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ABSTRACT. - We prove an existence result for the heat flow, and
apply minimax principles to deduce existence and multiplicity results for
harmonic map.
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RESUME. - On démontre un theoreme d’existence pour 1’equation de
la chaleur, et on deduit des resultats d’existence et de multiplicite pour
divers problemes aux limites associes aux applications harmoniques.

INTRODUCTION

Let (M, g), (N, h) be two compact Riemannian manifolds. For any
smooth map u : M -~ N,
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is called the energy density, in local coordinates, it is expressed as

where i, j run over 1, 2,..., m = dim M, and cx, f3 run over

1, 2, ..., n = dim N. The energy of u is defined as an integral:

where V g is the volume element over M.
The critical points of the energy are called harmonic maps.

the tangent bundle of N,

where T is the tension field ; in local coordinates, it is expressed by

where denotes the Christoffel symbol of the manifold N, and ~M is
the Laplacian with respect to the metric g. In the following, we use the
shorthand notations

and

Thus, the harmonic maps are solutions of the equation

The evolution equation associated with the harmonic maps is defined as
follows: Find f : [0, oo) x M - N satisfying

The motivation in studying the evolution equation for harmonic maps
is twofold:

(1) The existence of harmonic maps. In some sense, the asymptotic limit
of the heat flow converges to a harmonic map, one may prove the existence
of the harmonic maps by the associated heat flow. Actually the first
existence result in harmonic maps was due to G. Eells and J. H. Sampson
[ES 1] 1964, in case aM = 0 and Riem N  0 by this method. R. Hamilton
[HI] studied the boundary value problems in case aM ~ Q~, under the
same curvature condition (1975). J. Jost [Jl], Von Wahl [VW1] slightly
improved his result replacing the curvature condition by a small range
condition.
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(2) The multiplicity of harmonic maps. It is well known that the minimax
principles as well as the Morse theory provide tools in the study of
multiply critical points. These theories are based on a deformation lemma,
which provides a deformation from a level set of a given functional to
another, if there are no critical points between these two levels. However,
in many problems, the deformation is obtained under the Palais-Smale
condition. Unfortunately, the energy functional for maps in W (M, N)
does not satisfy the Palais Smale condition. This is the reason that
Sacks-Uhlenbeck [SU1] and Uhlenbeck [Ul] studied a family of perturbed
functionals and established a perturbed Morse theory for harmonic maps.

In this paper we shall use the heat flow as a deformation, and then
apply the well known minimax principle and the category theory directly.
The heat flow for harmonic maps was recently studied by M. Struwe

[Sl], [S2], [S3]. The theorem, which is related to our results, reads as
follows:

In case M is a Riemann surface with for any smooth initial

data, there exists a global distribution solution f (t, x) of the evolution
equation, which is regular on [0, oo ) x M, with the exception of at most
finitely many points ..., (ti, oo . And at a singular point
(t, x), there is a harmonic map f : S2 -~ N such that for suitable ym -> 0,
tm -~ t, Xm -+ x in local coordinates

and J has an extension to jl
Furthermore, f (t, . ) ~ f~, a harmonic map M - N, in the weak

N) topology, if all tJ  oo, 1  j _ l, f (t, . ) --~ f~ even strongly in
H2~ 2 (M~ N). . 
We study the following initial boundary value problem for the evolution
equation.

where we assume that M is a Riemann surface with smooth boundary
cM,

and

f or some y > 0.
Our main results are as follows:

THEOREM 1. 1. - Let

6, n° 5-1989.
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and

Let E be a homotopy class of maps from M to N with boundary value x.
If tp E F satisfies

then

(1) The global solution ~ C1+(03B3/2), 2+03B3x((0, ~)) x M, N) exists,
d p > 4/( 1- Y).

(2) There exists a constant Co such that

( 3) There exists a harmonic map 1~ and a sequence t~ ~’ + ao
such that

is continuous from C~ +Y ~M, N) to VV~~2 (~ CX ~c’’~2~° 2 +Y (tU, Tj x M, Nj
p > 4/{1- y), and the energy along the flow is nonincreasing, i. e.

Furthermore, if ~c2 (N) = 0 is assumed, then we may use

to replace m in the assumption, i. e. the same conclusions hold if

Remark. - The same discussion applies for the Neumann boundary
problem.
As a consequence, we have the following by-products.

COROLLARY 1 (Sacks-Uhlenbeck, Lemaire [SU], [Ll]). - If ~2 (N) =0,
then for any homotopy class E of maps from M to N with the prescribed
boundary value x in case ~M ~ QS, there is a harmonic map.
Remark. - A "heat-flow proof for this Corollary in case was

also given by Struwe [S2].

