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ABSTRACT. - We prove that a smooth solution of the prescfibed mean
curvature equation div ( v -1 Du) = H, v = ( 1 + Du I 2) 1/2 satisfies an interior
curvature estimate of the form

Key words : Mean curvature, second fundamental form, capillary surfaces.

RESUME. - On démontre qu’une solution de l’équation Du) = H,
v=(l + ( Du 2) 1/2 satisfait l’estimation interieure pour la courbure

Interior gradient estimates for solutions of the prescribed mean curva-
ture equation
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were derived by Finn [6] and Bombieri, De Giorgi and Miranda [1] in the
case H=0, and by Ladyzhenskaya and Ural’tseva [11], Heinz [8], Trudin-
ger ([16], [17]) and Korevaar [10] in the general case, assuming that

~H ~u~0. The exponential form of the estimate

where xoERn, and c i, c2 depend on n, R sup H I and
BR (x0)

R 2 sup aH cannot be improved as was shown by Finn [6] in the caseBR (x0) ox 
p Y

H -_- o.
From here one can obtain interior second derivative estimates by

employing standard linear elliptic theory. However, the estimates thus
obtained are nowhere near optimal in terms of their dependence on the
gradient.
As far as we know Heinz [9] was the first to obtain interior curvature

estimates for minimal hypersurfaces (not necessarily graphs) in two dimen-
sions, which were later generalized to the case n _ 5 by Schoen, Simon
and Yau [14].

Interior curvature estimates in all dimensions for solutions of ( 1) were
recently established by Caffarelli, Nirenberg and Spruck [2]. They proved
an estimate of the form

where A j I denotes the norm of the second fundamental form of

M = graph u, assuming aH >_ 0 >_ o. Their estimate

holds in fact for a general class of nonlinear elliptic equations.
However, for solutions of (1) the dependence on the gradient in the

above estimate can be significantly improved by exploiting the strong
geometric information contained in the Codazzi equations. We prove the
curvature estimate

where ~~ { xo) _ ~ x E ~n/~ x - xo ~ 2 + ~ u (x) - u (xo) ~ 2 _ R 2 ~ and the constant
depends on n, H and the first two covariant derivatives of H, see

Theorem 2.1. This estimate generalizes an estimate for minimal graphs
obtained in [5], which led to a new Bernstein type result for entire minimal
graphs. Another important case we have in mind are capillary surfacs
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(Corollary 2.2). i. e. hvDersurfaces satisfving

In this case estimate (3) for solutions in BR (xo), R  1 reduces to

which seems to be natural in view of Concus’ and Finn’s interior height
estimate in [3]

and the interior gradient estimate

obtained in [4].

1. PRELIMINARIES

Let M be a hypersurface in D~n + 1 represented as a graph over i~n with
position vector x and upward unit normal v. We define the height of M
by

and the gradient function by

where denotes the (n+ 1 ) st coordinate vector in ~" + 1. Note that
x (x) _ (x, u (x)), v (x) = 1 + Du (x) and v (x) = (x) . ( - Du (x), ~ ) for

The second fundamental form of M is given by

where V denotes covariant differentiation in M is an
orthonormal frame for M.

It is well-known that the gradient function then satisfies the equation

where A, A and H denote Laplace-Beltrami operator, norm of the second
fundamental form mean curvature of M respectively.
The following lemma gives a generalization of inequality (1.34) in [14]:

1.1. LEMMA
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Proof - From ( 1.20), (1.29)-(1.31) in [14] we infer the relations

and

where the totally symmetric tensor VA is given by ~, 

Since for fixed i we have

the result follows in view of Young’s inequality.
1.2. Remark. - It is worth noting that for n = 2 the inequality

holds.

The next lemma was proved in the case H = 0 in [5].

1.3. LEMMA. - For p, q >_ 2 we have the inequality

Proof - Combining (6) and (7) we infer

Inequality (9) then follows from Young’s inequality.
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1.4. Remark. - By choosing p, q s. t. p _ q __ n + 1 (p -1 ) -1 we can
B"-1/

achieve

2. THE MAIN RESULT

Let the quantities Hi and H2 be defined by

where f - denotes the negative part of a function f . Then we have the
following interior curvature estimates: 

.

