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ABSTRACT. - We generalize the thread problem for minimal surfaces
to higher dimensions using the framework of integral currents.
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RESUME. - On generalise le « probleme fil » pour surfaces minimales
aux dimensions plus hautes en utilisant le cadre de courants integrals.

0. INTRODUCTION

The classical thread problem for minimal surfaces in (1~3 can be formu-
lated as follows: For a given rectifiable Jordan arc r and a movable arc
E of fixed length attached to the endpoints of r one wants to find a
surface ~ of least area among all surfaces spanning this configuration.

Classification A.M.S. : 49 F 10, 49 F 20, 49 F 22.
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262 K. ECKER

For a detailed description of the problem and a list of relevant literature
on related soap-film experiments we refer the reader to the recent paper
by Dierkes, Hildebrandt and Lewy [DHL].
One can easily construct examples where the thread E "crosses" the

wire r (for planar "S"-shaped r) or "sticks" to it in a subarc of positive
length (if for instance r has the shape of a long "U"). In other words,
the solution surface Jt may consist of several disconnected components
and there may be parts of E and r which do not belong to In fact
this represents the main difficulty for the existence proof, at least in the
parametric approach of [AHW], [N1]-[N3] and [DHL].

Nitsche ([Nl]-[N3]) proved that the nonself intersecting components of
E ~ r are actually smooth arcs of constant curvature. Dierkes, Hilde-
brandt and Lewy [DHL] established the real analyticity of these arcs.

Alt [AHW] was able to prove that the parts of E which attach to regular
parts of r in subarcs of positive length have to do this tangentially.
Moreover he could show, if a solution surface consists of several discon-
nected components, all regular parts of E ~ r necessarily have the same
curvature.

The present work is concerned with a more general approach to the
thread problem which, due to its generality in handling the existence

problem, does not enable one to determine a priori the topological type
of the solution surfaces as was done by Alt [AHW] in his existence proof.
For a start we would like to allow r to be disconnected. r may for

instance consist of several oriented arcs or even closed curves. A suitable

generalization of the classical problem would then be to seek a surface J(
of minimal area among all oriented surfaces ~ such that is

prescribed, where in subtracting I-’ form a~ we take orientations into
account. If r consists of several wire arcs we do not prescribe the way in
which our threads have to be connected to the endpoints of r. Also, rather
than prescribing the length of each single piece of thread, we only keep
the total length of fixed. As there is no obvious way of

excluding the possibility of 03A3 having higher multiplicity we may as well
allow r to have arbitrary integer multiplicity.

In section 1 we give a precise formulation of the problem for arbitrary
dimension and codimension using the framework of integral currents. We
then solve the existence problem (Theorem 1.4).

Section 2 is concerned with properties of the thread related to the above
mentioned results ([AHW], [DHL], [N1]-[N3]). We generalize the Lagrange
multiplier techniques used in [DHL] to obtain control of the first variation
of E (Theorem 2.3 and Corollary 2.5). In fact we show that E has bounded
generalized mean curvature away from its boundary This implies in
particular that E only coincides with parts of r which have bounded
generalized mean curvature. Moreover this establishes a weak tangential
property of E at points on r.
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263MINIMIZING INTEGRAL CURRENTS

Proposition 2.7 states that all free regular parts of 03A3 are of class Coo

and have the same constant mean curvature and that, in constrast to the

higher multiplicity Plateau problem (cf [WB]), a thread with higher integer
multiplicity cannot locally bound several distinct sheets of minimal surfaces
unless the thread itself has zero mean curvature. By "free parts" of E we
not only mean Xl - r but also those sections of 03A3 supported in r where
the multiplicity of is not smaller than the multiplicity of r. A simple
example where a "free" E is supported in r is obtained by letting ~l be
an oriented annulus with multiplicity two, and £ be the inner circle
counted with multiplicity one.

If however locally near a point of 1:

for some CE[O, 1), the mean curvature of L need no longer be constant.
Nevertheless it cannot exceed the mean curvature of the free parts of E.
As Theorem 2.3 holds without any major conditions imposed on r one

can show that also the decomposable components of any local decomposi-
tion of E have bounded generalized mean curvature. This leads to some
partial regularity results for the two dimensional thread problem:
Theorem 3.1 states that one dimensional stationary threads consist of
straightline segments which do not intersect, thus suggesting a natural
condition for the existence of a Lagrange multiplier as in Theorem 2.3.