COROLLARY 2 (Breziz-Coron, Jost [BrC lj, [J2]). - Suppose that N is a
sphere homeomorphic to S2, and that C2 +’’ I~ is nonconstant. Then
there exist at least two homotopically different harmonic maps.
The mountain pass lemma and its high dimensional link analog, as well

as the minimax principle applying on homotopy classes or homology
classes of the Banach manifold E c C: +1 (M, N) all can be applied to the
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energy function below the level m + b (or mE + b) in the case M being a
Riemann surface [and ~2 = 0 respectively].
The following corollary generalizes slightly a result due to Benci and

Coron [BeC 1].
COROLLARY 3. - For any Riemann surface M with boundary if

Sn) is not a constant map, then there exist at least two

harmonic maps from M to Sn, n >_ 3, in any homotopy class E, with the
prescribed boundary value ~.
The Lj usternik and Schnirelman category theory and the Morse theory

for the energy function below the level m + b (or rrcE + b) also hold. Namely
we have

THEOREM 1. 2. - Suppose that (M, g) is a Riemann surface, and that
(N, h) is a compact Riemannian manifold with = 0. Let E be a

homotopy class of mappings from M to N with boundary value x. Let Fk be
a heat flow invariant family of relative closed subsets of Cx +’’ (M, N)
endowed with the W p - topology, p > 4/( 1- y), which possess category > k,
and let

Suppose that

Then catW2p(Kc) >__ r, where Kc is the set of harmonic maps in Cx +03B3 with

energy c.
The paper is organized as follows. Section 2 contains preparational

material, the anisotropic Sobolev spaces, Besov spaces and Nikolski spaces
and their embedding theorems, some basic relations for harmonic maps
are also studied. Section 3 is the local existence of the heat flow. The
main theorem is proved in Section 5. A basic estimate, which is an

analogy for the perturbed functional studied by Sack-Uhlenbeck is given in
section 4. In section 6, a general minimax principle for harmonic maps is
discussed. Finally, in section 7, the Lj usternik Schnirelman multiplicity
theorem, i. e. Theorem 1. 2, and the Corollary 3 are proved.

I am grateful to Prof. J. Eells and Prof. M. Struwe for their valuable
comments.

II. PRELIMINARIES

The anisotropic function spaces are used in the study of parabolic
equations. Here we only write down the definitions and embedding proper-
ties of these spaces defined on it is easy to transfer all these results
to function spaces defined on [0, T) x M.

VoL 6, n’ 5-1989. ,
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Let Y = (Yo, y~), and let 1 p __ oo. In case Yo, Y1 are integers, and
p E ( l, oo ), »1 is the space of functions f such that the norms

are finite.
For any positive yi, we decompose it into

where yi is an integer, and 0  ai _ 1, i = 0, 1; Bï is the space of functions
f such that the norms

are finite. In case (or a 1=1 ), the term f (t, x) -_ f ’ (t + T, x) [or
f (t, x) - f (t, x + T is replaced by 2 f (t, x) - f (t +’t, x) - f (t - i, x) [or
2 f (t, x)-f (t, x+ej)- f (t, x-ej), where ej is the j-th unit vector in R"].
And H~ is the space consisting of functions such that the norms

are finite. In case a~ =1, we make the same change as above.
As a special case, p = oo, H~ is the Holder class CY.
These classes of function spaces have the following connections, cf [Nl].
( 1) For any E = (Eo, El) with Eo, 

If y has integer components, and 1 p  oo, then

and

(2) (embedding theorem) (Hp, 1 _p _ oo, let 1= (I1,12, - - - , I".)
be a nonnegative integer m-vector, such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Then

and

where c does not depend on f. The same holds for the space H.

(3) (Trace theorem) B03B3p(R1+m) ~ Bx03B31p (Rm) if K =1- 1 > o.
(4) B03B3p(R1+m) ~Bx03B3q(R1 +m), if 1 _ p  q  ~, and if

The following inequalities are obtained by the above relations.

PROPOSITION 2 . 1. - Let QT=[0, T] x M, where M is a two dimensional
compact Riemann manifold. d f E 2) (QT), 4  p  ~, we have a constant

C~ > 0 such that

4
where a = 1 - .

P
Proof We have

~ Bp ~ 1-1I p~ ( ~ t ~ x M), [o, T] (by the trace theorem)

However, if > 4 then 2 K 1- 1 = 2 - 4 . Let a =1- 4 , again by ( I),p P P
we have

PROPOSITION Z . 2. - d , f ~ E Wp’ 2 p > 43 px f E CY’ 2’~ EQ-r) .for

03B3=1 2 1- 4 and ~ C > 0 such that2 p

Proof - According to the embedding theorem and ( 1), we have

Vol. 6, n° 5-1989.
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and

Apply (4) and ( 1),

where K =1- 4 > 0 ; let y = 1 K, we obtain the desired conclusion.
p 2

Next we turn out to study the basic properties of the heat flow.

