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ABSTRACT. - Consider the Hamiltonian system:

where q = (qi, ..., qn) and V is periodic in qi, 1 _ i  n. It is known that

(*) then possesses at least n + 1 equilibrium solutions. Here we (a) give
criteria for V so that (*) has non-constant periodic solutions and (b)
prove the existence of multiple heteroclinic orbits joining maxima of V.
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RESUME. - On considere Ie systeme hamiltonien

ou ..., qn) et V est periodique en q. On sait qu’il existe n points
d’equilibre au moins. Nous donnons ici des conditions sur V pour que (*)
ait des solutions periodiques non constantes et des trajectoires heteroclines
joignant les maxima de V.
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1. INTRODUCTION

Several recent papers ([1]-[9]) have studied the existence of multiple
periodic solutions of second order Hamiltonian systems which are both
forced periodically in time and depend periodically on the dependent
variables. In particular consider

where q = (q 1, ..., R), is T periodic in t and is also Ti
periodic in q~, 1 _ i  n. The continuous function f is assumed to be T
periodic in t and

It was shown in [1], [2], [5], [9] that under these hypotheses, ( 1. 1) possesses
at least n + 1 "distinct" solutions. Note that whenever q (t) is a periodic
solution of (1.1), so is q (t) + (k 1 T~, ..., kn Tn) for any
k = {k 1, ..., kn) E zn. This observation leads us to define Q and q to be
equivalent solutions of (1.1) if Q-q=(k1 T 1, ..., with k~Zn. Thus
"distinct" as used above means there are at least n + 1 distinct equivalence
classes of periodic solutions of ( 1. 1).

Suppose now that V is independent of t and f --_ 0 so ( 1. 1) becomes

Then the above result applies for any i > 0 seemingly giving a large number
of periodic solutions of (HS). However due to the periodicity of V in its
arguments, V can be considered as a function on Tn. Since the Ljusternik-
Schirelmann category of T" in itself is n + 1, a standard result gives at

least n + 1 critical points of V on T", each of which is an equilibrium
solution of (HS). These solutions are T periodic solutions of (HS). For
example, for the simple pendulum n == 1 and (HS) becomes

Studying ( 1. 2) in the phase plane shows that if T _ 2 x, the only periodic
solutions are the equilibrium solutions q = 0 and q = + x (modulo 2 x).
Moreover for T > 2 ~, there are k nonequilibrum solutions where k is the

largest integer such that L > 2 7t. (There is exactly one solution having
k

minimal period T/j, 1 _ j __ k.) The phase plane analysis also shows that
( 1. 2) possesses a pair of heteroclinic orbits joining - x and x.
Our goal in this note is twofold. First in section 2, criteria will be given

on V so that (HS) possesses nontrivial T periodic solutions, the results just
mentioned for (1.2) appearing as special cases. Our main results are in
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section 3 where the existence of heteroclinic orbits of (HS) is established.
The arguments used in section 2-3 are variational in nature. The multipli-
city results of section 2 depend on a theorem of Clark [10] and those of
section 3 involve a minimization argument.
We thank Alan Weinstein for several helpful comments.

2. MULTIPLE SOLUTIONS OF (HS)

This section deals with the existence of multiple periodic solutions of
(HS). Assume V satisfies

and

(V2) V is periodic in qi with period Ti, 1  i  n.

As was noted in the Introduction, (V l)-(V 2) imply that V has at least
n + 1 distinct critical points and these provide n + 1 equilibrium solutions
of (HS). By rescaling time, (HS) is replaced by

and we study the number of 2 x periodic solutions of (2 . 1) as a function
= T/2 ~.

