur la position
du point critique est etablie. On en deduit, d’une part, des resultats
nouveaux, notamment le cas « limite » et d’ autre part des demonstrations
simples de resultats recents de Hofer et Pucci-Serrin sur la structure de
l’ensemble critique.
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I. INTRODUCTION AND MAIN RESULTS

The mountain pass theorem of Ambrosetti-Rabinowitz [1] is a useful
tool for establishing the existence of critical points for non-linear function-
als on infinite dimensional spaces and consequently for finding solutions
to some non-linear differential equations via variational methods. For a
survey, see Nirenberg [6] and Rabinowitz [10]. In this theorem, one con-
siders on a Banach space X, a real valued C1-function cp that verifies a

compactness condition of Palais-Smale type and which also satisfies the

following condition:
There exists a sphere SR centred at 0 with radius R > 0 such that

b = inf ~ cp (x); x e > (0), cp (e) ~ = a where e is a point outside the

The classical theorem of Ambrosetti-Rabinowitz gives then the existence
of a critical point xo (i. e. cp’ (xo) =0) different from 0 and e and with
critical value c > b > a (i. e. cp (xo) = c). Moreover, c is given by the formula
c = inf max cp (g (t)) where 1, is the space of all continuous paths joining 0

g E r t

to e.

In this case, the critical value occurs, because 0 and e are low points
on either side of the "mountain range" SR so that between 0 and e there
must be a lowest critical point or "mountain pass". In [7] it is asked
whether the conclusion of the theorem remains true if the "mountain

range" separating 0 and e is assumed to be of "zero altitude" ( i. e. if

c = b = a), and whether in this case the "pass" itself can be chosen to be
on the mountain range ( i. e.11 Xo II =R).

In this paper we formulate a more general principle which besides giving
the existence of critical points, provides some information about their

location. It will contain the theorem of Ambrosetti-Rabinowitz and will

give a positive answer to the problem of the "limiting case" mentioned
above. Moreover, this principle can also be used to give simple proofs for
stronger versions of some of the recent results of Hofer [3], [4] and Pucci-
Serrin ([7], [8], [9]) about the structure of the set of critical points in the
mountain pass theorem. The proof is based on Ekeland’s variational

principle and is a refinement of his proof of the classical case.

DEFINITION (0). - A closed subset H of a Banach space X is said to
separate two points u and v in X if u and v belong to disjoint connected
components of XEH.
We denote by r~ the set of all continuous paths joining u and v; that

is:
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where C ([o, 1]; X) is the space of all X-valued continuous functions on

[0, 1]. The distance of a point x in X to a set F will be denoted

dist ( x, F) I x - y ( (; 
THEOREM ( 1). - Let cp : X ~ R be a continuous and Gâteaux-differentiable

function on a Banach space X such that cp’ : X ~ X* is continuous from the
norm topology of X to the weak*-topology of X*. Take two points u and v
in X and consider the number

where r = is the set of all continuous paths joining u and v. Suppose F is
a closed subset of X such that F n ~ x E X; cp (x) ? c ~ separates u and v,
then:

There exists a sequence (xn)" in X verifying the following:

n

We now define a Palais-Smale type condition that will insure the
existence of a cluster point for the sequence (xn)n obtained in Theorem ( 1)
above and hence the existence of a critical point for cp.

DEFINITION (2). - Assume is Gateaux-differentiable on a
Banach space X. Let F be a subset of X and let c be a real number. We
shall say that cp verifies the Palais-Smale condition around F at the level c
(in short (PS)p ~) if every sequence in X verifying lim dist (x, F)=0,

~ 

n

lim cp (xn) = c and lim ~ cp’ = 0, has a convergent subsequence.
n n

Note that the classical Palais-Smale condition (PS) on c~ corresponds to
the case where it verifies for any F in X and any c E R, while the
weak Palais-Smale condition ( WPS) on cp means that the latter verifies

for any c in R and all bounded sets F. Other (PS) conditions
depending on the level c have also been considered (see for instance [2]).
The following is now immediate:

THEOREM (1. bis). - Let X, cp, ~ u, v ~, c and F be as in Theorem ( 1 ).
Assume cp verifies (PS)F. ~, then:

7here exists a critical point cP on F with critical value c.
In the theorem of Ambrosetti-Rabinowitz [1], one assumes that

03C6(v)} = a, but this means that {x~X; 03C6(x)~c} separates
u and v. Hence Theorem (1. bis) applies with F = X.

Vol. 6. n ’ 5-1989.
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The limiting case described above, corresponds to the situation where u
and v are on different sides of a sphere S on which cp is larger or equal to
c. Hence, Theorem (1. bis) is applicable with 
Our next application deals with "localizations" of the results of Hofer

([3], [4]) and Pucci-Serrin ([7], [8], [9]) concerning the structure of the

critical set in the Mountain Pass theorem. We recall the following notions:
Let X, cp and c be as in Theorem ( 1). Denote by

x is a saddle point for cp i. e. in each neighbourhood of x
there exist two points y and z such that cp (y)  cp (x)  cp (z) ~

Following Hofer [3] we say that a point x in K~ is of mountain-pass
type if for any neighbourhood N of x the c~ (y)  c ~ is non-

empty and not path-connected.