PROPOSITION 2 . 3. - Suppose that f~C1 +(03B3/2), 2 + y (QT, N), for some y > 0
satisfies the evolution equation (E). Then

and that the equality occurs at some point to, if f (to, . ) is a harmonic map
Proof - By Green’s formula,

where dS g is the line element on aM, and {nj |j=1,2} is the normal
vector.

PROPOSITION 2. 4. - Under the same assumptions as Proposition 2. 3,

Proof - According to the above equality (2.1),

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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After integration, we have

PROPOSITION 2. 5. - Under the assumptions of proposition 2. 3, there

exists a sequence ti ~ T, and a map ~W12 (M, N) such that f (ti, .)  u
weakly in W2 (M, N), with

Furthermore, if T = oo, then at f (ti, . ) --~ 0 in the strong L2 (M, N) topol-
ogy.

Proof - The first conclusion follows from the weak compactness of
bounded sets of W2 (M, N), in conjunction with proposition 2. 3.
As to the second conclusion, we observe that the integral

is convergent, there must be a sequence ti ~ + oo such that

This is what we need.

Finally, in order to write down the evolution equation (E) in coordinate
form, we embed N into a suitable Euclidean space Rk, according to Eells-
Sampson [ES1]. We do not take the ordinary Euclidean metric on Rk. Let
T be a tubular neighborhood of N, extend the metric on N smoothly to a
metric on T such that there is an isometry i : T -~ T on the tubular

neighborhood, having precisely N for its fixed point set. Let B be a large
ball in the Euclidean metric of Rk, containing T, we extend the metric on
T smoothly to all of Rk so as to equal the Euclidean metric outside of B.
R. Hamilton [HI] proved that

(1) If u : M -+ N ~ B with the above metric on B, then

where the subscripts of A denote A under the corresponding metrics.
(2) B) satisfies the evolution equation

and it satisfies

Vol. 6, n° 5-1989.
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In this sense, we shall only study the evolution equation (E) in the flat
target space (with the nonflat metric).

m. THE LOCAL EXISTENCE

The first step towards the global existence is to prove the local existence,
i. e. the existence of the heat flow in short time.

THEOREM 3.1. - There exists, E > 0 and a unique

.f 2 r1 C1+(03B3/2), 2+y (QE, ° N), p > 
I - y 

, which satisfies the equation (E)

in Q.
Proof. - First, we define a nonlinear map as follows.

Since the derivative of A at the function cp reads as dA (cp):

The associated linear parabolic system

possesses a unique solution in Wp ° 2 Rk), p > 4, for each 
(cf [LSUI] and [Wl]). And then, is an isomorphism. On the other
hand

where N) c LP (QT’ N), we may find e > 0 small enough
so that the function

is in a small neighborhood of go, so that the inverse function
theorem applies. Therefore, we obtain a solution ( Q.L) satisfying
(cf [LSDI] and 

Annales de 1’lnstitur Henri Poincnre - Analyse non linéaire
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In particular, is a solution of (E)B in Q. According to the remarks
at the end of the last section, is in Wp ~ 2 ( Qz., N) and solves the
evolution equation (E).
Second, we prove the regularity. According to Proposition 2.2,

, 2 ’ ((Q~), for 03B3’ = 1 2( 1- 4 , and since C03B3’, 203B3’(Q~) is an algebra,

we see

Applying the Schauder estimate again, it ( ~~ N).
In the following, we denote [0, m > 0, the maximal solvable interval,

on which f~C1 +(y/2), 2 +Y (QT, o N) for any T  03C9.

Remark. - Basically, this result is already known from Hamilton [HI].

IV. THE MAIN ESTIMATES

Sacks-Uhlenbeck [SU] establish a LP local estimate for the perturbed
harmonic maps, by which a C 1 convergence, except at finitely many points,
was proved. In this section, we establish an analogy for the heat flow.