In Theorem 3.3 we show that the thread ~ consists of C 1 ~ 1-arcs which
do not cross each other. If several pieces of thread have a point in common
they must have the same tangent at this point. It is tempting to conjecture
that one dimensional threads are completely regular.

Finally we derive a monotonicity formula for the two dimensional
problem, from which the existence of area-minimizing tangent cones imme-
diately follows.
We would like to thank Prof. S. Hildebrandt for directing our attention

to this problem.

1. THE VARIATIONAL PROBLEM

For detailed information on geometric measure theory the reader is
referred to [FH] and [SL]. We shall follow the notation used in [SL].

Let U be an open subset of We denote the class of n-dimensional
integral currents in U by

and

Vol. 6, n~ 4-1989.



264 K. ECKER

1.1. Definition

T E (U) is called a minimizer of the thread problem with respect to
0393~In-1, loc (U) if

whenever W U is open and S E In, loe (U) satisfies

as well as

1.2. Remark

( 1) We shall sometimes refer as the free or thread-boundary
part and to r as the fixed or wire-boundary part of T although neither
spt E nor spt r has to be totally contained in spt aT; in fact we may have

(2) A minimizer T of the thread problem obviously minimizes mass
also in the usual sense, that is among all comparison surfaces which agree
with T along its boundary aT.

1.3. Proposition

A minimizer in the sense of 1.1 still satisfies

even if we only assume that the inequality

holds for surfaces S E In, lo~ ( U) satisfying spt ( S - T) c W.

Proof. - Suppose there exists an R E In, which satisfies

spt ( R - W, 

and

Obviously we can always find an integral current Q E I~ such that

spt Q ~1 (spt R U spt r) = Qf , spt Q W,

Annales de l’Institut Henri Poincaré - Analyse non linéaire



265MINIMIZING INTEGRAL CURRENTS

and

R + Q then furnishes an admissible comparison surface in the sense of 1.1
with the property

thus contradicting the minimality of T..
We are now going to establish the existence of a nontrivial minimizer.
Let have compact support. Define

and suppose M (r) > dr.

1.4. Theorem

Let dr _ L  M (r). Then there exists a nontrivial compactly supported
surface which minimizes mass among all surfaces 
with the property M ( aS - I-’) = L.

1.5. Remark

Every minimizer of 1.4 also minimizes mass in the sense of
Definition 1.1.

Proof of 1.4. We set 
.

Obviously L  M (r) implies L). Since M (r) > dr there exists a
compactly supported which is different from r and satisfies

c’Q = ar as well as M ( Q) = dr. (Use [SL], 34.1 for instance. ) The integral
cone R = 0 ~ (r-Q) then satisfies From dr  L
we conclude that A (r, L) is nonempty.
We now proceed in a similar way as in [SL, 34.1]. Let c A(F, L),

j > 1, be a minimizing sequence, that is

Since r has compact support we may assume that spt r c BR (0) for
some R > 0, where BR (0) denotes an open ball in Let

f : BR (0) be the nearest point retraction form onto BR (0). It

follows from the fact that and f = id in BR(0) that

Vol. 6, n: 4-1989.



266 K. ECKER

and

Hence we may assume without loss of generality that

The assumption M (h)  oo combined with M (aT~ - T’)  L (j >__ 1)
yields

By the compactness theorem for integral currents ([SL, 27.3]) we can select
a subsequence [again denoted by (T~)] which converges in to an

integral current which satisfies

The lower-semicontinuity of the mass implies

and

so that in fact

It remains to show that In order to establish this

(cf [AHW; 3.4]) we first recall that for every x0 ~ spt T ~ spt ~T we have

where the constant depends on M ( T) and xo. (This is an immediate

consequence of the interior monotonicity formula for mass-minimizing
currents.) We can therefore conclude that for every E > 0 there exists a
number T > 0 such that

[The slice a (T L BT (xo)) is well-defined for ~1-a. e. i > 0.] Indeed if this
was false the coarea-formula would immediately yield that for some E > 0

holds for every p  dist (xo, spt aT).
Suppose now that M (aT - r)  L. As above we can find a ball Bt (xo)

about some xo E spt T ~ spt aT such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire



267MINIMIZING INTEGRAL CURRENTS

The surface T’ = T -(T L B,~ (xo)) then satisfies

and

thus contradicting the minimality of T in A (r, L)..