Assume further that

as in the one dimensional example ( 1. 2). Suppose hold and q is

a solution of (2 . 1) such that q’ (0) = 0 and q(03C0 2) =0. If q is extended

beyond 0, 03C0 2] as an even function about 0 and an odd function about

-, the resulting function is a 2 x periodic solution of (2 . 1). Moreover the
only constant function of this form is q = 0. To exploit these observations
to obtain 2 x periodic solutions of (2.1), let E denote the set of functions

on - 03C0 2, 03C0 2] which are even about 0, vanish at + 03C0 2, and possess square
integrable first derivatives. As norm in E, we take

6, n - 5-1989.
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Set

Since I is even, critical points of I occur in antipodal pairs ( - q, q). It is

easily verified that (V l)-(V 3) imply IE C1 (E, R) and critical points of I in

E are classical solutions of (2 . 1) with q’(O)=O and q ~ 2 = 0. See

e. g. [10]. Hence by above remarks q extends to a 2 x periodic solution of
(2. 1). Thus we are interested in the number of critical points of I in E.

Since (HS) or (2. 1) only determine V up to an additive constant, by
(V~)-(V~), it can be assumed that the minimum of V is 0 and occurs
at 0. Therefore V ? 0, I (0) = 0, and 0 is a critical value of I with 0 as a
corresponding critical point. Thus lower bounds for the number of critical
points of I having negative critical values (as a function of À) provides
estimates on the number of nontrivial periodic solutions of (HS). Suppose
that

(V~) V is twice continuously differentiable at 0 and V" (0) is nonsingular.

Then V" (0) is positive definite and Clark’s Theorem [10] can be used to
estimate the number of critical points of I.
To be more precise, let a 1, ... , an be an orthogonal set of eigenvectors

of V" (0) with corresponding eigenvalues 1 _ j _ n. Note that the func-
tion (cos kt) a j’ k E N and odd, 1 _ j  n form an orthogonal basis for E. If
qEE,

and

Let ~.k~ (~,) = k2 - ~,2 a~. For ~, sufficiently small, ~.k~ (~,) > 0 for all k, j, but
as À. increases, the number of negative increases. For each ~,, let 
denote the number of negative ~~k.

THEOREM 2. 5. - Suppose V satisfies (V1)-(V4). Then (2. 1) possess at
least l (~,) distinct pairs of nontrivial 2 x periodic solutions.

Proof. It was already observed above that IE C1 (E, R) and it is easy to
see that I satisfies the Palais-Smale condition (PS) on E, (see e. g. [10]).
Let E1 denote the span of the set of functions (cos kt) a~ such that 
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Then E1 is 1 dimensional and for with ~~ q ~) = p, by (2. 4) for small p:

where ~1 > 0 (see e. g. [10] for a similar computation). Therefore for p = p (~,)
sufficiently small, for q~El and A result of Clark ([10],
Theorem 9.1) states:

PROPOSITION 2. 7. - Let E be a real Banach space and IE C1 (E, R)
with I(0) =0, I even, bounded from below, and satisfy (PS). If there is a
set K c E which is homeomorphic to SI -1 by an odd map and sup I  0,

K

then I possesses at least distinct pairs of critical points with corresponding
negative critical values.

Since I is bounded from below via (V 2) and K can be taken to be a
sphere of radius p in Ej, it is clear from earlier remarks that

Proposition 2. 7 is applicable here and Theorem 2. 5 is proved.

3. HETEROCLINIC ORBITS

In this section, the existence of connecting orbits for (HS) will be
studied. Assume again that (’~1)-(V2) hold. They imply that V has a global
maximum, V, on Rn. Let

To begin further assume that

(V 5) ~~l consists only of isolated points.

Hypothesis implies that ~Il contains only finitely many points in
bounded subsets of Rn. Note also that (V 5) holds if V E C2 (R, R") and
V" (03BE) is nonsingular whenever 03BE~ . This is the case e. g. for (1. 2) where

If q E C (R, Rn) and

we denote this limit by A similar meaning is attached to q ( - oo ).
Our main goal in this section is to prove that (V1), (V2), (V 5) imply that
for each there are at least 2 heteroclinic orbits of (HS) joining f3 to
~~ B ~ ~ ~, at least one of which emanates from 13 and at least one of
which terminates at P. We will also establish a stronger result for a generic
setting.

Vol. 6. n’ 5-1989.
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The existence proof involves a series of steps. Consider the functional

Formally critical points of I are solutions of (HS). We will find critical
points by minimizing I over an appropriate class of sets and showing
that there are enough minimizing functions with the properties we seek.
Hypotheses (Vi), (V2), and (V 5) will always be assumed for the results
below.