LEMMA 4.1. - Suppose that 1  p, q  oo, and that 

for a. e. t E [0, T]. Assume that

and

then we have a constant C = such that

Proof. - The linear equation (4.1) is considered as an evolution equation
associated with the analytic semigroup T (t), which generator eM is sectorial
on the space LP (M) with domain (see for instance A. Friedman [Fl])

Thus the solution f (t, . ) is expressed by the semigroup:

VoL 6, n° 5-1989.
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For the sectorial operator, there is a 6 > 0 such that

The Lq estimate for the singular integrals (Hilbert transform) provides
the following inequality (see for instance E. M. Stein [Stl])

Applying the LP estimate for elliptic operators due to Agmon-Douglise-
Nirenberg, we obtain the desired inequality

LEMMA 4.2. - There exists a positive number so > 0 such that for a
solution of the system (E) in a domain [0, T] x D, where D = Bp (xo) n M,
for some xo E M, and p > 0, if

for some to, t 1 E ( 0, T), then for any p’ E ( 0, p), and t i ) c (to, we

have some a > 0 and a constant C depending on Eo, a, p’, p, and to, ti,
to, t i only such that

for p > 4, where D’ = Bp (xo) n M.
Proof - Define a cutoff function satisfying

and

Let then

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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According to Proposition 2.1, and linear LP theory, we have a =1- 4/p > 0
such that

However, provided by the Sobolev imbedding theorem together with
Lemma 4.1, let p 1= 2 p/(p + 1 ), we have

Applying the Holder inequality,

For sufficiently small So > 0, we put the two inequalitites (4.3), (4.4)
together and obtain

Again by the Holder inequality,

Return to (4.2), we have

LEMMA 4.3. - Let c~ > 0 be finite or infinite. Assume that VT  ~,
f~W1, 2p (QT, N), p > 4, is a solution of (E). If there is a relatively open

Vol. 6, n° 5-I989.
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set D c M and a sequence of intervals h c [0, ~) with mes (h) >__ ~ > 0 such
that

Then for any open subset D’ c3c D, there is a sequence such that tj~Ij,
is C1 (D’, I~ convergent to some 1~.

Proof. - Since

the family of 2, ...} is weakly compact in

W 2 ( M, so that there is a subsequence {t’j} along 
in W~ (M, IRk) weakly.

Starting from (4. 5) with p = 2, we obtain a constant, which depends on
and 8, dominating the norms )) VF ~h xD~ d;. Applying (4.2), so is

Then, the Sobolev embedding theorem implies the boun-
dedness of I VF > 4.

Thus, we have

provided by Lemma 4. 2. This implies a subsequence {t’j} such that

f ~tr . ) C 1 converges to u.

THEOREM 4.1. - Suppose that f E W p° 2 N), V T  t~, is a solution

of (E), where p > 4, then there is a sequence t~ -~ T - 0 and a finite number
of points ..., xI~ c M such that

for some N), and 0  a’  a =1- 4/p.

Proof - According to a covering theorem due to Besicovitch, there is
an open covering of M consisting of disks ~BT I i =1, ..., p~ such that

(b) V x E M, there exist at most h disks B~ (y~) covering x, where h is

independent of r.
Then

Annales de l’Institut Henri Poincaré - Analvse non linéaire
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Hence Vt, ~ at most ~== 201420142014" +1 disks ~= 1, 2, ..., ~ on

- So .

which

Fixing such disks, there is a sequence t~ T ~ - 0 such that

Now we apply lemma 3.6 in Struwe [S 1], which assures a uniform bound
~ > 0 such that

We apply Lemma 4.3 to these remaining disks, there is a sequence
i

such that f (t~, . ) is convergent on M’" U (yi). Let
1=1

~y = 2 - k, k =1, 2, ..., by the diagonal process, there is a subsequence, we
still denote it so that on

..., xj, because the upper bound of the number of exceptional
disks is independent of r.

V. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR

We prove the main theorem in this section. Actually, conclusion (3)
follows from conclusion (2) directly.

p

Proof. - We cover M by small balls U such that
i= ~

 Eo. According to Lemma 4.2,

On the other hand, according to Proposition 2.5, there is a sequence
+ oc such that

Vol. 6, n° 5-1989.
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We apply Theorem 4.1 to the sequence f (tj, ), because

It follows that f (t~, . ) - u (.) ( M, N). Thus

E Co (M, N). Apply the elliptic regularity theorem again; we conclude
~C2 +’’ {M, N), and

Now we turn to the study of global existence.
From the local existence theorem, we get the maximal existence interval

[0, where c~ is finite or infinite. VT E [0, let

It is easily seen that the function aT is monotone nondecreasing.

LEMMA 5.1. - Suppose that aT is not bounded, then

Proof - We may find sequences Tk /’ co and ak E M such that

k =1, 2, ... In the sequel, we write 8Tk simply as 9k.
Neglecting subsequences, we may only consider the following two possi-

bilities :

(1) 9k dist ( ak, aM) -~ + o0
( 2) 03B8k dist (ak, ~M) ~ p  +00

in both cases, we may assume ak - a E M.
Take a local chart U of a. Let

and

Define a function on Ix x Dk as follows:

Annales de l’Institut Henri Poirtrare - Analyse non linéaire
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k =1, 2, ... Then we see

and

Let

Then 0, and V e > 0

00.

