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ABsTRACT. — We generalize the thread problem for minimal surfaces
to higher dimensions using the framework of integral currents.
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REsUME. — On généralise le « probléme fil » pour surfaces minimales
aux dimensions plus hautes en utilisant le cadre de courants intégrals.

0. INTRODUCTION

The classical thread problem for minimal surfaces in R® can be formu-
lated as follows: For a given rectifiable Jordan arc I' and a movable arc
Z of fixed length attached to the endpoints of I' one wants to find a
surface .# of least area among all surfaces spanning this configuration.

Classification AM.S. : 49F 10, 49 F 20, 49 F 22.
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262 K. ECKER

For a detailed description of the problem and a list of relevant literature
on related soap-film experiments we refer the reader to the recent paper
by Dierkes, Hildebrandt and Lewy [DHL].

One can easily construct examples where the thread T ‘“‘crosses™ the
wire T (for planar “S”-shaped I') or “sticks” to it in a subarc of positive
length (if for instance I" has the shape of a long “U”). In other words,
the solution surface .# may consist of several disconnected components
and there may be parts of £ and I" which do not belong to 0.#. In fact
this represents the main difficulty for the existence proof, at least in the
parametric approach of [AHW], [N1]-[N3] and [DHL].

Nitsche ([N1]-[N3]) proved that the nonselfintersecting components of
2 ~ T are actually smooth arcs of constant curvature. Dierkes, Hilde-
brandt and Lewy [DHL] established the real analyticity of these arcs.

Alt [AHW] was able to prove that the parts of £ which attach to regular
parts of T" in subarcs of positive length have to do this tangentially.
Moreover he could show, if a solution surface consists of several discon-
nected components, all regular parts of £ ~ I' necessarily have the same
curvature.

The present work is concerned with a more general approach to the
thread problem which, due to its generality in handling the existence
problem, does not enable one to determine a priori the topological type
of the solution surfaces as was done by Alt [AHW] in his existence proof.

For a start we would like to allow I' to be disconnected. I' may for
instance consist of several oriented arcs or even closed curves. A suitable
generalization of the classical problem would then be to seek a surface .#
of minimal area among all oriented surfaces &% such that 0. —T is
prescribed, where in subtracting I' form 0% we take orientations into
account. If T consists of several wire arcs we do not prescribe the way in
which our threads have to be connected to the endpoints of I'. Also, rather
than prescribing the length of each single piece of thread, we only keep
the total length of T=0.# —T fixed. As there is no obvious way of
excluding the possibility of £ having higher multiplicity we may as well
allow I to have arbitrary integer multiplicity.

In section 1 we give a precise formulation of the problem for arbitrary
dimension and codimension using the framework of integral currents. We
then solve the existence problem (Theorem 1.4).

Section 2 is concerned with properties of the thread related to the above
mentioned results ([AHW], [DHL], [N1]-[N3]). We generalize the Lagrange
multiplier techniques used in [DHL] to obtain control of the first variation
of X (Theorem 2.3 and Corollary 2.5). In fact we show that X has bounded
generalized mean curvature away from its boundary ¢X. This implies in
particular that X only coincides with parts of T' which have bounded
generalized mean curvature. Moreover this establishes a weak tangential
property of X at points on I'.
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MINIMIZING INTEGRAL CURRENTS 263

Proposition 2.7 states that all free regular parts of X are of class C*
and have the same constant mean curvature and that, in constrast to the
higher multiplicity Plateau problem (cf. [WB)), a thread with higher integer
multiplicity cannot locally bound several distinct sheets of minimal surfaces
unless the thread itself has zero mean curvature. By “free parts” of Z we
not only mean X ~ I but also those sections of X supported in I' where
the multiplicity of 0.4 is not smaller than the multiplicity of I. A simple
example where a “free” X is supported in I' is obtained by letting .# be
an oriented annulus with multiplicity two, and ¥ be the inner circle
counted with multiplicity one.

If however locally near a point of

oM=cT

for some ce[0, 1), the mean curvature of £ need no longer be constant.
Nevertheless it cannot exceed the mean curvature of the free parts of X.

As Theorem 2.3 holds without any major conditions imposed on I one
can show that also the decomposable components of any local decomposi-
tion of £ have bounded generalized mean curvature. This leads to some
partial regularity results for the two dimensional thread problem:
Theorem 3.1 states that one dimensional stationary threads consist of
straightline segments which do not intersect, thus suggesting a natural
condition for the existence of a Lagrange multiplier as in Theorem 2.3.

In Theorem 3.3 we show that the thread T consists of C!' l-arcs which
do not cross each other. If several pieces of thread have a point in common
they must have the same tangent at this point. It is tempting to conjecture
that one dimensional threads are completely regular.

Finally we derive a monotonicity formula for the two dimensional
problem, from which the existence of area-minimizing tangent cones imme-
diately follows.

We would like to thank Prof. S. Hildebrandt for directing our attention
to this problem.

1. THE VARIATIONAL PROBLEM

For detailed information on geometric measure theory the reader is
referred to [FH] and [SL). We shall follow the notation used in [SL].
. Let U be an open subset of R"** We denote the class of n-dimensional
integral currents in U by
L, . (U)y={Se2,(U)/S, 8S integer multiplicity}
and
In(U) = {S € I‘n, loc (U)/M(S) + M(as) < CXD}.

Vol. 6, n° 4-1989.



264 K. ECKER
1.1. Definition

Tel, 1. (U) is called a minimizer of the thread problem with respect to
Fel,— 1,1 (U) if
My, (T) < My, (S)

whenever W « U is open and S€], . (U) satisfies
spt(S—T) =« W

as well as
My (6S —T) =My (6T—TI).

1.2. Remark

(1) We shall sometimes refer to £=0T —TI as the free or thread-boundary
part and to I' as the fixed or wire-boundary part of T although neither
sptZ nor sptI” has to be totally contained in spt 0T; in fact we may have

ps(sptT ~ sptdT) > 0.

(2) A minimizer T of the thread problem obviously minimizes mass
also in the usual sense, that is among all comparison surfaces which agree
with T along its boundary JT.

1.3. Proposition

A minimizer in the sense of 1.1 still satisfies
My (T) = My (S)
even if we only assume that the inequality
My (0S—T) My (eT-T)
holds for surfaces Sel, ,. (U) satisfying spt(S—T) = W.

Proof. — Suppose there exists an Rel, . (U) which satisfies
spt(R—-T) =W,

My (R —T) < My, (6T —-T)
and
My (R) < My (T).

Obviously we can always find an integral current Qel, (W) such that
sptQNM (sptRUsptD) =7, sptQ «— W,
My (Q <My (T) —My (R)
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MINIMIZING INTEGRAL CURRENTS 265

o0 My (8Q) =My (6T—T) —My (éR - T).
R +Q then furnishes an admissible comparison surface in the sense of 1.1
with the property
My (R+Q) < My (T)
thus contradicting the minimality of T. W

We are now going to establish the existence of a nontrivial minimizer.
Let Tel,_, (R"**) have compact support. Define

dr=inf {M(Q)/Qel,_,(R"*¥ s.t. 3Q=0I'}
and suppose M(I') > dr.

1.4. Theorem

Let dr L < M(I'). Then there exists a nontrivial compactly supported
surface Tel, (R"**) which minimizes mass among all surfaces Sel,(R"*%
with the property M(6S—1)=L.