To begin, it can be assumed without loss of generality that ~i = o,
and V (o) = 0. Therefore -V(x)~0 for all x E Rn and - V (x) > 0 if 
Set

Taking

as a norm in E makes E a Hilbert space. Note that q E E implies
q E C (R, Rn). For ~ E ~~ B ~ 0 ~ and E>O, define r£ (~) to be the set of

q E E satisfying

Here for A c Rn,

i. e. B£ {A) is an open s-neighborhood of A. We henceforth assume

Then it is easy to see that TE (~) is nonempty for all § E E. g. if q (t) -_- 0,
t  0, q is piecewise linear for t E [0, 1], q (t) ~ BE (~ B ~ 0, ~ ~ ), and q (t) = ç
for then q (t) E I-’E (~). Finally define

It will be shown that for E sufficiently small, there is 
such that c£ (~) is a critical value of I and the infimum is achieved for
some q E I~’£ (~) which is a desired heteroclinic orbit.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Let

Then The following lemma gives a useful estimate which will be
applied repeatedly later.

LEMMA 3 . 6. - Let w e E. Then for any rseR such that 

Moreover since V _ 0 and in [r, s],

The minimum of cp occurs for T = 2 l2 a£ 1/2 so (3.9) yields ( 3 . 7) .
Remark 3.10. - (i) (3. 8) shows that l in (3. 7) can be replaced by the

length of the curve w (t) in [r, s]. (ii) The above argument implies (3.7)
holds with I replaced by a finite sum of lengths of intervals if w (t) ~ Bg 
for t lying in these intervals. (iii) If weE and I (w)  oo, (ii) shows that

R"). In fact more is true as the next result shows:

PROPOSITION 3 . 11. - If WEE and I(w)oo, there such

that ~ = w ( - 00) and 11 = w (00).
Proof. - Since WE L X) (R, Rn) by Remark 3. 10 (iii), A (w), the set of

accumulation points of w (t) as t - - oo, is nonempty. Suppose that there
exists a ~ > 0 such that w (t) ~ Bs ( ~l ) for all t near -00. Then

for any peR shows I (w) = oo contrary to hypothesis. Hence A (w) contain
We If not, there is a ~ > 0, a sequence

as I - oo with w (ti) E (~). Thus the curve w (t) must intersect
~B03B4/2 (03BE) and ~B03B4(03BE) infinitely often as t - - oo. Remark 3. 10 (it) then

implies I w >- 2 oc S ’ for any jEN contrary to I ( w)  oo .

Vol. 6, ny 5-1989.
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The next step towards proving our existence result is the following:

PROPOSITION 3.12. - For each se(0, y) and ~ E ~ ~ ~ 0 ~ , there exists
q = (ç) such that I ~) ( ~), i. e. q~, ~ minimizes I ~rE c~~-
Proof - Let be a minimizing sequence for (3.5). By the form

of I, the norm in E, and Remark 3. 10 (iii), (qj is a bounded sequence
in E. Therefore passing to a subsequence if necessary, there is a q E E such
that qm converges to q in E (weakly) and in 
We claim

Indeed let - oo  a  s  oo . For weE, set

Then the first term on the right hand side of ( 3 . 14) is weakly lower
semicontinuous on E and the second term is weakly continuous on E.
Therefore ~ (~, s, . ) is weakly lower semicontinuous on E. Since (qa is a
minimizing sequence for I, there is a K > 0 depending on s and § but
independent of t and s such that

Therefore

Since qeE and a, s are arbitrary, (3.16) implies Rn), ( 3 . 13)
holds, and

Thus once we know q e I’E (~), it follows that q minimizes t~~~
Next we claim and q ( oo ) _ ~. Since I ( q)  oo, by