Thus, neglecting a subsequence, we may assume

i. e. for almost all re [ - e, 0],

In case ( 1), ak~M, and Dk -+ R2 in the sense that ’V R > 0, ~ k0 > 0, the
ball BR centered at e in R2 is included in Dk f or k >_ k o.
On one hand by (5.3) ~" 

I

for almost all i* E [ - e, 0].
On the other hand, by Lemma 4.2, we have

This implies a subsequence, where we do not change the subscripts, so
that

for some i* E [ - e, 0] (actually in a countable dense subset of [ - e, 0]). We
conclude that

According to the removable singularity theorem due to Sacks-Uhlen-
beck, v is extendible to a harmonic map v : S2 --~ N.

Vol. 6, n° 5-1989.
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We are going to show that v is nonconstant. Indeed,

since Vk satisfies (5.1) on Ik x Dk with the condition (5.2). The Schauder
estimate applies to obtain an estimate:

for some b > 0 small depending on U. The right hand side of the inequality
is a constant independent of k. According to the embedding theorem (2)
mentioned in section II. (Actually this is due to Bemstein-Montel and

Nikol’ski.)

where C~ is a constant independent of k. Hence

We may choose 1* > 0 small enough so that

It proves that u is nonconstant.

Let T’k = Tk + 03C4* 03B82k, since T’k ~ o. Theorem 4.1 suggests that for a

subsequence T’k, I D f (Tk, . ) I blows up at most finitely many points
{xl, ..., xj, which includes the limit set of 
We choose 8 > 0 small enough,

Since

and there exists at least onejo such that We have

Annales de l’Institut Henri Poincaré - Analyse non linéaire



381BOUNDARY VALUE PROBLEM FOR HARMONIC MAPS

and

for k large. First oo, by definition

and then because S > 0 is arbitrary,

This is the desired conclusion.

In case (2), U. We choose a suitable coordinate (yl, y2) in R2,
such that the y2-axis is parallel to the tangent at a of oM, and the yl-axis
points to the interior of U. Thus Dk tends to the half plane
R2+ = {(y1, y2) | .Y1 > - 03C1}, and for each point on the boundary: y1 = - p.

As in the proof of (5.5), now we have VR > 0,

since on the right hand side, there is a constant control independent of k.
We find a function V’* on R~ and a such that

and then

On one hand, similar to the proofs of (5.6) and (5.7), we see that u* is
nonconstant, on the other hand, let us define a complex function

VoL 6, n° 5-1989.
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where h is the Riemannian metric on N, and

So

The harmonics of ?* implies the analyticity of the function T~. The boun-
dary condition on  implies that the function q can be analytically extended
to the whole complex plane. From the condition

we conclude that 11 (z) - 0, and hence v* is a constant map. This is a

contradiction. Therefore Lemma 5.1 is proved.
We continue the proof of our main theorem.
By the assumption E ( c~)  m + b, and Lemma 5.1, we conclude

Thus the norm > 4, and then the norm I f ~C1 +(Y/2), 2 +y (Q03C9)
are bounded if o  oo . So the evolution equation is extendible beyond
the interval of m  oo. This contradicts the maximality of (D. Therefore o
must be infinite, i. e. the global solution exists: At the same time, (5.9) is
the conclusion (2).

In the following, we assume ~c2 (N) = 0. We shall improve the conclusion
of Lemma 5.1 to the following:

where E is the homotopy class of cp, and

Only the inequality (5.8) should be fixed. It is known that

f ( Tk, . ) -~ u ( . ) in C 1 + °‘ ~ ( M~~ x 1, ... , xl ~, R’~ . We only want to show
5eE. One may choose suitable subsequences 0, c~ such that

Bsk (x.) (~ Bsk = Q~, if i ~ j, and the joining maps

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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converge to u in C ( M, N), where r~ E C °° (R 1) satisfies

and exp is the exponential map. Since 1t2 (~ = o, and

we see that h remains in the same homotopy class E, And from

he N), we conclude 5 e E..

COROLLARY 1. - Now follows directly from the improved inequality.
As to the proof of Corollary 2, first, we have a minimum u of E (u), i. e.