2.1. THEOREM. - Let M = graph u be a hypersurface in 
+ 1 defined

over the ball BR (xo) c Then the estimate

holds, where and the

constant depends on n, R sup IHI, , R 2 sup ( + H 1 ) and
BR BR (xo)

R3 sup H2.
BR (xo)

In the special case where M is a capillary surface, this leads to

2.2. COROLLARY (Capillary surfaces). - Let M = graph u be a hypersur-
face in (~" + 1 satisfying H (u) = x u for K > 0 in the ball B2R (xo) c 1~8". Then
for R  1 we have the estimate

Proof - Note that in this case we have the identities

by virtue of (5). Since K > 0 this implies and as we

also have

Vol. 6, n° 4-1989.
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The result now follows in view of Concus’ and Finn’s estimate [3]

and the interior gradient estimate [4]

2.3. Remark. - (i) (11) generalizes an estimate for minimal graphs
proved in [5].

(ii) Estimate (12) with a constant depending on n, K, R sup 
BR (xo)

R2 sup and R3 sup a 2 H is in fact valid for any hypersurface
BR vu BR au2 

Y 

satisfying H = H ( u) with aH ~03BA>0, as (13) and (14) continue to hold in

this case.

If H = H (u) satisfies aH > 0, i. e. in the case where the interior gradient

estimate (21) holds, the constant in (1) depends on n, R sup |H|,
BR (x0)

R 2 2 su 
aH 

and R 3 3 su 
a 2 H 

in view of 5 .R" 
sup 

and R 
sup 

in view of (5).

(iii) If H does not change sign we have

by the divergence theorem, which enables us to estimate the n-dimensional
Hausdorff measure of ~R (xo) by

as in [7].
In the two dimensional case this and Remark 1.2 are sufficient to

eradicate the R sup H -dependence of the constant in (11), as can be
BR (xo>

seen from the proof of Theorem 2.1. This implies in particular

with c independent of R in the case H= const., n = 2.
(iv) The constant in (11) is given by
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for any b > o.

In order to prove Theorem 2.I we have to establish an Lp-estimate for
the curvatures.

2.4. LEMMA. - If p >_ max ( 3, n) the estimate

holds, where c depends on p, n, R sup H ~, R 2 sup ( ~ + H I ) and
> BR ~x0)

R~ sup H2.

Proo f - If p >_ max (3, n) inequality (9) reduces to

Using Young’s inequality and the definition of Hi and H2 we infer

Multiplying by where ~ is a test-function with compact
support, and integrating by parts we obtain in view of Young’s inequality

By means of the inequality ab  E + we arrive at

The result now follows by letting n be the standard cut-off function for

~R,’2 (xo) and recalling the estimate [7]

VoL 6, n° 4-1989.
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Proof of Theorem 2 . 1. - Let 03B2 = q - p > 0. Then for

p >-- max 3, n+03B2(n-1) 2) the conditions of Remark 1.4 and of Lemma 2.4
are satisfied.

Define f = A ~p up. From (9), ( 10) and

we then derive

Let us multiply this inequality where 11 is a test function with
compact support and integrate by parts. Note that

and

In order to control the 12-term we choose Furthermore
we employ Young’s inequality in the form

Altogether we obtain

~ n~

We now apply the Sobolev inequality [12] in the following way

v ni

Let ~ be the cut-off f unction defined by ~ =1 on K03C1- a = 03BA03C1- a (x0), ~ = 0
in M ~ K, K03C1 = K03C1(x0), I ~~I _ c a-1, where 0  a  p  R and set Eo = a,
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and Combining (17) and (18) we then obtain with

k=n/n-1

where c depends on n, R sup R 2 sup ( ~ +Hi) and
BR (x0)

R~ sup H~.
BR cxo>

We intend to employ an iteration scheme due to Moser [13] in a similar

way as in [15] or [4]. To this end let 3, n + n 1 be fixed and
set 03B1=03BBr-1 for and p = a . y such that f2=(|A|v)203B303B1. We then define

Now let po=R/2, 6r = R/2’’ + 2, and replace p by Pr-l and
a by ~~ for r > 1 in ( 19). In view of the area-estimate (16) this leads to

where k = R -1 sup v J and c depends on n, R sup 
B ~R(3co) / 

R2 sup ( + IIi), R2 sup ( V H +Hi) and R3 sup H2.
BR tx0) 

For we define

We now multiply (20) by R’", raise it to the power 03BB-r and use the
inequality and the definition of X to conclude for
r> 1

with a fixed, but slightly larger constant c. Iterating (21) we arrive at
r

for By letting r -+00 we finally obtain

where c depends on the quantities listed above. Since y >_ max ( 3, n) we
may apply Lemma 2.4 with p = y to complete the proof.

Vol 6, nC 4-1989.
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Remark (2.3) follows by choosing y large enough depending on S.
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