1.6. Proposition

Let minimizing with respect to I-’ E In _ 1 +’‘) in the sense
of Theorem 1.4. Then

Proof - We modify a well-known argument used in the case of the
ordinary problem of mass-minimizing.

Since the convex hull of spt r is the intersection of all balls in

which contain spt r it suffices to show that spt r c BR (xo) implies
spt T c BR (xo). By translating and scaling we may assume without loss
of generality that xo = 0 and R = I . Let f : be defined by

x I >_ 1. Since 
we infer as in the proof of Theorem 1.4

which in view of the minimality of T implies

Using this, the fact that f T L B, (0) = T L B, (0) and the area-formula

we obtain

Since T (x) I =1 for e. x E jRn+k we conclude

The following decomposition property of T and restriction property of
~ is going to play a central role in section 2.

Vol. 6, n’ 4-1989.
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1.7. Proposition

Let T E In (U) be a minimizer of the thread problem with respect to

rEIn_~ (U).
( 1) Suppose the free boundary part E = aT - r is decomposed inside

U in the following way:

Then

for every S E In, ~o~ (U) satisfying spt ( S - T) c Wo and

where r’ = is the new fixed boundary part.

(2) Suppose T can be decomposed inside W0 ~ U in the following way:

Then T’ and T" are minimizers of the thread problem in Wo with respect to
r’ and h" respectively.

Proof.
( 1 ) We have

From Prop. 1.3 we obtain

(2) Let S E In, lo~ (U) satisfy spt ( S - T’) c Wo and

Then we check as in the proof of part ( 1) that S" = S + T" is an admissible
comparison surface for T. This implies

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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From the mass-additivity of T’ and T" in Wo we conclude

2. THE FIRST VARIATION OF THE THREAD

The first variation of the mass of S E I, lo~ (U) is given by (cf [A W], [SL])

where X E C~ ( U; 
We define the support of ~S in U by

spt ~S = {x E U/d p > 0, 3 XP E C~ (x); (l~n+~ s. t. ~S 0~.
In order to obtain some control on the first variation of the thread-

boundary E introduced in section 1 we shall have to make use of the

following crucial lemma.

2.1. Lemma

Let T E In, lo~ (U) be a minimizer of the thread problem with respect to
r E n~ (U)-
Then the ineaualitv

holds for every and whenever

V, W cc U ~ spt or are disjoint open sets.
The proof of Lemma 2.1 is based on Lagrange multiplier techniques

used in [HW] and [DHL]. We give a slight generalization of Lemma 2 of
[DHL] for the case where some nondifferentiable functions are involved.

2.2. Lemma

Let f (s, t), g (s, t) be real-valued functions of (s, t) E [ - so, so] x [ - to, to],
so > 0, to > 0 which split in the form

Vol. 6, n~ 4-1989.



270 K. ECKER

where fo, go are constants and

Suppose g2 is continuous in [- to, to], the derivatives f i (0), f 2 (0), gi (0),
g2 (0) exist and g2 (0) =1.

Suppose furthermore that

for every (s, t) E [ - so, so] x [ - to, to] such that g (s, t) = go.
Then .

Proof - We refer the reader to Lemma 2 of [DHL]. The auxiliary
function i (s) defined there depends only on gi and g2. One then immedi-
ately verifies that the difference quotient expressions corresponding to the
left hand side of (2.2) can be estimated by difference quotient terms
involving fl and f2..

Proof of Lemma 2.1. - Let ( cp$), s E [ - so, so] be a one-parameter family
of diffeomorphisms of U which leave the boundary of r fixed, that is

(po = id and spt id) U - spt ar for s E [ - so, so]. Suppose fur-
thermore that cps satisfies

Then

is an admissible comparison surface for T in V. Indeed we have

spt (T - TS) V and

-.