1.5. Remark

Every minimizer of 1.4 also minimizes mass in the sense of
Definition 1.1.

Proof of 1.4. We set
A([, L)={Sel,(R"*"/M(éS—-T) < L}.

Obviously L < M(I") implies 0¢ A (I', L). Since M(I') > d there exists a
compactly supported QeI _, (R"**) which is different from I" and satisfies
Q=0T as well as M(Q) =d. (Use [SL], 34.1 for instance.) The integral
cone R=0 % (I'— Q) then satisfies M(0R —I') =M (Q)=d. From d- £ L
we conclude that A (I, L) is nonempty.

We now proceed in a similar way as in [SL, 34.1]. Let (T)) =« A(T, L),
j 2 1, be a minimizing sequence, that is

lim M(T;=inf {M(S)/SeA(T, L)}.
J—

Since I' has compact support we may assume that sptI’ = B, (0) for
some R >0, where Bg(0) denotes an open ball in R*** Let
f: R"*¥ - B (0) be the nearest point retraction form R*** onto Bg(0). It
follows from the fact that Lip f=1 and f=id in B (0) that

M(f, T) = M(T)
MEfT,—D)=M(£(T;,-) = M@T,-I = L

Vol. 6, n° 4-1989.



266 K. ECKER

and
sptf; T; = Bg(0).
Hence we may assume without loss of generality that
sptT; < Be(0), jz 1.
The assumption M(T) < co combined with M(T,—T) SL({21)
yields
sup (M(T)+M(IT)) < .

jz1

By the compactness theorem for integral currents ([SL, 27.3]) we can select
a subsequence [again denoted by (T ;)] which converges in 2,(R**¥) to an
integral current T eI, (R"**) which satisfies

spt T < Bg (0).
The lower-semicontinuity of the mass implies
M(T) = lim M(T))
IEE)

and
M(T-T) < lim M(T,-T) <L

F ]

so that in fact
M(T)=inf {M(S)/SeA(T, L)}.
It remains to show that M(6T~T)=L. In order to establish this
(¢f [AHW; 3.4]) we first recall that for every x,espt T ~ sptdT we have
M(T L B, (x,)) < cp”, V p < dist(x,, sptdT)

where the constant depends on M(T) and x,. (This is an immediate
consequence of the interior monotonicity formula for mass-minimizing
currents.) We can therefore conclude that for every £ > O there exists a
number T > 0 such that

M(3(T L B, (xo))) = &

[The slice 8(T L- B, (x,)) is well-defined for #*-a.e. T > 0.] Indeed if this
was false the coarea-formula would immediately yield that for some & > 0

p
ep < J M(8(T L B.(xo))dr = M(T L_ B, (x,)) < cp”
o]
holds for every p < dist(x,, spt JT).

Suppose now that M(dT—1I") < L. As above we can find a ball B, (x,)
about some x,espt T ~ spt T such that

M (3(T L B,(x,))) < L—M(T-T).
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MINIMIZING INTEGRAL CURRENTS 267

The surface T'=T —(T L. B, (x,)) then satisfies
M(T) < M(T)
and
M@T'-I) ZL

thus contradicting the minimality of Tin A(I', L). W

1.6. Proposition

Let TeL (R"*¥%) be minimizing with respect to T el,_, (R"*¥) in the sense
of Theorem 1.4. Then

sptT < conv(sptD).

Proof. — We modify a well-known argument used in the case of the
ordinary problem of mass-minimizing.

Since the convex hull of sptI'is the intersection of all balls in
R"** which contain spt I it suffices to show that spt I’ = Bg(x,) implies
sptT < Bg(x,). By translating and scaling we may assume without loss
of generality that x,=0 and R=1. Let f: R"** > B, (0) be defined by
fo=xfor|x| <1, f(x)=|x| *xfor|x| = L Since Lipf < land f, =T
we infer as in the proof of Theorem 1.4

M(£T) = M(T)
M(3f,T—T) < M(8T—T)

which in view of the minimality of T implies
M(T)=M(f,T).
Using this, the fact that f, TLB;(0)=T L B, (0) and the area-formula

M(JzT>=M(f,TLB1(0»+f T A x| " dpr (%)
Rk~ By (0) lxl
we obtain

j ( T 2 ]xl‘"—l)duT(x)=0.

Rn+k~Bl ©) lx]

Since [T(x) ] =1 for pr-a. €. xe R*"** we conclude
pr(R*™* ~ B, (0))=0. W
The following decomposition property of T and restriction property of

X is going to play a central role in section 2.

Vol. 6, n° 4-1989.



268 K. ECKER
1.7. Proposition

Let Tel,(U) be a minimizer of the thread problem with respect to
Tel,_,(U).
(1) Suppose the free boundary part =0T —T is decomposed inside

W, « U in the following way:
=343
My, (Z) =My, () + My, (£7).
Then
My, (T) £ My, (S)

for every S€l, .. (U) satisfying spt(S—T) = W, and
My, (88 —T") =My, (£)

where T" =0T —X’ is the new fixed boundary part.

(2) Suppose T can be decomposed inside W, « U in the following way:

T=T+T",  My,(T) =My, (T)+My, (T")
1_‘=1_‘/+1_‘//’ E/za’r/_l_‘/’ El/za’r//_l_‘/l
E=E 45, My, (5) =My (E) +My, (7).

Then T’ and T are minimizers of the thread problem in W, with respect to
I and I respectively.

Proof.
(1) We have

My, (08 —T) £ My, (8S—T") +My, (£7)
=My, (£) +My, (£)
=My, (£) =My, (T -T).
From Prop. 1.3 we obtain
My, (T) = My, (8).
(2) Let Sel, ;. (U) satisfy spt (S—T") =« W, and
My, (S —T") =My, (0T —I'") =My, (£).

Then we check as in the proof of part (1) that S”=S+T" is an admissible
comparison surface for T. This implies

My, (T) = My, (8”) = My, (8) + My, (T).

Annales de I'Institut Henri Poincaré - Analyse non linéaire



MINIMIZING INTEGRAL CURRENTS 269

From the mass-additivity of T” and T in W, we conclude

My, (T) < My, (S). B

2. THE FIRST VARIATION OF THE THREAD
The first variation of the mass of Sel, ,,. (U) is given by (cf. [AW], [SL])
8S(X)= fdivs X dpg
where X e C1 (U; R**¥),
We define the support of dS in U by
spt8S={xeUNp >0, 3X,eC} (B, (x); R"**s.1. 8S(X,) # 0}.

In order to obtain some control on the first variation of the thread-
boundary ¥ introduced in section 1 we shall have to make use of the
following crucial lemma.

2.1. Lemma

Let Tel, 1, (U) be a minimizer of the thread problem with respect to
l—‘EIn—l,loc (U)
Then the inequality

(21) |8T(X)3Z(Y)—8T(Y) 8= (X)|
< [62(Y)[f|x A f|dpr+|52(X)|f|Y A T|dpr

holds for every XeCl(V; R***% and YeCl(W; R*"%  whenever

V, W «— U ~ sptdI" are disjoint open sets.

The proof of Lemma 2.1 is based on Lagrange multiplier techniques
used in [HW] and [DHL]. We give a slight generalization of Lemma 2 of
[DHL] for the case where some nondifferentiable functions are involved.