THEOREM (1. ter). - Let X, cp, ~ u, v ~, c and F be as in Theorem (1).
Assume tp verifies (PS). Then:

(a) Either F (~ or F (~ Kc contains a critical point of mountain-
pass type.

Moreover, if F n Pc contains no compact set that separates u and v (which
always holds if X is infinite dimensional), we also have:

(b) Either F (~ M~ ~ QS or F (~ K~ contains a saddle point.
and

(c) Either F n or F (~ K~ contains a saddle point of mountain-
pass type.

Note that if c > a, then the set F = Boundary of { x E X; cp (x) >_ c ~ separ-
ates u and v. Since F (~ M~ is necessarily empty, the above theorem applied
to this particular set F gives the following known results.

COROLLARY (3). - Let X, cp, ~ u, v ~ and c be as in Theorem ( 1 ). Assume
that cp verifies (PS) and that (u), cp (v) ~. Then:

(a) (Hofer [4]) Either Q~ or K~ contains a point of mountain-
pass type.

Moreover, if X is infinite dimensional, we have:
(b) ( Pucci-Serrin [9]) K~ contains a saddle point

and

(c) (Pucci-Serrin [8]) Either QS or K,~ contains a saddle point
of m ountain-pass type.
Notice that we have used for (b) and (c) the fact that a compact subset of
an infinite dimensional Banach space cannot separate two points in its

complement. More precise statements than those in Corollary (3) can be
deduced from Theorem (1. Ter) whenever an additional "constraint set"
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F is involved. The details are left to the interested reader. It will be

interesting to know whether the above method can be used to obtain the
other results of Pucci-Serrin [8] concerning the structure of the critical set.

We would like to thank I. Ekeland for bringing to our attention the
reference [11] after a first version of this paper was written and also for
his invaluable help in preparing this revised version. In that paper ([11])
another proof of the "limiting case" which uses the deformation Lemma
is given.
Extensions of the above results to the case of "higher dimensional links"

will be investigated in a forthcoming paper [12].

II. PROOFS

For the convenience of the reader we start by recalling the statement of
Ekeland’s variational principle ([2] Corollary 5.3.2).

LEMMA 4. - Let (F, d) be a complete metric space, and

I : r -~ R U ~ + oo } a bounded below lower semi-continuous function on I~’.
Let E > 0 and g in r be such that Then there exists g in h

r

such that: -

(1) I (g) c I (g)
(2) 
(3) 
Proof of Theorem ( 1 ). - Let F = F E X ; cp (x) > c ~ . Since F separ-

ates u and v and since X is locally connected, we can find two disjoint
open sets U and V such that XBF = U U V and u E U while v E v. Fix e
so that 0  E  1 2 min ( l, dist (u, F), dist (v, F)). We shall prove the existence
of a point xE in X such that:

To do that, let g be a function in C([0, 1], X) such that g (o) = u, g ( 1 ) = U
and

Define two numbers a and b with by:

a = sup ~ t E [0, 1]; g (t) E U and dist (g (t), F) > E }
b = inf ~ t E [a, 1]; g (t) E V and dist (g (t), F) > E ~,

Vol. 6, n - 5-1989.
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so that necessarily dist (g (t), F)  s whenever a  t  b.

Consider the space:

equipped with the uniform distance:

Set 03C8 (x) = max {0, ~2 - ~ dist (x, )}
and define a function I : r (a, b) - R by

Note that for any k in r (a, b) we have that k ([a, b]) (~ since
k (a) E U, k (b) E V and XBF = U U V. It follows that for any such k in r:

so that

On the other hand, let g be the restriction of g to [a, b]. We have:

The function I is bounded below and lower semi-continuous on the

complete metric space h (a, b) and the function g is a point in r (a, b)
such that We can now apply Lemma (4) to find a path

r

g in r ( a, b) such that:

Let now M be the subset of [a, b] consisting of all points where
(cp + 0/) 0 g attains its maximum on [a, b]. We first prove the following
claim: There exists to E M such that ) ) cp’ (g (to)) (  3 E/2.

Indeed, first note that (6) gives for any h in C([a, b], X) with

h (a) = h (b) = 0

Using the definition of cp’ and the fact that, for t E [a, b] and ~. > o, we
have ~r (g (t) + ~. h (t))  t~r (g (t)) + ~, Lip h (t) I, it follows that the last

Annales de l’Institut Henri Poincaré - Analyse non linéaire



327MOUNTAIN PASS PRINCIPLE

quantity is dominated by

Hence:

where a = ( cp + ~r) ~ g, ~i =  cp’ (g), h ~ and N is the (continuous convex)
function on the space C [a, b] which associates to any continuous

y:[a, b] - R its maximal value N (y) = sup y (t).
t E [a, b]

Now we can proceed as in the proof of Theorem 5.5.5 of [2]. Consider
the subdifferential aN (y) of N at the point y and recall that
aN (Y) _ ~ ~,; ~. Radon probability measure supported in M (y) ~ where
M ( Y) _ { t E [a~ b] ~ Y (t) = N ( Y) ~ -
First we show that: .