Here we used the homotopy formula for currents taking
spt ( cps - id) (1 spt or = QS into account.

In particular, (2.4) yields = M ( aT - h) which by the minimal-
ity of T implies

Annales de l’Intitut Henri Poincaré - Analyse non linéaire
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Suppose where (1~" +’~ . Then we compute as in
([BJ], Lemma 3.1)

f8

which implies

Let now V, W be two disjoint open sets which are compactly contained
in U ~ spt ar and choose variation vectorfields X (V; Il~"+’~ and

Y EC; (W ; Let Q c~ U be an open set such that V U W ar Q. For

one-parameter deformations

(s, t) E [ - so, so] x [ - to, to], we define

and f (s, t), g (s, t) as in Lemma 2.2. Let

From the definition of cps and Wt we infer

Furthermore we derive from (2.4)

For those (s, t) E [ - sQ, so] x [ - to, to] which satisfy g (s, t) = go we have

This implies [for such (s, t)J

Vol. 6, nJ 4-1989.
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which establishes T, , as an admissible comparison surface. As in (2.5) we
conclude 

’

In view of the definition of fi, fi, fi and J2 this implies for (s, t) satisfying
g (s, t) =go

which is equivalent to .

for every (s, t) s. t. g (s, t) = go. Moreover

and all the differentiability and continuity requirements of Lemma 2.2 are
satisfied.

In case ~E (X) =0 for all X (U ~ spt ar; the statement of

Lemma 2.1 holds trivially. Hence we may assume Y E C; (W; satisfies

~E (Y) ~ 0 and set Y’ = bE (Y) -1 Y. This gives which by the
definition of g2 represents the condition gg (0) =1.

We can now apply Lemma 2.2, the definition of first variation to

fi, f2, gl, g2 and (2.6) to Ii and 72 to arrive at

for fI~" + k) and (~" + k) which completes
the proof of (2.1). 1
We now turn to establishing the main result of this paper.

2.3. Theorem

Let T E In, lo~ (U) be a minimizer of the thread problem with respect to
m~ (U)-

Suppose

(A2) There exists a point xo E spt E ~ spt ar, a radius p  dist (xo, spt cr)
and a local decomposition

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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satisfying To E In, loc (U),

for and

T‘hen we can find a number E (0, oo) such that

holds for every X E C~ ( U ~ spt ar; where ~ is given by

for every X E C~ (xo); (~n+k).
Moreover (2.8), at any point of spt E ~ spt ah satisfying (A2) and for

any possible decomposition at such a point, is valid with the same ~.~ > 0.

2.4. Remark

( 1) If (AI) is not satisfied E is a stationary thread away from aE = - ah.
For the structure of such boundaries we refer to Corollary 2.10 and
Theorem 3.1.

(2) Although in the codimension one case, i. e. U c condition

(A2) can be verified under reasonably weak hypotheses it nevertheless
appears to be a rather artificial assumption which one would hope, could
be removed altogether.

In fact if U c it suffices to assume the existence of at least one

regular point of spt ~0393 in the sense of Proposition 2.7 ( 1).

Proof of Theorem 2.3. - We first prove (2.7) assuming

From Remark 1.2 (2) and ([BJ], Lemma 3.1) we infer

for every In particular, the representation formula for
bT (cf [SL], Chapt. 8])

Vol. 6, n° 4-1989.
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holds for X ~C1c (U; where vaT is a ~T-measurable vectorfield in U
satisfying 1 e. Assumption (B2) implies that

Hence we may select three points xl, x2, x3 ~ spt 03B4T ~ spt r, radii

pi  dist (x;, spt r) s. t. BPj (Xi) U Bpj (x~) = Qf for i ~ j (i, j =1, 2, 3) and
variation vectorfields XI E C~ (xi); which satisfy

From (Al) we obtain the existence of a point xo ~ spt 03B4E ~ spt~0393, a
radius po  dist (yo, and a vectorfield such
that

We may assume Bpo (yo) (~ BPt = QS for =1, 2, 3. Otherwise, by virtue
of (2.11), we can choose different x; e spt 6T - spt r and 0.