2.2. Lemma

Let f (s, t), g (s, t) be real-valued functions of (s, t)€[—sq, So] X [—tos Lol
sy > 0, to > 0 which split in the form
fG D=+ i)+ +HO+2 (@)
g(s, )=go+g,(9+2, ()
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270 K. ECKER

where f,, 8, are constants and
f100) =f1 ©0) =1, =f2 0)=g;(0)=g, (®)=0.

Suppose g, is continuous in [—ty, to], the derivatives f{ (0), f;(0), g;(0),
g5(0) exist and g5, (0)=1.
Suppose furthermore that

fo=f 0, 0= f(s, 1)
Jor every (s, t) € [—sq, Sol X [—tg, to] such that g (s, t)=g,.
Then

f1 ® L® (t)

22) [ f{O)~f;0)g O] <

lg1(0)]-

s> 0 t—>0

Proof. — We refer the reader to Lemma 2 of [DHL]. The auxiliary
function 1(s) defined there depends only on g, and g,. One then immedi-
ately verifies that the difference quotient expressions corresponding to the

left hand side of (2.2) can be estimated by difference quotient terms
involving f; and f,. W

Proof of Lemma 2.1. — Let (@), s€[—s,, so] be a one-parameter family
of diffeomorphisms of U which leave the boundary of I fixed, that is

@o=1id and spt(@;—id) a= V = U ~ spt I for se[—s,, s,]. Suppose fur-
thermore that @, satisfies

(2.3) My (95 Z)=My ().
Then
Ti=0uT—0,([(0, 5)] xT)

is an admissible comparison surface for T in V. Indeed we have
spt(T—T,) a= V and
(2.9) 0T, —T'=0(9u T—0,([(0, 5)] xI)-T)

=0 X+ @ I'—004([(0, 5)] xIN)—T

=Qul+Qul —@,T+I'-T

=@y

Here we wused the homotopy formula for currents taking
spt(p,—id) N spt 0T = &F into account.

In particular, (2.4) yields M(éT,—TI') =M (4T —TI') which by the minimal-
ity of T implies

(2.5) My (T) = My (T)
= My (0, T) + My (0, ([(0, )] x ).
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Suppose @,(x)=x +sX where X e C! (V; R"*¥). Then we compute as in
([BJ}, Lemma 3.1)

M(0:([(0, )] xT))
= f J‘l (br (x) A (dx (Pt)ﬁ (l: (x)) | dp'I‘ (x) dt
[

fomAf@HXAﬂﬂmXMMfMH@AQﬁ
o '

which implies

(2.6) lim

s> 0

Mo, ([(0, 9] xT))

N

=ﬁXAow

Let now V, W be two disjoint open sets which are compactly contained
in U~sptdl’ and choose variation vectorfields X eC!(V; R**% and

YeCl(W; R"™*%. Let Q o U be an open set such that VIUW « Q. For
one-parameter deformations

P (x)=x+sX(x), Y, (xX)=x+1tY (x),
(s, e[ —sg, Sol X [—14, tol, we define
So=Mu(T), go=Mqy(%)
I1 ()=My (0, T)—My(T)
S1 =My (04([(0, 5)] xT)
S2(@)=My (Vs T) —Mw (T)
S2(O=My (¥4 ([(0, ] xT))
81 ()=My(043)—My(T)
8 (1) =My (s Z)—My(T)

and f(s, t), g(s, t) as in Lemma 2.2. Let
T =0 T— @4 ([(0, )] x T+ s T—, ([0, )] x I-
From the definition of ¢, and v, we infer

spt(T, ,—T) — Q.
Furthermore we derive from (2.4)
Mo (0T, ,— D) =My (94 Z) + My (V4 Z) + Mg v L w) (E)-
For those (s, £)€[—sq, So] X [—t, o] Which satisfy g (s, £)=g, wWe have
My (9o Z) + My, (Vs Z) =My (Z) + My (2).
This implies [for such (s, )}
Mg (0T, ,—T)=Mqy(éT-T)
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272 K. ECKER

which establishes T, , as an admissible comparison surface. As in (2.5) we
conclude

M, (T) £ Mo (T, )

< My (@, T)+ My (Y, T) + My (95 ([(0, )] xT)

+ My, (U5 ([0, D] xT) + Mg v o w(T)
In view of the definition of f;, f;, f» and f, this implies for (s, ¢) satisfying
g(s, 1)=8o
0=/, (5)'*‘?1 (s)+/2 (t)'*‘fz(t)
which is equivalent to .
fO0,0=f(s0

for every (s, t) s.t. g (s, 1)=g,. Moreover

f10)=11(0)=£,(0)=1,(0) =g, (0)=g,(0)=0

and all the differentiability and continuity requirements of Lemma 2.2 are
satisfied.

In case 8% (X)=0 for all XeCL(U ~ sptdl; R"*¥) the statement of
Lemma 2.1 holds trivially. Hence we may assume Y € C} (W; R"**) satisfies
8% (Y) # 0 and set Y’'=8Z(Y) Y. This gives 8Z(Y’)=1 which by the
definition of g, represents the condition g5 (0) =1.

We can now apply Lemma 2.2, the definition of first variation to
fi> far &1 &2 and (2.6) to f; and f; to arrive at

|8T (X) —8T(Y) 8= (X)| J}x AT dur+|8)3(X)|JlY’ AT | dyr

for X eCl(V; R"*%) and Y’ =8Z(Y) 'Y eCl(W; R"**) which completes
the proof of (2.1). M

We now turn to establishing the main result of this paper.

2.3. Theorem

Let Tel, .. (U) be a minimizer of the thread problem with respect to
1“eIn—-l, loc (U)-

Suppose
(A1) spt 8T ~ spt T # &

(A2) There exists a point xy,€sptE ~ spt T, a radius p < dist(x,, sptcl)
and a local decomposition

T L B,(xo)=T, L B, (x) +(T—To) L B, (xo)
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satisfying Toel, 1o (U),

" { M(T L B, (x0)) =M (T, L B, (x0)) + M((T—T,) L B, (x,))
M(Z L B, (x))=M(Z, L B, (x0))+M({(Z—Z,) L B, (x,))

for £,=8T, and

(2) X €sptOT,.

Then we can find a number Aye(0, o) such that
@7 [T (X) +A;8Z(X)| £ Jlx A T'|dpr

kolds for every X e CL (U ~ spt 0I'; R**¥), where A is given by
(2.8) 8Ty (X) + Ay 850 (X) =0
Jor every X e C1(B, (x0); R*™¥).

Moreover (2.8), at any point of sptX ~ sptdl’ satisfying (A2) and for
any possible decomposition at such a point, is valid with the same Az > 0.

2.4. Remark

(1) If (A1) is not satisfied X is a stationary thread away from 60X = —0dI.
For the structure of such boundaries we refer to Corollary 2.10 and
Theorem 3.1.

(2) Although in the codimension omne case, i.e. U < R"*! condition
(A2) can be verified under reasonably weak hypotheses it nevertheless
appears to be a rather artificial assumption which one would hope, could
be removed altogether.

In fact if U < R**! it suffices to assume the existence of at least one
regular point of sptX ~ sptJI” in the sense of Proposition 2.7 (1).