Obviously, this is a harmonic map. Second, by the "principle of adding
spheres" due to Wente, cf Jost [J2], one can find a map v homotopically
different from u, such that

Another harmonic map is obtained by the main theorem in the homotopy
class [v].
Remark. - It is well known that there is no harmonic map from

P2 ~ S2 (and also T2 -+ S2) of degree + 1, cf Eells-Wood [EW1] and
Eells-Lemaire [EL1]. Also neither nonconstant harmonic map from the
unit disc D to S2 with constant boundary conditions, cf Lemaire [L1].
The heat flow initiated from any map of these homotopy classes blows

up at some time (either finite or infinite).
Finally, we prove the continuous dependence of the initial value, i. e.

conclusion (4).
In the following, let us denote f by to indicate its initial value

.f (o~ . ) _ ~. 
First, we prove that the flow cp is locally uniformly bounded, i. e.

where c  m + b [in case ~2 {N) = 0, c  mE + b], there exist 8 > 0 and
cl > 0 such that

where Bs is the 5-ball on the Banach manifold C;+’Y(M, N).
The proof is quite similar to the proof for Lemma 5.1. If the conclusion

is not true, we have.

Vol. 6, n° 5-1989.
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and 3 ~Tk~ ~ and M ‘ k =1, 2, ... ~ such that

Define a sequence of flows vk as above. Follow the above proof step by
step. Similarly, one shows that 3 + oo such that

However,

This contradicts the assumption cpo E E~.
Next, we prove the C-norm continuous dependence, i. e. as

tPk ~ 03C60C2+03B3x (M, N), sup ~f03C6k (t, .) - f03C60 (t, .)~L~ (M, N) 
~ 0, d T > 0.

r E ~o, ’r~ 
’

Let 03C3 be a smooth function defined on N x N,

and let p (t, x) = cr (t, x), f03C60 (t, x)), d cp E Bs (cpo). Since |~f03C6 (t, x) ( is

bounded, according to the computations in Hamilton [HI], p. 105-107.
We have a constant C2 > 0 such that

Thus, by the maximum principle, for each T > 0,

Third, we prove the following estimate

where C3 is a constant, ~d cp E Bs ( (po). Let f =~ fi - we write

Thus

VT > 0, we apply the LP-estimates to the equation (5.10)
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for p > 4, which implies (according to Proposition 2.2 and an interpolation
inequality)

Again, by a bootstrap iteration, we obtain the desired conclusion.

VI. MINIMAX PRINCIPLE

In order to use the heat flow as deformations, the conclusion (4) of
Theorem 1.1 provides the continuity of fcp with respect to the initial data
cp. Unfortunately, the flow t (t, . ) is not known to be continuous at
t=0 on the Banach manifold Cz +’’ ( M, N) under the strong topology ! We
overcome this difficulty by introducing a weaker topology W; with

1 - - 4 > y. A new problem is that the manifold is incomplete under the
P

weaker topology.
For technical simplicity, we assume N), the is

smooth for t > 0, if E ( c~)  b + m, according to Lemma 4.2. Lemma 5.1
and the regularity theory. [When ~2 (N) = 0, E (cp)  b + mE.]
We study the energy function

on the manifold N) with W; topology. For any a >_ 0, denote

as the level set, and denote

as the critical set. We write Ka = K r1 E -1 (a).
In case where [or mE + b if

n2 (N) = 0], let us define a deformation retract as follows: ‘d cp E we

know from the conclusion (1) exists globally, and from the
conclusion (3),

therefore 3T=Tcp > 0 such that
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We point out that the function is continuous. Indeed, the

function E (t, . )) is continuously differentiable with respect to t,

The implicit function theorem is applied to assure the continuous depen-
dence. We define

as a deformation: [0, 1] x Ed -+ Ed. It is a strong deformation retract,

satisfying :

We emphasize that r~ is a deformation under the Wp topology, but not
the topology. (The W2p-continuous dependence of cp is verified
in the same way. )
We need an approximation lemma.

LEMMA f .1. - Suppose that Q is a compact manifold. Assume that
I : Q -~ Wp (M, N)x is a continuous function, with I c Cx +’’ (M, N) then
for any E > 0 there exists T: Q ~ Cx +Y (M, N), which is continuous under

W2p-topology, and satisfies

and

Proof - Since Q is paracompact, and since l is continuous, there exists
an open covering {U  and an associated partition of unity

such that

For any we choose N) such that

For those a e A with 0, we choose suitable coordinates

q = (y ~, ..., in U~ such that c’Q is the hyperplane ~=0, and U~ is in
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0. Define

We see again

We may assume s > 0 is so small that the tabular neighborhood T of
N, which possesses a smooth projection 03C0 onto N, includes the ~-neighbor-
hood of N. The projection 03C0 extends to a smooth projection  from

T) onto N) x and from Cz c l +’’> ( M, N) to C~ ~ 1 +’’~ ( M, N).
Now let us define

it satisfies the requirement, 7: Q ~ Cx ~ 1 + Y~ ( M, N) and

Noticing that the critical set K is dosed, so is its image E(K). The
following Minimax Principle holds.