Applying now (2.1) to the pairs X 1, Yo for i =1, 2, 3 we obtain

Hence from (2.12) and (2.13) we deduce

If we apply (2.1) to the pairs ~ ~, X3 for i =1, 2 and take (2.14) into
account we derive

which implies, in view of (2.14) again,

At this stage we define

An arbitrary vectorfield X E C~ (U ~ spt or; we decompose as fol-
lows : X = X ~ 1 ~ + X ~ 2 ~, where = X r~ ~‘~ (i =1, 2) and r~ ~‘~ E ( IJ) satisfies
spt 11’’~ r1 Bp~ (x=) _ ~~ ~ ’~  1 and r~~~) + ~~2~ =1.
Using (2.1) again, this time with X ~, (i = 1, 2), we obtain

Annales de l’Instirur Henri Poincaré - Analyse non linéaire
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for i= 1, 2 which in turn establishes (2.7). Note that

holds for all X E C; (U - spt r; 
Before we prove the result under the general assumption we want to

show that (2.16) implies ~,~ > 0.
We already know ~,~ 5~ 0 [see (2.15)]. Suppose ~,~  0. Select a variation

satisfying ~E (Y)  0. ( 2.1 C) then yields
8T(Y)  0. If we let denote the one-parameter family of deformations
generated by Y this implies that for some small t > 0 we have

and

which in view of Proposition 1.3 contradicts the minimality of T.
Suppose now that condition (A2) holds instead of (B2).
By virtue of Proposition ( 1.7) (2) and (A2) ( 1) To minimizes the thread

problem in BP (xo) with respect to r = o. Hence in view of (A2) (2) [which
for To reduces to condition (B2)] and (2.11) we may select two points
xl, Xl E spt 03B4T0 n spt Lo and radii pi, p2 such that Bpl (xi) ~ Bp2 (x2) = QS
and BQ1 (XI) U Bp2 (x2) B,(xo).
For i =1, 2 we define

such that

We infer from (A2) (1) that for i=l, 2 the pair T~, T-T, (replacing
T’, T") satisfies the conditions of Proposition 1.7 (2) for every open

Uj. Hence T~ is a minimizer of the thread problem in Ui with respect
to ria Due to the choice of xl and x2 we have for i =1, 2 in Ul

Vol. 6, n‘ 4-1989.
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Moreover, in view of (AI) and (2.11) applied to To we may assume Xi
and pi to be chosen such that

for i =1, 2.
Therefore Ti satisfies the conditions (Al) and (B2). From (2.7), (2.16)

and ( 2.18) we derive

for every X {U~ ~ spt !Rn+k) where ~,~ > 0 is defined by

for every X (xi); (t - 1, 2).
The identity (2.22) and xi E spt 03B4T0 ~ spt 03A30 for i =1, 2 imply that

x~ E spt Therefore To, which minimizes the thread problem in 
with respect to r=o, also satisfies (Al) and (B2) there, such that (2.7) is

applicable to To. This establishes (2.8) for every X 

Hence ~,~ = ~,~.
From (2.21) we now obtain in particular

for every satisfying where

i = 1, 2.
If X E C; ( U ~ spt ar; is arbitrary, we decompose it as in the first

part of the proof and apply (2.23) to arrive at inequality (2.7).
It remains to show that ~,~ is independent of xo and To.
Suppose that we have two decompositions at xo, that is (A2) holds for

To replaced by To and To respectively. From (2.8) we obtain

for some ~,~ > 0 (i =1, 2) and for Rck

yi ~ spt 03B4Ti0 and radii aI (i =1, 2) such that and

Bal (yl) U Ba2 (Y2) Bp (xo). Then (2.24) implies yi E spt 
Define

In view of ( A 2) ( 1 ), for To and To respectively, T 1, 2 and T - T 1, 2 satisfy
the conditions of Proposition 1.7 (2) in U1, 2 = U (y2). Thus

T 1, 2 is a mir of the thread problem in U 1, 2 with respect to r = 0.