Proof of Theorem 2.3. — We first prove (2.7) assuming
(B2) sptST ~ sptT # .
From Remark 1.2 (2) and ([BJ], Lemma 3.1) we infer

(2.9) ]8T(X)|§j|XAaT|duﬂ

for every X e C! (U; R"*¥). In particular, the representation formula for
8T (¢f. [SL], Chapt. 8])

(2.10) ST(X) = f Vor- X ditor
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274 K. ECKER

holds for X e C! (U; R"*%), where v, is a py~-measurable vectorfield in U
satisfying | vor| < 1 pyy-a. e. Assumption (B2) implies that

(2.11) Hor ({x€sptZ ~ sptI'/vyp(x) # 0}) > 0.

Hence we may select three points x;, x,, x;€spt8T ~ sptI, radii
p: < dist(x;, sptI)s.t. B, (x)N B, (x)= for i#j (i j=1,2,3) and
variation vectorfields X;eC} (B,,(x,); R"** which satisfy

(2.12) ST(X) #0, i=1,2, 3.

From (A1) we obtain the existence of a point x,esptdZ ~ sptdl, a
radius p, < dist(y,, spt0I') and a vectorfield Y,eC} (B,, vo)s R**%) such
that

(2.13) ST (Y,) # 0.

We may assume B, (yo) N\ B, (x)=F for i=1, 2, 3. Otherwise, by virtue
of (2.11), we can choose different x;espt 8T ~ sptTand p; > 0.
Applying now (2.1) to the pairs X,, Y, for i=1, 2, 3 we obtain

[8T (X)X (Y ) —8T(Y,) 8Z (X)) |= lsz(x,.)]ﬁYo A T dpg.

Hence from (2.12) and (2.13) we deduce
(2.14) 3Z(X,) #0, i=1,2 3

If we apply (2.1) to the pairs X;, X5 for i=1, 2 and take (2.14) into
account we derive

ST(X,) _ _T(Xy)
sz(xl)sz(x3)_8T(X3) FE (X

which implies, in view of (2.14) again,
dT(X,) OT(Xy)
T(Xy) d=(Xy)’

3T (X3)— 3Z(X5)

At this stage we define

ST Lo,

8 (X))
An arbitrary vectorfield X eC} (U ~ spt oT; R"*%) we decompose as fol-
lows: X=X +X®, where XP=Xn® (i=1, 2) and n®e C=(U) satisfies
sptn? N B, (x)=, 0 <P < 1 and W4+ n@=1.

Using (2.1) again, this time with X;, X® (i=1, 2), we obtain

(2.15) Ay =

[8T (XD +245 8Z(XD)| < f{xw A Tldyur
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for i=1, 2 which in turn establishes (2.7). Note that
(2.16) ST(X)+2A5 62 (X)=0

holds for all X e C! (U ~ sptI; R"*%).

Before we prove the result under the general assumption we want to
show that (2.16) implies Ay > 0.

We already know Ay # O [see (2.15)]. Suppose Ay < 0. Select a variation
YeCHU ~sptT; R"*%)  satisfying 8X(Y) <0. (2.16) then yields
3T(Y) < 0. If we let (,) denote the one-parameter family of deformations
generated by Y this implies that for some small ¢ > 0 we have

Mspl Y (ll-’r# T) < Mspl Y (T)
and

MsptY(‘l"r# Z) < Mspl Y(z)
which in view of Proposition 1.3 contradicts the minimality of T.

Suppose now that condition (A2) holds instead of (B2).

By virtue of Proposition (1.7) (2) and (A2) (1) T, minimizes the thread
problem in B (x,) with respect to I'=0. Hence in view of (A2) (2) [which
for T, reduces to condition (B2)] and (2.11) we may select two points
Xy, X, €5pt 8T, M spt Xg and radii p,, p, such that B, (x;) N B,, (x,)=<
and B, (x;) UB,, (x2) &= B,(x,).

For i=1, 2 we define
T,=T—(T—-T,) L B,,(x)

[=r-TL B,(x)

(217
2,=0T,—T;
U;=(U ~ B, (x))) UB,,, (x)
such that
T,=T, in B, (x),
218) T,=T in U~ B, (x))

Z;=Z, in B, (x)),
3;=Z in U~ B, (x)).
We infer from (A2) (1) that for i=1, 2 the pair T;,, T—T,; (replacing
T, T”) satisfies the conditions of Proposition 1.7 (2) for every open

W « U,. Hence T; is a minimizer of the thread problem in U; with respect
to I',. Due to the choice of x, and x, we have for i=1, 2in U;

(2.19) sptdT; ~ sptI; # .
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Moreover, in view of (A1) and (2.11) applied to T, we may assume x;
and p; to be chosen such that

(2.20) sptdX; ~ sptdl’; # J
fori=1, 2.

Therefore T, satisfies the conditions (A1) and (B2). From (2.7), (2.16)
and (2.18) we derive

(2.21) |8T,(X) +2£8Z,(X) | = f |X A Ty|dpr,

for every X e C} (U; ~ spt 8T; R"**) where AL > 0 is defined by
(2.22) 3Ty (X) +AL8Z,(X)=0
for every X e C} (B, (x); R"™¥) (i=1, 2).

The identity (2.22) and x;esptdT,MsptX, for i=1, 2 imply that
x;€spt 6X,. Therefore T,, which minimizes the thread problem in B, (x)
with respect to I'=0, also satisfies (A1) and (B2) there, such that (2.7) is
applicable to T,. This establishes (2.8) for every XeC!(B,(xy); R**").
Hence ML =2\%

From (2.21) we now obtain in particular

(2.23) | 8T (X) +A:8Z(X) | < J|x A T | dyg

for every XeC] (U ~ spt dT'; R"*¥) satisfying sptX M B,, (x;) =, where
i=1, 2.

If XeCl(U ~ sptdl'; R**%) is arbitrary, we decompose it as in the first
part of the proof and apply (2.23) to arrive at inequality (2.7).

It remains to show that Ag is independent of x, and T,,.

Suppose that we have two decompositions at x,, that is (A2) holds for
T, replaced by Tj and T respectively. From (2.8) we obtain

(2.24) ST (X) +AL 8T (X) =0
for some A >0 (i=1,2) and for every XeC(B,(x,); R"%. Pick
y;€sptdT, and radii o; (i=1, 2) such that B,, (»;) N\ B,,(y,)=¢& and

B,, 1) UB,, (#,) @« B,(x,). Then (2.24) implies y; espt 3z,
Define

Tl, 2=T(1) L Bal (yl)+T(2) L Baz (yZ)

In view of (A2) (1), for T} and T3 respectively, T, , and T—T, , satisfy
the conditions of Proposition 1.7 (2) in U, ,=B,,,; ;) U B,,;2 (v2). Thus
T, , is a minimizer of the thread problem in U, , with respect to I'=0.
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Moreover since y;esptdT, , NsptdX, , (i=1,2), where £, , =0T, ,,
(A1) and (A2) are satisfied, which enables us to apply (2.7). Thus

(2.25) 8T, »(X)+AL 28%, ,(X)=0

for every XEC: (Ul, 25 R"+k) Where )\,)1:’ 2 > 0
By the definition of T, , this reduces to

(2.26) 8T (X) + AL 285 (X) =0

for XeC! (B, , (); R**H), i=1, 2.

The fact that y,esptdXi implies the existence of vectorfields
Y;eC; (B,,, (); R*™*) which satisfy 3Zf(Y;) # 0. Applying now (2.24)
and (2.26) to Y, (i=1, 2) yields A} 2=AL =A%

For decomposition components at distinct points of sptZ ~ spt oI the
same argument obviously works.