Proposition 3 . 11, there are ~, ~ E ~ such that q ( - oo ) = rl and q ( oo ) _ ~.
Since for all teR and qmq in 

q (t) ~ BE ( ~l B { 0, ~ ~ ) for all teR. For each

m E N, since qm E r’E {~), there is a t~ E R such that q,~ (tm ) E aBE ( 0) and
for t  tm. Now if w E E, so is we (t) = w {t - 8) for each 03B8~R

and I ( we) = I ( w) . Therefore it can be assumed that tm = 0 for all m E N.
Consequently q,~ (t) E BE (0) for all t  0. Therefore q (t) E B£ (0) for all t  0
and T~(={ 0, ~ } nB,(0) == {()}, i.e. 
Next to see that note that or §. Suppose that

q ( oo ) = o. We will show that this is impossible. Choose 5 > 0 so that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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403B4~ and

Since the left hand side of (3. 17) goes to 0 as 8 --~ 0, such a b certainly
exists. If q (oo) = 0, there is > 0 such that q (t) E Bs (0) for all t > ts. Since
q,~ (t) -+ q (t) uniformly for t E [0, for m sufficiently large, qm E B~s (0).
Recalling that qm (0) E (0), by Lemma 3.6,

Define

Then I’£ (~) and by (3 . .17’)

But this implies

which is impossible.

PROPOSITION 3 . 18. - q£,  is a classical solution of (HS) on REY.
Proof. - Let Then c lies in a maximal open interval

Let R") such that the support of cp lies in 6?. Then

for b sufficiently small, q + 6(p e (03BE) (with q - qg, 03BE). Since q minimizes I
on rE (~), it readily follows that

Vol. 6, n° 5-1989.
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for all such (p. Fixing r, with r  s and noting that (3.19) holds for
all cp E ([r, s], RJ, we see that q is a weak solution of the equation

Consider the inhomogeneous linear system:

This system possesses a unique C2 solution which can be written down
explicitly. Therefore from ( 3 . 21 ),

for all cp E Wo ° 2 ( [r, s], R") Comparing ( 3 . 19) and ( 3 . 22) yields

for all s], R") and since q - u belongs to this space, it follows

that q = u on [r, s]. In particular q E C2 ([r, s], Rn). Since r and s are arbitrary
in (~, q E C2 (R"’.:r, Rn) and satisfies (HS) there. Thus the Proposition is
proved.

Proof - By Proposition 3 . 18, q = qE, ~ is a solution of (HS) for I t (
large. Since (HS) is a Hamiltonian system

for large t, e. g. H ( t) --_ p for t >_ t. Now

and V (q ( . )) E L1, so it follows that p=0. Since q (t) --~ ~ and 
as t - oc, (3. 25) shows q (t) - 0 as t - oo a~d similarly as t -~ - oo .
The above results show that functions q£s ~ are candidates for heteroclinic

orbits of (HS) emanating from 0. It remains to show that for appropriate
choices of s and § there actually are such orbits of (HS). That there is at
least one follows next.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Let

By (3. 7), only finitely many c£ (~) are candidates for the infimum and
hence it is achieved by say c£ (~) = I (q£, ~) Choosing a

sequence c; - 0, by ( 3 . 7) again, it can be assumed that ç (Bj) is independent

PROPOSITION 3. 27. - For j sufficiently large, is a heteroclinic orbit

of (HS) joining 0 and ~. 

Proof - Let By the definition of I-’£ ( ~), Proposition 3 . 18,
and Corollary 3.24, it suffices to show that for large j, 

~B£~ (~2B{ 0, ~ ~) for all t E R. If not, there is a sequence of j’ s ~ oo,
~l E ~B{ 0, ~ ~, and tjER such that and for

By ( 3 . 7) again, the set of possible n/ s is finite so passing to a
subsequence if necessary, ~j~~. Two possibilities now arise.
Case i. - There is a subsequence such that for

and

Case ii.. - For every j E N, there is a  t~ such that q~ (i~) E (~).
If Case i occurs, along the corresponding sequence of j’s, define a family

of new functions:

and

Since the curves qj intersect (11) and (ç) in the interval [t~, oo),
by (3.7) and ( 3 . 28) . 

