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ABSTRACT. - Under consideration are homeomorphisms U=(U1 (xi, x2),
u2 (xl, x2)) with finite Dirichlet integral which solve binary, quasilinear
elliptic systems (3) with quadratic growth in the gradient of the solution
mapping. Regularity results are derived under minimal assumptions on
the coefficients of the system. The non-vanishing of the Jacobian is shown
for the Heinz-Lewy system (1) together with an a priori estimate from
below under suitable normalizations. This involves proving an asymptotic
expansion for real-valued functions (p(x) satisfying the differential

inequality (2).
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On considere des homeomorphismes xz),
u2 (xi, x2)) dont l’intégrale de Dirichlet est finie et qui résolvent certains
systemes elliptiques quasilinéaires. On demontre alors des resultats de
regulants. Dans le cas particulier du systeme des Heinz-Lewy, on demontre
la non-nullite du Jacobien ainsi qu’ une estimation a priori par le dessous.

Classification A.M.S. : 35 J 50, 35 B 40, 35 B 45, 35 D 10, 30 C 99, 30 E 20.
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INTRODUCTION

In a series of classical works ([8]-[17]), E. Heinz has studied univalent
solutions u, v of quasilinear elliptic systems in the x, y-plane,

where Du A Dv is the Jacobian of u, v. The detailed analysis of this system
was initiated by H. Lewy ([20], [21]), who discovered it in connection with
Monge-Ampere equations. A notable case is the Darboux system [14],
which arises when introducing conjugate isothermal parameters for a
surface of positive Gauss curvature. The Euler-Lagrange equations for a
harmonic mapping between two-dimensional Riemannian manifolds form
another related system ([18], [19]).

In the present paper we shall study a slightly more general binary system
in two independent variables. In view of the applications that we have in
mind (see [22]), we shall consider homeomorphisms u = (ul, u2) with finite
Dirichlet integral, which solve quasilinear elliptic systems of the form

in a domain Q in the x = (xl, x2)-plane. Here

with real constants c, d.
In the first part we derive C1, -regularity and a priori estimates for

solutions of an even more general system, if a (u) is Holder continuous
with exponent u., 0  ~,  1 (Theorem 1). It seems as if this is essentially
known, surely of course if a (u) is differentiable. Indeed, Theorem 1 could
basically be derived from Theorems 1. 3 and 1. 5 of Chapter VI of Gia-
quinta’s monograph [5]. However, since there is probably no readable
source for Theorem 1, we present a self-contained proof, incorporating
some of Heinz’s arguments in a nonlinear Campanato technique ([2], [3])
which was filtered out of various chapters of [5].
The second section is of a preparatory character. We study the local

behavior of real-valued functions (p (x) satisfying the differential inequality

when the coefficients are Holder continuous and are subject to the
normalization al 1 (o) = a22 (o), a12 (o) = a21 (o) = o. The main result,
Theorem 2, states that cp (x) = o ( x ") for some n E ~l implies the existence
of
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which in turn implies an asymptotic expansion for This generalizes
results of Carleman [4] and Hartman-Wintner [7], in particular [7],
Theorem 1 *, which applies for differentiable coefficients. We rely on the
classical ideas for the rather involved proof.

In the third section we show the non-vanishing of the Jacobian of
homeomorphic solutions of the Heinz-Lewy system (1) and give an indirect
a priori estimate from below by appropriately modifying the proofs of
Heinz in ([11], [15]). This is accomplished if a (u) is Holder continuous
and if the ht (u)’s are Lipschitz continuous. We only have to establish the
connection between the system (1) and the differential inequality (2) of
the second part, an argument which goes back to H. Lewy.