This completes the proof of the theorem. H

2.5. Corollary

Let Tel, 1, (U) satisfy the assumptions of Theorem 2.3. Suppose that T’
additionally satisfies

(A3) (1) For every x,esptD’ ~sptdl' there exists a radius
p(xo) < dist(x,, sptél) and a constant c(x,) such that for every
xeB, . (xo) and p < p(xo)—l X——xo|

l»lr(Bp (xo)) Z c(xp) p"~ 2+P

for some B > 0.

(2) For every W «= U ~ spt I there is a constant ¢(W) such that
|8 L W] < c(W), pu-a.e. in W

where O is the multiplicity function of T.
Then T has bounded generalized mean curvature Hy, in fact

2.27) f divs X dpy = — f H;- X dug
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for every X e C1 (U ~ sptéT; R"**), where Hy satisfies

c(W)
A

$)

(2.28) |Hy L W| < , ps-a.e. in W

for every W o= U ~ spt dI', where c(W) depends on W only.

Proof. — We combine (2.7) and (2.9) to obtain

52X g%(ﬁx A f|dpr+J|X A ﬁ]dun)

for X e C! (U ~ sptdI'; R"*%), which in view of the fact that por < pr+ug
yields

2
I5Z(X) | giﬁxlduﬁgﬁxupr

for every X e C} (U ~ spt dI'; R"*%).
We now proceed as in ([SL] 17.6) to obtain for every xeB, ., (xo) and
Flae p=p(xe)—|x—xo|

d 1 2
& (P " (B, (%)) = — " P " s (B, (x0)) — " Pt " (B, (o))

which by (A3) (1) implies

d _ _
— (€% p 7" (B, (x0)) = — 2 ¢ (xg) 50 pP L.
dp Mg

Integrating we arrive at

1 — -1 1
e 0! 7" (B, (X)) S €5 P p! s (B, (xo)) + K—C(xo, B) (p*—oP)
>

for 0 <o <p < p(xe)—|x—xo]-

Hence, we can check as in ([SL], Cor. 17.8) that 8" 1 (ps, ) is upperse-
micontinuous and we can apply ([SL], 17.9 (i)) to conclude 05 (x) = 1 for
every xesptX ~ sptoI'. (Recall that 6; = 1 py-a.e. since X is an integer
multiplicity current.) Using this in combination with (A3) (2) we infer
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from the definition of py and pr that
Br(sptEZ NW) = c(W) pz (W)

forany W « U ~ sptdl.
Thus we can differentiate p- with respect to py to obtain

520 §f~c(W)ﬁXIduz

for any X e C! (W; R**¥), which in turn implies the result. W

2.6. Remark

(1) Since =0T in U ~sptl’ and Z=-T in U ~ sptdT we have
[Hy ()| £ 1/As for ps-a.e. xeU ~ (sptT N spt 3T).

(2) One easily checks that (A3) holds (with B=1) in case I" locally
corresponds to an oriented embedded C% !-submanifold of R7** with
multiplicity my.

2.7. Propesition

Let Tel, 1, (U) be a minimizer of the thread problem with respect to T
satisfying (A1) and assume now that U c R+,

Suppose xo is a regular point of sptZ ~ sptdI' and p < dist (x,, spt o)
such that

r L Bp (xo)':mr [[M}: m Bp (xo)]], mrEZ+ U {0}

0T L B, (xo) =mar [Mz N B, (x0)], moreZ ~ {mr}
where M is an (n—1)-dimensional embedded, oriented C'-submanifold of
RoHL

(1) If myr¢[0, mp] My is actually of class C* and (for some smaller

p>0)
(2.29) TL B, (xg)=my [My N B, (x)]+mo [Mg N B, (x)]
where My is an oriented embedded minimal hypersurface of R"*! with
boundary My, m, is a nonnegative integer and M, is an oriented, embedded
real-analytic minimal hypersurface without boundary which contains M.

Moreover, the mean curvature vector Hy, of M satisfies lH):': g (Mg is
the Lagrange multiplier of Theorem 2.3). In fact we have

1
(2.30) '[ divg Xdo#" '=—— | vy Xd#" !
Mg

T JMyp
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for all XeCl (B, (x,); R"*1), where v, is the outer unit normal vector of
M with respect to M.

Note in particular thar all regular parts of £ have the same constant
mean curvature.

(2) If 0 Zmyr <mp and condition (A2) of Theorem (2.3) holds in
U ~ B,(xo), My is of class C** for any a <1 and the generalized mean

1
curvature vector Hy of M, satisfies |Hg| < .

z
(3) If My is stationary, i. e. when (A1) is not satisfied T may be supported

by several distinct sheets of smooth surfaces with boundary Mj.

Proof. — Suppose first of all that x,esptZ ~ sptI'. In this case we
may assume myr=my > 0 and

2L B, (xo)=mz[M; N B,(x,)].
From the local decomposition theorem in [WB] we infer

mg

TL B,(xo)= Y T,L B,(x,)
(2.31) .

mg

M(TL B, (xp))= ) M(T,L B, (x))

i=1

1
where each T, satisfies T;= —X.
my

We want to show that x,esptdT; for every 1<i=<m; Since

T, = L2‘. and (2.31) holds we can obviously apply Proposition 1.7 (2)
mg

again to derive that each T; L B,(x,) is a minimizer of the thread problem

(in B, (x,) say) with respect to I'=0.

If x,¢sptdT; we can find a radius ¢ > 0 such that T,L B, (x,) is
stationary. Hence the usual monotonicity formula holds for T, at x
(cf. [SL], Chapt. 4). This and the fact that T is regular in a neighbourhood
of x, yields for small enough ¢ >0

M(T; L B, (xo)) + M(JT; L B, (xo)) <ec

n—1

c” c

where ¢ is independent of ©.
The fact that T, locally minimizes mass in the ordinary sense with
respect to JT; and the compactness theorem for mass-minimizing currents
([SL], Chapt. 7), then imply the existence of a mass-minimizing tangent
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cone C; at x, Obviously dC,=[T, M;z], where T, M; denotes the
oriented tangent space of My at x,. By ([HS], Chapt. 11) C; has to be the
sum of an oriented n-dimensional halfplane of multiplicity one and possibly
a hyperplane of arbitrary multiplicity containing this halfplane. Hence
3C; #0.

On the other hand the lower-semicontinuity of the first variation with
respect to varifold-convergence and the fact that T; was assumed to be
stationary in B, (x,) implies the stationarity of C; and thus leads to a
contradiction. Hence we conclude x4 espt 3T,

Because each T, satisfies (A2) and since (A1) holds T we may now
apply Theorem 2.3, in particular (2.8) with T, replaced by T,, to deduce

(232) ST,(X)+ 265(X)=0, 1<i<m,
ms
for every X e C} (B, (x,); R"*1) (p slightly smaller than above).
Combining (2.10) and (2.32) we obtain

1
(2.33) BE(X)=— -~ J Vor, Xdpz, 1Si<my
o2

for all XeC}(B,(x,); R**!), where the v, are s#" !-measurable and
satisfy |Vyr,| <1 #" '-a.e. Standard regularity theory for C'-solutions
of the prescribed mean curvature system implies that My M B, (x,) is of
class C** for any a < 1 (and smaller radius p > 0). The boundary regular-
ity theory for mass-minimizing currents (cf. [HS]) then yields (again for
some smaller p > 0) that either

TL B,(xg)=mz[M1 N B, (xo)]+mo[My N B, (x0)]

where M, is an oriented, embedded real analytic minimal hypersurface
without boundary which contains Mp and m, is a nonnegative integer,
{M; like the My, below) or

T;L B,(xg)= [[M'ri NB, (x0)], I<ismy

where each My, is an oriented, embedded minimal C!-*hypersurface with
boundary M;.