Annales de l’Institui Henri Poincaré - Analyse non linéaire



277MINIMIZING INTEGRAL CURRENTS

Moreover since yi E spt bT 1, 2 n spt ~E 1, 2 (i =1, 2), where E 1 y 2 = aT 1 ~ 2,
( A 1 ) and ( A 2) are satisfied, which enables us to apply ( 2. 7) . Thus

for every where ~,~ ° 2 > 0.
By the definition of T1, 2 this reduces to

The fact that yi~spt03B403A3i0 implies the existence of vectorfields

Yi~C1c(B03C3i/2 (y=); which satisfy 03B403A3i0 (Yi) ~ 0. Applying now (2.24)
and (2.26) to Y, (i= 1, 2) yields 7~~ ~ 2 = ~,~ 
For decomposition components at distinct points of spt 03A3 ~ spt ah the

same argument obviously works.
This completes the proof of the theorem..

2.5. Corollary

Let T E In, lo~ (U) satisfy the assumptions of Theorem 2.3. Suppose that h
additionally satisfies
(A3) ( 1) For every xo E spt 0393 ~ spt ~0393 there exists a radius

p (xo)  dist (xo, spt ~0393) and a constant c (xo) such that for every

(xo) and p  ]

for some ~ > 0.

(2) For every W cc U ~ spt ah there is a constant c (W) such that

where Or is the multiplicity function of I~’.
Then ~ has bounded generalized mean curvature H~, in fact

Vol. 6, n° 4-1989.
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for every X E C~ ( U ~ spt ar; where H~ satisfies

for every spt ar, where c (W) depends on W only.

Proof - We combine (2.7) and (2.9) to obtain

for X ~C1c (U - spt ~0393; Rn+k); which in view of the fact that ~T  

yields

for every spt (,~" +k)_
We now proceed as in ([SL] 17.6) to obtain for every (xo) and

e. p  

which by (A3) (1) implies

Integrating we arrive at

Hence, we can check as in ([SL], Cor. 17.8) that 03B8n-1 ( 03A3, .) is upperse-
micontinuous and we can apply ([SL], 17.9 (i)) to conclude 03B803A3 (x) ~ 1 for

every x ~ spt 03A3 ~ spt ar. (Recall that 03B803A3 ~ 1 e. since E is an integer
multiplicity current.) Using this in combination with (A3) (2) we infer

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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from the definition of and ~r that

for any W spt aF.
Thus we can differentiate ~r with respect to to obtain

for any X ~C1c (W; which in turn implies the result..

2.6. Remark

(1) Since £=aT in U - spt r and 1:= -r in U- spt aT we have
(x) i _ for e. x E U - ( spt r n spt aT) .

(2) One easily checks that (A3) holds (with in case r locally
corresponds to an oriented embedded C0,1-submanifold of Rn+k with
multiplicity mr.

2.7. Proposition

Let T E In, minimizer of the thread problem with respect to r
satisfying (A 1) and assume now that U c 
Suppose xo is a regular point of spt E ~ spt ar and p  dist (xo, spt aI-’)

such that

where M03A3 is an (n-1)-dimensional embedded, oriented C1-submanifold of
~n + y

(1) If mr] M~ is actually of class C°° and ( for some smaller
p>0)

(2.29) T L BP (xo) = maT ~MT n BP (xo)~ + mo ~Mo (~I BP (xo)~
where MT is an oriented embedded minimal hypersurface of ~n+ 1 with

boundary mo is a nonnegative integer and Mo is an oriented, embedded
real-analytic minimal hypersurface without boundary which contains MT.
Moreover, the mean curvature vector H03A3 of M satisfies is

the Lagrange multiplier of Theorem 2.3). In fact we have

6, n ~ 4-1989.
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for all X ~C1c (Bp (xo); where vaT is the outer unit normal vector of
M~ with respect to MT.
Note in particular that all regular parts of 03A3 have the same constant

mean curvature.

(2) If 0 _  mr and condition (A2) of Theorem (2.3) holds in

U ~ BP (xo), M03A3 is of class C1,03B1 for any oc  1 and the generalized mean

curvature vector H03A3 of M03A3 satisfies I H03A3| ~ 1 03BB03A3.