1. REGULARITY OF UNIVALENT SOLUTIONS

In this section we shall study quasilinear elliptic systems of diagonal
form with quadratic growth in the gradient of the solution mapping
~ (x) _ (ul x2)~ u2 x2))~

The following assumptions will be imposed:
Assumption (A2). - Suppose that u is a homeomorphism onto its image

u (Q) of class (Q, f~2). Furthermore let M, N be real numbers such
that

Assumption (A2). - (i) The coefficients (x, u) of the leading part are
Holder continuous functions on with exponent u, 0  ~  1, and
there are numbers À, A, L, such that

for all and

f or x’, x" eD, x’ ~ x", where u’ = u (x’), u" = u (x").
(ii) The lower order term f (x, u (x), Du (x)) is a measurable ~2- valued

function on Q satisfying, for some constants a, b,

for all 
The principal result of this paragraph can then be stated as

Yol. 6, n y S-1989.
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THEOREM 1. - The first derivatives of u (x) are Hölder continuous in the
interior of 03A9 with exponent N., Moreover, the Holder norm on
any compact subset Q’ of o can be estimated in the form

where C depends only on the parameters ?~, A, L, a, b, M, N and
dist (SZ’, 
The proof of this result will be accomplished in four steps. First we

establish a modulus of continuity for u (x) in the interior of Q, essentially
applying the Courant-Lebesque lemma [6], Lemma 3. 1.

In the following, we shall work only in the interior of Q, particularly in
discs DR = DR (xo) of radius R centered at xo E SZ. Radii are always assumed
to be less than min ~ 1, dist (xo, a~2) ~ . Constants named Care > 1. They
may change from line to line and may depend on all available parameters.
LEMMA 1. - The modulus of continuity of u (x) can be estimated in the

form

Proof - By changing to polar coordinates about xo,

Hence there is an R *, R _ R * __ ,~, such that u ( R *, . ) is absolutely
continuous on [0,2 7t] and

We conclude that for all 81, 92 with 0 _ 81 _ 82 _ 2 ~,

The statement of the lemma then follows from the univalency, resp. the
homeomorphic character of the mapping u.

LEMMA 2. - For all (?, 0  cs  l, there is a radius Ro, which depends
only on the available parameters, such that for all R, 0  R _ Ro,

The Dirichlet growth lemma therefore implies
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351UNIVALENT SOLUTIONS OF ELLIPTIC SYSTEMS

Proof of Lemma 2. - We freeze the coefficients u (x))
by rewriting the system (3) in the form

By testing (4) with w = u - v, where v = (vl (x), v2 (x)) is the solution of the
Dirichlet problem

we estimate

where gR is the mean of g over DR. Combined with the estimates

which hold for all p, R, 0  P:5 R  dist (xo, (5) in turn yields

By the maximum principle,

On the other hand,

Accordingly

By Lemma 1, if R is smaller than some Ro, Rodist(xo, which

depends only A, J-l, L, a, b, M, then the quantity

is so small that we can iterate the inequalities

Vol. 6, n~ 5-1989.
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for all a, 0  a  1, to obtain, by the Calculus Lemma 2 . 1 of [5],

for 0  p _ R _ R o as required.

LEMMA 3. - For all cy, 0«7min{ ~ 1/2 }, there are radii R o = R o ( a),
such that for all R, 0  R _ Ro,

COROLLARY. - 0  a  min ~ ~,1., 1/2}.
This follows from Campanato’s characterization of the Holder classes.

In particular Du (x) is bounded.
Proof of Lemma 3. - As in the proof of Lemma 2, using the inequalities

instead of (6), we have

Incorporating Lemma 2 and its corollary, we estimate for all 03C3  1,

whenever where 1/2}. The iteration argu-
ment then yields for all cr, 0  a  p’,

for all 0  p  R  Ro, which proves the lemma.

LEMMA 4. - There exists a radius R o such that for all R, 0  R  R o,
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Proof - Going back to (5), we use one of Poincare’s inequalities to
estimate for s > 0

The statement is then an immediate consequence of (7).
Theorem 1 follows as a corollary to Lemma 4.