In both cases the representation vector vy, for 8 in (2.33) is given by
the exterior normal of M; with respect to My and My, and is of class
C%* We furthermore deduce from (2.33) that Vor,= Ver; fOr i 5 j which

by virtue of the Hopf-boundary point lemma for minimal surfaces implies
Mri=MTJ- fori#j.
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Moreover standard regularity theory implies My (M B, (x,) € C%® A stan-
dard “boot-strapping’” argument then leads to the C*-regularity of M;.
Since the above line of argument is applicable at every point in
M; N B, (x,) (for the original radius p > 0) our conclusion also holds for
the original ball B, (x,).
Let us now assume xpesptI'and mp = 1. Suppose my¢[0, mp).
I my=my, TL B,(x,)=0.) We again decompose
| map |
TL B,(xo)= », T:L B,(x0)
i=1

where the T; L B, (x,) are additive in mass and satisfy

aT,L B,(x0)= —2_[M; N B, (x0)], 1<is<my
[mar
One easily checks that for 1 £i < |m,;| and Z,=0T,
M(Z L B, (x0))=M(Z; L B, (xo)) +M((Z—Z) L B, (xo))-

Thus, as above, each T; L B,(x,) is [in view of Prop. 1.7 (2)] a minimizer
of the thread problem in B,(x,) with respect to I'=0. [In case m,; <0
even T minimizes the thread problem in B, (x,) with respect to I'=0 since
then M(Z L B,(x)) =M(JT L B, (x,)) +M(I" L B,(x0)).] As before we
show x,esptdT, 1 <i < Imari which again enables us to apply (2.8) in
order to deduce

8T:(X) £ A8 [Ms](X)=0, 1 =i<|my

depending on whether m,; is positive or negative. As this identity corre-
sponds to (2.32) the same argument as before can be applied.
It remains to discuss the case where 0 < m r < my. Define

T'=T-TL B,(x,)
IM=T-T L B,(x,)
U'=(U ~ B, (x0)) U B,z (xo)
where o < p is chosen such that the assumptions (A1) and (A2) still
hold in U’ [(A2) was assumed to be valid in U ~ B, (x,)]. Since ¢T"=0 in
B, (x,) the conditions of Proposition 1.7 (2) are trivially satisfied for T’

and X' =0T’ —I". Hence T’ minimizes the thread problem in U” with respect
to I'". Applying (2.7) we conclude

[T (X) +A: 82 (X) | < ﬁx A T7|dpy.
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for every X e C1 (U’ ~ spt 8T"; R**') where Ay > 0 is determined by
T L (U ~B,(x0))=T L (U ~ B, (x,))-
Since ' L B, (xo)= —T" L B,(xo) and T’ L B,(x,)=0 we obtain

J divyy, X d#"

gij[xldx’"—l

for all X e C} (B, (xo); R**1).

The above argument works for every point in Mz B,(x,) with Ag
being determined by T L (U ~ B,(x,)). This completes the proof. B

In view of Proposition 2.7 (2) we define the set along which the thread
T “sticks” to the wire I' by

2.8. Definition

Sr={xesptX ~ sptdl'/Ape (0, dist (x, sptoI))
and
ce0, 1) s.t. T L B, (xo)=c(I' L B, (x,))}-

We are going to show that unless X is stationary away from its boundary
the first variation of ¥ does not vanish at all, except possibly along S

2.9. Corollary

Let Tel, 1. (U) be a minimizer of the thread problem with respect to
Tel,- 1, 10c (U), where U < R**1,

Suppose regI is dense in sptT.

(1) If (A1) of Theorem 2.3 is satisfied we have

(2.34) sptZ ~ (S Usptol’) = sptéZ
(2) If additionally (A2) and (A3) hold we have
(2.35) sptX ~ (Sp U sptdl) < spt oT.

Proof. — (1) Let x,esptX ~ (S \Usptdl) and suppose there exists a
p < dist (x4, spt ') such that

d3XL(X)=0, VXeCl!(B,(xq); R*"")

where we may assume that p < dist (x,, Sp). From Allard’s regularity
theorem ([AW], [SL], Chapt. 5) we see that inside B, (x;) the set regX is
dense in spt X. Using this and the assumption on reg I’ we may assume
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without loss of generality that

0T L B, (xo)=m ; [Mz N B, (x0)]
'L B,(xo)=mr [[M):me(xo)]], mpreZ* U {0}
where m,p ¢[0, my) since x,¢Sr. My is a real-analytic (n— 1)-dimensional
oriented embedded minimal submanifold of R**1.

On the other hand we obtain, using (A1) and Proposition 2.7 (1), that
M; has nonzero constant mean curvature, which is a contradiction.

(2) Suppose  xqesptZ ~ (SpUsptdl) and there  exists a
p < dist(xq, spt oI U Sp) such that
(2.34) 8T (X) =0, VX eC} (B, (xo); R™1).
Since (A1), (A2) and (A3) hold, we can apply Corollary 2.5 to deduce
that the generalized mean curvature of X is bounded in every open set

W « U ~sptdl’. Using again Allard’s theorem we obtain that inside
B, (xo) the set regX must be dense in spt Z. In view of the additional
assumption regl'=spt’” we may proceed as in part (1) of the proof.
Proposition 2.7 (1) [in particular (2.29)] and the divergence theorem for
regular minimal submanifolds with boundary then imply 8T L B, (x,) # 0
thus contradicting (2.34).

2.10. Corollary

Let Tel, 1,.(U) be a minimizer of the thread problem with respect to
rel, 1 1. (U), where U c R"* L,

Suppose condition (A1) is not satisfied, that is we have
(2.35) X (X) =0, VXeCl(U ~ sptdl; R**1).
In case sptX < spt1” we furthermore assume that (reg” M\ sptZ) ~ S # .

Suppose we have the following local decomposition of X: Let
Xxo€SptX ~sptol’, p < dist(x,, spt ') and Zye€1,_, .. (U) satisfy

T L B,(xo)=E, L B,(x)+(E—Zo) L B, (x,).
(236)  M(Z L B,(x,))=M(Zo L B, (x0)) + M((Z~Z) L B, (xo)
0oL B, (xo)=0

Then
(2.37 0%, (X) =0, vX eCCI(Bp (xo); R** 1,

Proof. — Let us suppose x, €spt 8Z,,.
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If sptZ ~sptI’ # & we can choose (by Allard’s theorem) a point
x,eregX ~ sptI” and o < dist(x,, spt I') such that

(2.38) ZL B, (x;)=my[Mz N By (xy)]

where M; is an (n— 1)-dimensional oriented, embedded real analytic mini-
mal submanifold of R**!.