THEOREM 6.2. - Suppose that 03C02 (fiQ = 0, and let E be a component of
+ Y~ ( M, N) .

Let Q be a compact manifold, and

where e is a constant less than mE + b, and E is the closure of E under the
W p topology, endowed with the VV p topology. Define

If e  c  b + mE, then c is a critical value ofE.
Proof - Since E ( K) is closed, if c is not a critical value, 3 so > 0

such that c + Eo] = Q,~, and e  c - Eo  c+8o  b + mE. By
definition, 3 e r such that

According to Lemma 6.1, ~ lk : + Y~ ( M, N) with

sup distWp l (q)) --~ 0 as k --~ oo. Choose a suitable ko such that
QEQ

We apply the deformation 11 on the set with a = c - Eo, then
is well defined, and is continuous under the W;-topology.

But lko (q)))  c - Eo. This contradicts the definition of c.
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Remark 6.1. In case c’ Q = Q~, r==C(Q, E). In particular, Q=Sk for
some k, r contains the k-homotopy class.

Remark 6.2. - In case Q= [0, 1], this is the mountain pass theorem.
And in the case Q= Bk for some k, this is the high link version of the
mountain pass theorem.

VII. LJUSTERNIK SCHNIRELMANN THEORY

We continue our study of the manifold Cx +Y (M, N) endowed with a
weaker W~-topology, where 1- 4 > y. In order to extend the Ljusternikp gy p 

’Y~ J

Schnirelmann multiplicity theorem, we shall prove a stronger deformation
lemma, and study some properties of the category in different topologies.

In the following, we always assume ~2 (N) = 0.

LEMMA 7.1. - Suppose that y > y and that N). If E is a

component of ( M, N), and if c  mE + b, then the critical set K~ is

compact in Cx +’’ ( M, N) under the strong topology.
Proof - First we prove

If not, 3 uk E K~, and ak E M such that

Let

which is defined similarly to that in section V. We prove similarly by the
blowup technique, that

This is a contradiction.
From (7.1), we obtain from the Schauder estimate

The compactness follows directly.
Now we study the category of K~ under different topologies. In the

following, we and N) with the
weaker W;-topology. The set K~ is compact in both spaces. We denote
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catx(K~) and the categories in different spaces. We shall prove
the following.

LEMMA 7.2. - And there is a closed neighborhood
U in Y such that

catx = caty ( LT) .

Proof. - Since is finite, by definition, 3 closed contractible
subsetse Fi, ..., Fr c:X such that

Also since K~ ci Y, the sets f== 1, ..., r are nonempty closed
subsets in Y (under the weaker topology!) so we have

On the other hand, let closed contractible subsets

G1, ... , GS c Y. Let Gi c X be the closure of Gi in X, then Gi is
contractible. Hence

We prove the second part of the lemma, since FI is contractible and X
is complete, by the continuity extension theorem. 3 [0, 1] x X -~ X such
that

Now for any s > 0, we find an approximation map similar to what was
done in Lemma 6.1.

satisfying

and

For qiEY, there is a closed contractible neighborhood Vi ci Y, let

then Ui c Y is a closed contractible neighborhood of Y. Define
r

U = U U;, which is the desired closed neighborhood of K~ with
i= 1
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However from K~ c U, we have

Applying the first conclusion, we obtain

Now we are going to prove a stronger deformation theorem.
First, according to Lemma 7.2, 3 closed neighborhood U of K~, and

~ ~ > 0 such that

Define a C1 function on N)x satisfying 0  ~y _ 1, and

with suppy=the complementary of We shall study the solution of
the following equation:

This is not a differential equation, because the coefficient y ( f (t, . ))
depends on f (t, . ) globally. The difference between this equation and the
evolution equation (E) only occurs in the neighborhood Uo/4. So first we
shall forcus our attention on 

LEMMA 7.3. - Suppose that X, Y are Banach spaces and that

is invertible. Let bE X*, e E Y. Then the operator
A 1= A -  b, . ~ e is invertible if and only if

Proof. - x ~ e~.
If xo E ker (A 1), then  b, 0 because A is invertible. Since we

have

it follows ~ b, A -1 e ~ =1.
On the contrary, if ~ b, A -1 e ~ =1, then for any 

x=~,A-1 eEker(A1).

LEMMA 7.4. - b~ cp E the equation (7.2) is locally solvable.