~ 

As j -~ oc, the second and third terms on the right hand side of (3 . 29~ -~ 0.
Hence for large j, a contradiction. Case ii can be elimin-
ated by a similar but simpler argument.
Combining the above propositions, we have

Vol. 6, n° 5-1989. 
’
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THEOREM 3. 30. - If V satisfies ( V Z), and ( V 5), for each @e W,
(HS) has at least two heteroclinic orbits connecting ~ to .~B~ ~ ~, one of
which originates at 03B2 and one of which terminates at 03B2.

Proof. - We need only prove the last assertion. But it sollows immedi-
ately on observing that if q (t) joins p to §, q ( -~- t) is a solution joining §
to P. Alternatively, and this would be useful for time dependent versions
of (HS) which are not time reversible, observe that the arguments given
above work equally well for curves w in E for which w(oo) ==0 and

Remark 3. 31. - A. Weinstein has informed us of the following conjec-
ture which has been attributed to Lyapunov [11] ] by Kozlov ([12]-[13]):
consider a system of Lagrange’s equations in the form

where the Lagrangian has the form K ( q, q)- V(q) with K positive definite
quadratic in q. Then any isolated equilibrium solution of (3. 32) for which
V does not have a local minimum is unstable. Some special cases are
proved in [12]-[13] and the references cited there. Theorem 3 . 30 establishes

the result for K = 1 ~ ~ q ~ 2 when the equilibrium is a strict local maximum
2

for V, e. g. at q = 0 since V can be redefined outside of a neighborhood of
0 so as to satisfy (V1), (V2) and (V5). Thus Theorem 3.30 gives an orbit
of (HS) emanating from 0 and which leaves a neighborhood of 0. The
proof of Theorem 3. 30 also is valid for a more general class of kinetic
energy terms K = K ( q, q) satisfying ( V 1 ) - ( V 2) and possessing appropriate
definiteness properties. Thus the conjecture can also be obtained for a
more general situation.
Next the multiplicity of heteroclinic orbits emanating from each 03B2~

will be studied in the simplest possible setting. Suppose V satisfies

( V 5 ) is a singleton.

By (V;), we mean that ~ consists only of the translates as given by (V 2)
of a single point which without loss of generality we can take to be 0.
Next let ~ denote the set such that for some E E (0, y),

cE (~) corresponds to a connecting orbit of (HS) joining 0 and ç. ~ is
nonempty by Theorem 3. 30. Let A denote the set of finite linear combina-
tions over Z of elements of Then A is a lattice in R".

PROPOSITION 3 . 3 3. - 
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Proof - If not, y~ B~~. For each E E (o, y), choose 03BE~~ such
that

By Proposition 3 . 12 and (3.6), this infinimum is achieved and there is
such and corresponding qE ~ q£, ~ E hE (~£) such that I (q~ ~ c£ (~~. We
claim that as in Proposition 3. 27, for E sufficiently small,

and therefore by Proposition 3.18 and Corollary 3. ~4, q~ is a connecting
orbit of (HS) joining 0 and ç. Hence ~~ ~ ~ and a fortiori A, a contradiction.
Thus 

To verify (3.35), suppose to the contrary that there exists 0, ~ ~
and such that Either (a) r~~ ~ ~ or (b) ~~ -~- r)£ E ~ for
if both belong to A, so does their sum, ~~, contrary to the choice of ~~.
Within case (a), as in Proposition 3427, two further possibilities arise:

or

(ii) there is a ~~ .~ ~E such that q£ (~).
In case (a) (i) occurs, define

Then and

The first term on the right hand side of (3. 36) approaches 0 as E --~ 0

while, as in Proposition 3.27, the second exceeds a (fixed) multiple of y
in magnitude uniformly for small s. Hence for s small, and

consequently c£  c~ (~~ contrary to the choice of ~E. Thus (a) (i) is not
possible. If case (a) (ii) occurs a simple comparison argument shows that
for E small, qf, does not minimize I on (~~, a contradiction.

Vol. 6, n° 5.1989. -
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Next suppose case (b) occurs. Two further possibilities must be consi-
dered here: 

___

( iii) 
(iv) there is a ~£ > t~ such that q (~E) E aBE (0). For case (b) (iii), define

Then and

via ( V 2) . As in (3.36), for E small, the right hand side of (3.37) is

negative so c£ (~E - r~£)  cE (~~, contrary to the choice of ~E. Lastly a simple
comparison argument shows that if (b) (iv) occured, q£ would not minimize
I on The proof is complete.