If spt XcsptIT we select x,e(regI' NsptX)~S, and
o < dist(xy, sptdI' \J Sp). Again by Allard’s theorem we may assume
x, ereg X such that

OT L B, (xy)=my [My N B, (x,)]
r L Bo‘(xl):ml' 'IME m Bcr (xl):l], erZ+ U {0}
where myr¢[0, mp) and My is as in (2.38). [(2.38) is a special case
of (2.39).] We may also assume x,#x, and choose o, p
s.t. B, (xo) N B, (x;) = . (Note that x, espt 8, would imply x, ¢ reg X.)
Define

(2.39)

I'=T+(Z—Z,) L B,(xo)
Y =0T -I".

We then have

2L B,(x0)=Z, L B,(x,)
(2.40) LB, (x))=X L B,(x,)
I L B, (x))=T L B,(x,).

Using (2.36) and Proposition 1.7 (1) we conclude that T is a minimizer of
the thread problem in B, (x,) U B, (x,) with respect to I'" as new fixed
boundary part. Furthermore (2.40) and the choice of x, imply
spt 32’ ~ spt dI'” # (&. Applying Proposition 2.7 (1) to T in B,(x,) we
derive that My has nonzero constant mean curvature which gives a con-
tradiction to (2.39).

2.11. Remark

Corollary 2.10 holds in arbitrary codimension if additionally require
spt 8T ~ spt " # . Indeed, by virtue of (2.11) we can always find a point
x;espt 8T ~ sptI' different from x,. Let B,(x;) and B, (x,) UsptIl be
disjoint. As in the proof of Corollary 2.10 T minimizes the thread problem
in B,(xe) UB,(x;) with respect to I, where now I'"L B,(x,)=0. Let
XoeC; (B, (x0); R**%) satisfy 8Z,(Xo) # 0. From (2.1) applied to T and
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T’ in B, (xo) U B, (x;) we then infer [in view of (2.40) and T’ L B, (x;)=0]
|8T(X) 32, (Xo) — 8T (X)) 6Z(X) |§ [SE(X) [ j'XoAfldpr

for every X eCl(B,(x,); R"**). The stationarity of £ in B,(x,) and the
fact that 8%, (X,) # O contradict the choice of x; espt 6T.
The next Corollary of Theorem 2.3 is valid for arbitrary codimension.

2.12. Corollary

Let Tel, ,.(U) satisfy the assumptions of Theorem 2.3. Suppose
T L B, (x,) decomposes as in (2.36) with Z, satisfying 8%, L B, (x,) #0.
Then for To=T + X —Z, the inequality

(2.41) |8T (X) +2: 8%, (X) | < J|x AT, |dpr,

holds for every X e C} (B, (x,); R"**) where Ay is the Lagrange multiplier of
Theorem 2.3.

If we additionally assume (A3) (2.41) implies that the generalized mean
curvature vector Hg of Z, satisfies

1 .
(2.42) |Hs | < K—c(xo, p, I, pp-a.e. in B, (xo)
z

where c(xq, p, I) depends on x,, p and the constant c(B,(x,)) of condition
(A3) (2) (see Cor. 2.5).

2.13. Remark

If UcR"™! we can employ Proposition 2.7 to show that
1 .
]Hzo LregZ,| < v Here “regular” refers to the parts of £, where 0T 1s
p))
also regular (as in Prop. 2.7).

Proof of Corollary 2.12. — Taking (2.11) into account we can find a
point x, different from x, such that (A2) holds at x,. We assumed that

(2.43) 8o L B, (xo) # 0.

We now choose oe(0, dist(x,, sptol’)) such that B, (x;) N\ B,(xe) =
Let I'" and X’ be defined as in the proof of Corollary 2.10. T then minimizes
the thread problem in B, (x,) \U B, (x,) with respect to I'" and £'=¢T-T".
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Furthermore (A1) and (A2) hold in B, (x;) U B,(x,) [due to assumption
(2.43), the choice of x; and the definition of X’]. Theorem 2.3 then yields

[3T(X) + Ay 82" (X) | §JIX A T |dpr
for every X e C; (B, (xo) U B, (x,); R"*¥) which reduces to
| 8T (X) +A£ 8% (X) | gﬁx A Tyldur,

for every X e C} (B, (xo); R**5).
Let us now assume that I satisfies assumption (A3). From Corollary 2.5
we infer

IHE L Bp (x)] é c (x09 P> F): pg-a. €. in Bp (xo)-

[We denote all constants depending on x,, p, I' by ¢ (x,, p, I).] Hence we
can use the monotonicity formula [for Z L B,(x,)] and ([SL], 17.9) to
verify that X satisfies (A3) (with B=1) in B, (x,). Applying the same
argument as in the proof of Corollary 2.5 we derive

Rz (B, (xo) NsptZo N W) =c (Xo, P, D) 5o (B, (X0) N W), VW o= B, (xo)

(using the definition of pg, g, and the fact that the monotonicity formula
for ¥ yields 8; < ¢ (xq, p, I') 5" '-a.e. in B,(x,)). Similarly we obtain in
view of pr, < pr+ps+ g,

Pro (Bp (xo) m Spt E0 m W)
< c(xe P Dpg (Bp (x0) NsptZ, N'W) +P-}:0(Bp (x0) W)

for every W « B, (x,)-
Altogether we conclude

Hry (Bp (xo) NsptZo MW)
é C(XO’ ps r)uxo(Bp (XO) mw)’ VW «— Bp('xO)

which enables us to derive (2.42) from (2.41) as in the proof of
Corollary 2.5 by differentiating p,., with respect to py,. H
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3. PARTIAL REGULARITY FOR THE TWO DIMENSIONAL
THREAD PROBLEM

3.1. Theorem

Let Tel, ,.(U) be a minimizer of the thread problem with respect to
Tel, 1. (U), where U = R3,

Suppose

§X(X) =0

for every X e Cl (U ~ sptoT; R?).

In case sptX < sptT we furthermore assume

(regI’ NysptX) ~ Sp # .

Then
(3.1 sing X ~ spt oI = (.

3.2. Remark

Theorem 3.1. suggests sufficient conditions for assumption (A1) to hold.

In the simplest case (see also [DHLY]), for instance if T =m[y] where y
is a rectifiable Jordan arc in R*® with endpoints P, and P, then (Al) is
satisfied if we assume

(3.2) M(Z) > mydist(P,, P,).

Proof of Theorem 3.1. — By exploiting the special structure of one
dimensional stationary varifolds ([AA], Chapt. 3) we obtain that for every
xo€spt X ~ spt T there exists a p < dist(x,, spt ') and a positive integer
N (x,) such that

N (xg)
L Bp (xo)= Z mi[[li M Bp (x0)]
i=1
where m;eZ™* and the [; denote piecewise linear curves through x, (singular
only at x,) without endpoints in B, (x,). By virtue of Corollary 2.10, any
local decomposition of X which does not introduce boundary points
consists of stationary components only. Obviously this implies

ZL B, (xe)=m[INB,(x0)]
where meZ™* and [ is a line through x,,.
Thus every connected component of sptX has to be a line segment.
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3.3. Remark

The Theorem holds for arbitrary codimension if we additionally require
spt 8T ~ sptI” # J (as in Remark 2.11).