2. LOCAL BEHAVIOR OF SOLUTIONS OF DIFFERENTIAL

INEQUALITIES

Let 03C6(x) ~C1 {SZ) be a real-valued function satisfying the differential
inequality

in a domain Q in the x = (xl, x2)-plane which contains the origin, i. e.,

in the weak sense. The coefficients depend only on x and are Holder
continuous satisfying Assumption (A2) part (i). Without loss of generality,
we make the normalization a11 (0) = a22 (0), (0) = a21 (0) = 0. The crucial
result of this section is the following
THEOREM 2. - If cp (x) = o ( for some n then

exists.
In order to prove this result, we first note that only differential inequali-

ties of the form

have to be considered. We approximate a by a differentiable function a
for x ~ 0, and then we modify Hartman-Wintner’s proof of the case
a (x) -1 [7], Theorem 1.

LEMMA 5. - Let some w 0  ~.  l, which satisfies
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Then there exists a disc 0  Ro = Ro {u, l~, L) dist(O, ~),
such that for each ~, 0  ~ ~ ~  Ro, there is a function

(~ C 1 ( D B { 0 ~ ) such that

where C depends only on ~,, A, Land dist (0, aSZj.
Proof - For E>O set

Here

where O is a C~-function such that O (x) > 0, JO (x) dx = I, O (x) *0 for
] x ( > I . Then let

If Ro and Eo are sufficiently small, depending only on J.1, Â., A, L and dist

(0, then

satisfies all the stated properties.
Proof of Theorem 2. - By rewriting the coefficients a03B103B2 (x) as

we can solve the Cauchy-Riemann-Beltrami system

i. e., we can make a conformal change of variables

in a neighborhood of the origin in order to write the differential inequality
(8) in the form (9).

Annales de l’Institut Henri Poincaré - Analyse non linéaire



355UNIVALENT SOLUTIONS OF ELLIPTIC SYSTEMS

We change to complex notation as indicated in the statement and we
assume that f or the sake of exposition. Let a, R o and ç be as in
Lemma 5. Then

Now

and therefore

Multiplying by

and integrating over DE (~)), it follows that

If

then we can to obtain

For fixed n >_ 1, it will be shown by induction over k, 1 _ k ~ n, that (10)
holds. First, (10) is true for k =1. Suppose now that (10) holds for a k,
1  k ~ n. By Lemma 5, all integrals are absolutely convergent. In particu-
lar, there is a constant C, which depends only on the data, such that

Vol. 6, nO 5-1989.
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This inequality is multiplied and then integrated over DR.
By virtue of

for y > 0, we estimate after relabelling

We now multiply (12) by I ~ I -1 + ~‘ ~ ~ -- zo I 1 and integrate over DR to
obtain similarly, but using ( 13) twice,

If R is so small that CR ~‘ _ 1/2, then we can combine (14) and (15) to
arrive at

The R.H.S. is 0(1) as ( ~ ~ -~ 0, hence, by ( 12), cp2 (~) ~ ~ k = O ( 1 ) . In fact

exists by virtue of (11) and (12). If k  n, this limit is zero which completes
the induction. Finally, by arguing as above and making use of (12) for
k = n, we infer that the limit ( 17) also exists for k = n as required.
By putting ~ = 0 in (16), one can derive the well-known unique continua-

tion principle, namely cp (x) = o ( ( ~ x ~ 0) for all n implies
p (x) = 0. A consequence is the following extension of Hartman-Wintner’s
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Theorem 2* of [7]:

COROLLARY 1. - Let the assumptions of Theorem 2 be satisfied. T’hen
either c~ (x) - 0 or there exists a non-negative integer m such that

We shall need this theorem in the case n >_ 1, where then obviously m > 1.
The following corollaries are essentially identical with [15], Hilfssatz 1 and
[11), Hilfssatz 2:

COROLLARY 2. - If n >_ 1 and cp (x) ~ 0, then (p (z) has an asymptotic
expansion of the form

where A ~ 0 and m >_ 1.