Finally observing that if there must be at least n distinct heter-
oclinic orbits of (HS) emanating from 0, we have

THEOREM 3. 38. - If V satisfies (V1), (V2) and (VS), for any 
(HS) has at 4 n heteroclinic orbits joining ~i to ~lB~ ~i }, 2 n of which originate
at 03B2 and 2 n of which terminate at 03B2.

Proof. - Without loss of generality, we can take ~i = 0. Proposition 3. 30
yields n heteroclinic orbits of (HS) corresponding to linearly independent
members of A which join 0 to 0 ~ . If q (t) is one of these which joins
0 to ç, then q ( - t) - ~ joins 0 to - ~. The proof of Theorem 3. 33 gives n
additional orbits terminating at 0.
Remark 3. 39. - If (VS) is replaced by (VS), Theorem 3. 35 is probably

no longer true although we suspect that some points in W are the origin
of multiple heteroclinic orbits.
Remark 3. 40. - A variant of Proposition 3. 33 which is more iterative

in nature can be given as follows: Let B1 denote the set of those
such that cE (~) = cE for some se(0, y). Let A 1 denote the span

of B1 over Z. The arguments of Proposition 3. 33 show either or

for s sufficiently small

corresponds to a heteroclinic orbit of (HS) with terminal point in 
Supplement ~ 1 by these new orbits calling the result 112 and set A2 equal
to the span of (Jl2 over Z. Continuing this process yields at least n
heteroclinic orbits emanating from 0 in at most n steps.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Remark 3 . 41. - An interesting open question for ( H S) when ( V 1 ),
(V2), hold is whether there exist heteroclinic orbits joining non-maxima
of V. Equation ( 1. 2) shows there won’t be any joining minima of V in
general.
Remark 3. 42. - An examination of the proof of Theorem 3. 30 shows

that hypothesis ( V2) plays no major role other than to ensure that ~ll
contains at least two points and there is no problem in dealing with ~l
near infinity in Rn. Thus the above arguments immediately yield:

THEOREM 3. 43. - If V satisfies (V1), (VS),
(V6) Jt contains at least two points,

and

then each 03B2 E u contains at least two heteroclinic orbits joining (3 to uB{ 03B2},
one originating at ~i and one terminating at ~3.
Remark 3. 44. - It is also possible to allow V to approach V as --~ o0

but then some assumptions must be made about the rate of approach.
For our final result, (HS) is considered under a weaker version of (VS).

Certainly some form of (VS) is needed. E. g. if V’ - 0, q (t) - ~ is a solution
of (HS) for all § ERn and there exist no connecting orbits. Moreover if ~ll
possesses an accumulation point, ~, which is the limit of isolated points in
.~, the methods used above do not give a heteroclinic orbit emanating
from § since c£ ~ 0 as c ~ 0. Of course there may still be connecting orbits
that can be obtained by other means.
The earlier theory does carry over to the following setting:
Theorem 3. 45. - Suppose V satisfies ( V 1 ), (V 2), and

~i is an isolated point in ~ and ~lB~ ~ Q~.

Then there exists a solution w of (HS) such that and
w (t) -~ as t ~ oo .

Proof - We will sketch the proof. Again without loss of generality
V (0) = o. Set

Define

We claim c is a critical value of I and any corresponding critical point, q,
is a solution of (HS) of the desired type. The first step in the proof is to
show that if WEE and I ( w)  oo, then w (t)  vi( as t - ± oo . This is done

Vol. 6, n= 5-1989. -
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by the argument of Proposition 3.11. Next let be a minimizing
sequence for ( 3 . 4b) . It converges weakly in E to q. A slightly modified
version of the argument of Proposition 3. 12 shows I (q) ~ oo, q E A, and q
minimizes I over A. Finally the arguments of Proposition 3.18 and
Corollary 3.24 imply that q is a C2 solution of (HS) emanating from p
and approaching ~l~{ as t -i oo.
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