3.4. Theorem

Let Tel, 1, (U) satisfy the assumptions of Corollary 2.5.
Then for every point x,esptX ~ sptdl there exists a radius
p < dist(xo, spt0I') and a positive integer N(x,) such that
N(xg)
{3.3) L Bp (x0)= Z m;[o; N B, (x0)]
i=1
where m;e Z™ and each o, is an embedded oriented C'-'-curve through x,
without endpoints in B, (x,). Moreover all o, have the same tangent at x,.

Proof. — Let xqesptX ~ spt 0T, pe(0, dist(x,, spt 6I')). The decompo-
sition theorem of ([FH], 4.2.25) implies

> o]

L B,(xg)=Y [0;NB,(xy)]
i=1

(3.4) -
M(Z L B,(xo)= Y, L(o;N\B,(x,))

i=1
where each o, is an embedded Lipschitz curve parametrized by arc length
and L denotes the length of a curve.
Corollary 2.12 (in particular 2.42)

IH(O'i) L Bpo (xo)l =< ¢(xg, Po» I, Bz-a. €.

where p, < dist(x,, spt 8T is fixed. H(o;) denotes the generalized curva-
ture of [[o;]. Using ([SL], Lemma 19.1) we may choose some p < p, small
enough depending on ¢ (x,, po, I') such that B (x,) does not contain any
closed o,

Moreover each o, has to be of class C''!. Indeed, since the o; are
parametrized by arc length, the first variation formula for [o;] reduces to

fc,f n’dt= fH (ocpmadt

forall neC2* (0, L(o;N B, (x0))).

Since x,espt X we can find for every p; < p (j = 1) a curve o, intersect-
ing B, (x,). Because there are no closed o inside B, (x,), each o; has to
intersect JB, (x,) at least twice, which implies (by the continuity of the o))

L(o; N B, (X)) Z p
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for large enough j. Hence (3.4) and the fact that M(Z L B,(x,)) <
imply that there are only finitely many o; contained in B,(x,). If we
choose p small enough we can even ensure that there exists an N (x,)eZ*
such that

N (xg)

ZL B (x0)= Y mo:N B, (x0)],

i=1
where each o; contains x, and coinciding curves are counted with multipli-
cities.

We can the employ the decomposition argument of Corollary 2.13 to
conclude that the tangents of all o; at x, have to agree. Otherwise we
could find a decomposition of X consisting of components which are not
even differentiable at x,,.

We are now able to prove a monotonicity formula for T at points of
sptX ~ spt ol

3.5. Proposition

Let T satisfy the assumptions of Theorem 3.4, Let T be supported in an
oriented embedded Jordan arc of class C!' =

Then for every x,esptX ~sptdl’ we can find a radius
p (xo) < dist(x,, spt OI') such that for every 0 < 6 < p Z p(xp)

(3.5) p *M(TL B,(x,)—o *M(T L B,(x,))

— C
[ P [V dur (o)
B, (x0) ~ By (x0) a

(1%

where ¢ depends only on the C!'*-norm and the multiplicity of T.
Note in particular that (3.5) is independent of X.

Proof. — Let x,=0. If p(0) is small enough we can, for ¥!-a.e.
p < p(0), i.e. for those ps.t. 3(I' L B,(xo)) is well defined (note that the
following argument holds for arbitrary dimension), find a bi-Lipschitz-
homeomorphism g, in B,(0) satisfying g, |aB,, =1d and

g+ L B,(0)=0 ¥ (T L B,(0))
where O % 6(I' L B,(0)) denotes the cone over 4(I' L B,(0). (We
can, for instance, look at spt(I'L B,(0)) as a graph over

spt(0 % 0(I' L B,(0))).) For te[0, 1] let h,(t, x)=tg,(x)+(1—r)x and
define

T,=—h,([(0, )] x (T L B,(0))).
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From ([SL], 26.23) we obtain
M(T,) < (1 +sup | Dg, ) dist(spt(I" L B,(0)),
By

spt(0 ¥ o(T" L B,(0))))-M(T L B,(0))
which, since sptI'e C!- %, implies
(3.6) M(T,) < cp"**

where ¢ depends on the C!'*norm and the multiplicity of I
Suppose now that

rr(9B,(0) =0
and that the slices (T, r, p> and 8(dT L B,(0)) are defined. (This holds
for #'-a.e. p.)
Define

S,=0 % (T, r, p>+T,+TL (U~ B,(0).
We obviously have for every £ > 0

spt(S,—T) — B,,.(0).
Furthermore

80 X (T, 7, pY)=<(T, 7, p>+0 % (ZL B,(0)) +0 % (T L B,(0))
(T L(U~B,(0)=0TL (U~B,(0))—<T, 1, p>
aT,=T L B,(0)—0 % a(I' L B,(0))

which gives
0S,—T=0% 3(Z L B,(0)+XZ L (U ~ B,(0)).
Hence for every € > 0 we have (set B,=B,(0))
M, (85,~T)=M; (0 % 9(ZL B))+M (ZL (U ~B)).

Using the special local structure of one dimensional threads given in (3.3)
of Theorem 3.4 which implies that for small enough p 0 % (X L B)) is
supported in a finite number of line segments we obtain

Mg, (0S,-T) = Mg, (6T-D).
Applying Proposition 1.3 we derive
MBp+i(0)(T) < MBp+t(0)(Sp)‘
Since pr(B,(0)) =0 we can let ¢ tend to O to conclude
M(TL B,(0)) =M ¥ <T, r, p>)+M(T)
which by (3.6) and the definition of 0 % (T, r, p ) implies

Bp+: ~ Bp

M(T L B,(0)) S SM(T, 7, p))+cp? "
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The coarea-formula yields for £'-a.e. p >0

PTIM(T, 1, pY)=p~ L M(T L B,0)— L f 2 (1= V) du
dp B, (0)

Hence we obtain in the usual way

L (p-*M(TL B,) 2 ij rr2(1—|VTr]) dur—2cp"
dp dp

By

The result follows by integration. B

3.6. Remark

The monotonicity formula remains valid if we assume that in a neigh-
bourhood of each point x,esptI” I' is supported in a finite number of
C'-*arcs which intersect at x,. We only have to check that an estimate
like (3.6) still holds in this case for some current T, connecting I" L. B, (x,)
to the cone over J(I" L B, (x,)).

3.7. Corollary

Let T and T satisfy the assumptions of Theorem 3.4. Then at each point
xoesptE ~ sptdl” there exists a mass-minimizing tangent cone C (with
“vertex” 0) such that

aC =my (xo) [Is]+mr[Ir]

where Iy, I are the tangent directions of X and I" at x,, mr. is the multiplicity
N (xg)
of T and my(xo)= 3, m,

i=1

Proof. — As in ([SL], Chapt. 7).

3.8. Remark

d(C - B, (0)) is given by a combination of great circles and great circle
segments with multiplicities which has boundary
my (xo) [Ix M 6B, (0) ] +my[i- M 0B, (0)].

Note that in view of the interior regularity of C the curves involved are
disjoint except at the endpoints of I; M B, (0) and I N B, (0).

If in particular x,esptZ ~ sptI, the tangent cone C either will be
supported in the union of halfplanes with boundary I; or is a plane
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containing I with some multiplicity p on one side of Iy and my(x)+p on
the other side of Is.

If xoesptT ~ spt 0" the cone C may have (possibly in addition to full
planes and halfplanes bounded by I; and/or ;) decomposable components
supported in the union of the two oriented regions into which the plane
spanned by Iy and I is divided by the lines I; and Iy..
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