Indeed by combining (2) and ( 1) we get:

This clearly implies (8).
Back to (7), we get:

By a standard minimax theorem ([2], Th. 6. 2. 7) we have

VoL 6, ir 5-1989.
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It follows that there exists to E M such that (g (to)) ]) __ 3 E/2.
and the claim is proved.

It remains to show that the point satisfies (i) and (ii). For (i)
combine (2), (3) (4) and the claim to get:

Since we obtain For (ii) it is enough to

notice that ( 8) implies a  to  b, hence dist (g (to), F) = dist (g (to), F)  E.

This combined with (5) gives that dist (xe, F) = dist (g (to, F)  3 E/2..
Proof of T’heorem ( 1. Ter) (i). - Suppose F n K~ contains no critical

point of mountain-pass type. Let and let U be a com-

ponent of XBF containing u. The hypothesis implies that v does not

belong to U. Let G={x; cp (x)  c ~. We claim that
(*) there exist finitely many components of G, say C1, ..., Cp and
~ 1 > 0 such that

UCp.
Indeed, otherwise we could find a sequence xi in F (~ K~ and a sequence
(Ci)i of different components of G such that dist (xi, CJ - 0. But then any
limit point of the sequence xi would be a critical point for cp of mountain-
pass type belonging to F c F, thus contradicting our initial assumption.
Hence (*) is verified.

Let now K~ n Ci. Since any point of Mi n ( U C) would be a
j*i

critical point of Mountain-pass type, we may find E2 in (0, E~) such that
{ x; d (x, (1 (U C j) = Q~. We can also assume that

. j*i

~2  min(dist(u, F), dist ( v, F)).
Let N1 be the set of all i ..., p ~ such that Ci c U and let N2 be

{1, ..., p For every 8 in (0, E2) the set

is an open subset of X containing u while v ff H (E). Hence the boundary
F (E) = aH (E) is a closed set separating u and v. Since 

thus F ( E) n( U C1 = ~. Consequently on F(e). Since

F(E) separates u and r, we may use Theorem to find a critical

point xE in F (E) n K~.
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We claim that for each E > o, xE is a local minimum for cp. Indeed,
otherwise there is i E f 1, ... , p ~ such that If i E N 1 we would
conclude that and, since H (E) is open, xE ~ ~H (E) = F (E)
which is a contradiction. On the other hand, if i E N2, we would get
Xe E Mt c XEH (E) and again that Fe; another contradiction.

Finally observe that dist (xe, F) -~ 0 and since K~ is compact, this shows
that F U M~ ~ 0.
For the rest we shall need the following standard topological result.

LEMMA (5). - Assume F is a closed subset of X separating two points u
and v. Then there exists a closed connected subset F of F separating u andv such that F = aU = aV where U, V are components of XBF containing u
and v respectively.
Proof - See Kuratowski ([Ku], ch VIII, § 57, III, theorem 1) and

([Ku], ch VI, § 49, V, theorems 1 and 3).
Proof of Theorem ( 1. Ter) (ii). - Suppose that F n M~ = QS = F n S~.

Let Use Lemma (5) to find a closed connected subset
F c F that also separates u and v. Note that F n K~ = F (~ Pc. Since F n P~
is open in F, F n Pc is a compact set clopen in F. Since F is connected,
either Pc = 0 or F n Pc = F. The first case is impossible since

according to Theorem ( 1. bis). Hence F c P~ and
the corollary is proved, since then F n Pc will contain the compact set

which separates u and v.

Proof of Theorem ( 1. Ter) (iii). - Let F=F (~ ~ cp ? c ~. Since F is a
closed set separating u and v, we can use Lemma (5) to get a closed
ccnnected subset F C F separating u and v such that F = aU = 9V where U
and V are two components of XBF containing u and v respectively.
Assume The set is an open subset relative to F.
If K is not closed then any x in KBK is a saddle point since F n M~ = 0.
Moreover, if H is any open neighbourhood of x not intersecting M~ and
such that on H, then both sets U n H and V n H meet the set

~ ~  c j. This shows that x is a point of Mountain pass type.
Assume now that K is closed. Then it is a clopen set in the connected

space F. Hence either K = F or K = 0. In the first case F is then contained
in P~ and since it separates u and v, we get a contradiction. In the second
case, F n K~ contains a point of mountain-pass type by part (i). Moreover,
such a point is necessarily a saddle point since M~ = 0. This clearly
finishes the proof.
Remark (6). - Note that in the proof of Theorem ( 1. Ter) (it) we only

used that cp verifies ~, 
while for (i) and (iii) the proof requires that

cp verifies for some ~>0 where FE is the ~-neighbourhood of F,
i. e. dist ( x, F)  E ~ .

Vol. 6. n ~ 5-1989.
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