COROLLARY 3. - Let {03C6(k)(x) }~k=1 be a family of C1-solutions to the
differential inequality (8), where C is independent of k. Assume that

uniformly in DR (k ~ oo). Let cp (x) = o ( I x I ) as x I --~ 0 and assume that
(x) ~ 0 in DR for all Then cp (x) _-- 0.

Proof - If c~ (x) ~ 0, then by Corollary 1,

Then there are k o, R o such that

for I z = Ro. Hence must have a zero in DRo by the homotopy
invariance of the winding number.

3. NON-VANISHING OF THE JACOBIAN

We consider solutions x~), u2 x2)) of the system

where

Vol. 6, n° 5-1989.
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with real constants c, d. With regards to the coefficients a (u), 
( i, j, k = 1,2), we make the following

Assumption (A3). - (i) a for some exponent ~,, I, so
that

for u’ = u (x’) ~ u" = u (x"), x, x’, x" E Q.
(ii) The coefficients are Lipschitz continuous with respect to M,

so that

Note that one only needs to consider the matrix

The following result generalizes Hilfssatz 3 of [11] and goes back to

H. Lewy.

PROPOSITION 1. - There exists a in the u-plane,
S = ~ (Mo), such that for each ~ _ (~1, ~2) E ~2, I ~ I =1, there is a function
03A6 E CZ (Ds) with 03A6 (0) = 0, (0) = 03BE, ~ 03A6 ~C2 (D03B4)  C and cp (x)=03A6 (u (x))
satisfies a differential inequality of the form

in Ixl  R, for any solving (19) with u (o) = o,  b,
-_K.

Proof. - Assume that u E C2 for convenience only and let g =g (u) be a
real-valued function. Consider

and calculate

Here we used the fact that and we let b°‘ (x), a =1, 2,
denote certain bounded expressions in ht, g’, D(p, Du2. The term c
can easily be computed as
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where

Now solve the differential equation

subject to the initial conditions g (o) =g’ (o) = 0 and use the above calcula-
tion to estimate

The statement then follows from the observation that for any orthogonal
matrix T, u(x)=Tu(x) solves a system of the form (19), which satisfies
Assumption (A3) with suitable constants Mo, M~.
We have now provided all that’s necessary to derive the following

MAIN THEOREM. - Let u be a homeomorphism from D onto D,
D = D 1 (0), of class 2 with u (0) = 0, which solves the Heinz-Lewy system
(19). Suppose that the assumptions (A 1), (A3) are satisfied.
Then and the Jacobian

does not vanish in S~. The following estimates hold in any compact subset
03A9’ of 03A9:

where the constants C, c depend only on the data ~,, A, L, Mo, M1,
M, N and dist (SZ’, a~).
The non-vanishing of the Jacobian is shown by contradiction as in [15],

pp. 88-89. Let us give an outline of the proof for the sake of completeness:
Assume that 0~03A9, u(0)=0 and J (o) = o. Then there is a solution

~=(~1~ ~2)~ ~ ~ j =1, to

By Proposition 1, there is a mapping 03A6(u) with D03A6(0)=03BE, such that
t~ (x) = ~ (u (x)) satisfies a differential inequality of the form (9), and hence,
by Corollary 2 to Theorem 2, (p has an asymptotic expansion of the form

VoL 6, n° 5-1989.
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( 18) with A ~ 0 and m > 1. This is true because cp ( x) ~ 0 by the univalency
of the mapping

in a neighborhood of 0. An argument of Berg’s [1], p. 314, yields the
asymptotic expansion (18) with m = 0, a contradiction.
The estimate for the Jacobian is derived indirectly by a compactness

argument as in [11], pp. 142-143, incorporating pp. 138-139, and using
Corollary 3 of Theorem 2 of the previous section.

Let us finally remark that the Lipschitz condition on the coefficients ht
can be weakened to the effect that only certain combinations of the 
need to be Lipschitz continuous.
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