Proof - We linearize the equation at cp, and get the following equation.

at v = Y ~~P) + 2 r ~~) + or( cP) - v 
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One wants to show that there exist s > 0 such that if (QJ satis-
fying

then u == 0. In fact, let

Since

therefore if T > 0 small enough, such that  ~’ {cp), A - ~ 0~p ~ ~  1.

According to Lemma 7.3, the linearized equation (7.3) possesses only the
null solution. The implicit function theorem is applied to show that (7.2)
is locally solvable. Furthermore, f (t, x) E Cx + tY~23’ z +’~, according to regu-
larity theory.

LEMMA 7.5. - Suppose that y > y and N). 
with c  equation (7.2) is globally solvable.

Proof - We only want to prove the global existence of the flow
emanating from According to Lemma 7.4, one may assume
that the flow _f~ {t, . ) has a maximal existence interval [0, ~). Since

f03C6(t, .)~U03B4/2, ~f03C6 (t, .)~B1/2, 1p ~ Lq, 1 q = 1 p - 1 4. After a bootstrap itera-q p 4

tion, again we conclude 
.

Moreover, by an argument of interior estimate,

Therefore for any sequenee {tj ~ 03C9}, f03C6(tj, .) is subconvergent in C2+’Y.
However, Vti, t~),
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If (0  + oo, we see that f~ (t, . ) -~ some u in L2 (M, N). This shows that
(t, . ) - u ( . ) N) as Thus either the flow t H f~ (t, . ) is

extendible beyond co, i. e. t~ _ + oo, In the latter

case, since the equation becomes PDE (E) or the global existence
is evidently true.

LEMMA 7.6. - For 6 > 0 defined such that

~ Au ~L2 (M, N) > Eo for all u of the form (t, . ), t >_ 0 satisfying
distW2p (u, K) > 5/4, and E((p)  mE+b.

Proo f - If satisfying and

distw2 (uk, K) > ~o. One may prove that ]] is bounded, for other-
wise, a blowup technique can be applied as in Lemma 7.1, which contra-
dicts the energy condition. Therefore is bounded provided
by the LP-estimate and the Schauder estimate. Hence subconverges
to a map ù in the W; topology, which implies This contradicts
the assumption.
Now we are ready to prove the following

THEOREM 7.1. - For any closed neighborhood U c of K~ in the

W2p-topology, 3 E > 0 and a W2p-continuous deformation
11: [0, 1] x E~ + £ -~ satisfying

Proof. - We define the global flow as the solution of the equation
(7.2). According to Lemma 7.5, it exists for each cp with E (cp)  
We want to find E > 0 small enough, and a finite T > 0 such that

In fact, for any we want to show that, if s > 0 is small,
the flow fi (t, . ) will never enter into 

If not, 3 cp E > t1 > 0 such that

and

Since it is known that

we have
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provided by the embedding theorem. Therefore

On the other hand, (7.4) implies

according to Lemma 7.6. The inequalities

provide a UPPer bound for E Which Prevents the flow entering U03B4/4 before

it arrives at Ec -s. SO we take E  min { 2 i E© ( 03B4 2C03B4)2/03B3 , 0 As to

these O E EC+s%U5, by Lemma 7.6, we have Ei > 0 such that

Again, we have an estimate of the arriving time

Let us define

It satisfies all desired properties in the theorem [the continuous dependence
on cp is proved similarly, cf. Conclusion (4) of paragraphe 5].
Proof of Theorem 1.2. - Let F denote the family of closed subsets of

N) endowed with the W; topology, and let

k =1, 2, ... Define

We assume that
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By Lemma 7.2, K~ possesses a closed neighborhod U in C2 +’~, with

By definition, Ve > such that

According to Theorem 7.1, let .), we have

Thus

i. e.

A proof of Corollary 3: Now we shall prove that for each homotopy
class E in Cx +’’ {M, I~ and for some d + b, cat (E n E) >__ 2.
We only wish to construct an essential map

with the property

The existence of such a map ? was constructed by Benci-Coron [Bed],
only slight modifications are needed. In particular, we choose a local chart
U outside of which, cr is defined to be u, the minimizer, and inside U we
choose a small disk Bg(zo) on which a (s) (z) : X S" is a

homeomorphism. The map cr is connected smoothly, and a careful cons-
truction makes

The condition 03C02(Sn) = 0 again guarantees 03C3 (s) e E, d s e S" - 2.
It is not difficult to show that c : is essential, because

outside the disk Bs (s) (z) = u (z) for z E (zo), which is contrac-
tible, and inside the disk a : X S" is a homeomorphism.
Therefore a is homotopic to a homemorphism of S", it must be essential.
Therefore

The Ljusternik-Schnirelman category theory is applied to obtain at least
two distinct harmonic maps.
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