(3) If M03A3 is stationary, i. e. when (A 1) is not satisfied T may be supported
by several distinct sheets of smooth surfaces with boundary M~.

Proof - Suppose first of all that xo E spt r. In this case we

may assume maT = m£ > 0 and

From the local decomposition theorem in [WB] we infer

where each T; satisfies 
mz

We want to show that Xo E spt 8Ti for every 1  i _ mI.. Since

aT. 1 = 1 E and (2.31) holds we can obviously apply Proposition 1.7 (2)
m~

again to derive that each T; L Bp (xo) is a minimizer of the thread problem
(in Bp/2 (xo) say) with respect to r == 0.

If x0 ~ spt 03B4Ti we can find a radius ? > 0 such that B03C3(x0) is

stationary. Hence the usual monotonicity formula holds for Ti at xo

(cf. [SL], Chapt. 4). This and the fact that aT is regular in a neighbourhood
of xo yields for small enough « > 0

where c is independent of 6.
The fact that Ti locally minimizes mass in the ordinary sense with

respect to aT~ and the compactness theorem for mass-minimizing currents
([SL], Chapt. 7), then imply the existence of a mass-minimizing tangent
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cone C, at xo. Obviously where denotes the

oriented tangent space of M~ at xo. By ([HS], Chapt. 11) Ci has to be the

sum of an oriented n-dimensional halfplane of multiplicity one and possibly
a hyperplane of arbitrary multiplicity containing this halfplane. Hence

sC~ ~ 0.
On the other hand the lower-semicontinuity of the first variation with

respect to varifold-convergence and the fact that T~ was assumed to be
stationary in Ba (xo) implies the stationarity of Ci and thus leads to a
contradiction. Hence we conclude xo E spt ~Ti.
Because each T~ satisfies (A2) and since (Al) holds T we may now

apply Theorem 2.3, in particular (2.8) with To replaced by T~, to deduce

for every X ~C1c (Bp (xo); (p slightly smaller than above).
Combining (2.10) and (2.32) we obtain

for all where the are ~" -1-measurable and

satisfy 1 e. Standard regularity theory for C1-solutions
of the prescribed mean curvature system implies that M~ n Bp (xo) is of

class C 1 ° °‘ for any a  1 (and smaller radius p > 0). The boundary regular-
ity theory for mass-minimizing currents (cf [HS]) then yields (again for
some smaller p > 0) that either

where Mo is an oriented, embedded real analytic minimal hypersurface
without boundary which contains MT and m o is a nonnegative integer,
( MT like the MTi below) or

where each MTi is an oriented, embedded minimal C 1 ° °‘-hypersurf ace with
boundary M~.

In both cases the representation vector for ~E in (2.33) is given by
the exterior normal of M~ with respect to MT and and is of class
C°~ ~: We furthermore deduce from (2.33) that = for i ~ j which
by virtue of the Hopf-boundary point lemma for minimal surfaces implies

MTj for i ~ j.
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Moreover standard regularity theory implies Bp (xo) E stan-

dard "boot-strapping" argument then leads to the C~-regularity of ME.
Since the above line of argument is applicable at every point in

Bp (xo) (for the original radius p > 0) our conclusion also holds for
the original ball Bp(xo).

Let us now assume xoEsptrand mr > 1. Suppose mr).
(If L Bp (xo) = 0.) We again decompose

where the Ti L Bp (xo) are additive in mass and satisfy

One easily checks that for 1  i _ and 

Thus, as above, each Ti L Bp (xo) is [in view of Prop. 1.7 (2)] a minimizer
of the thread problem in Bp (xo) with respect to r = 0. [In case m~.  0

even T minimizes the thread problem in Bp (xo) with respect to r = 0 since
then As before we

show xo e spt 5T;, 1  i  , I which again enables us to apply (2.8) in
order to deduce

depending on whether m~T is positive or negative. As this identity corre-
sponds to (2.32) the same argument as before can be applied.

It remains to discuss the case where 0  maT  mr. Define

where a  p is chosen such that the assumptions (AI) and (A2) still
hold in U’ [(A2) was assumed to be valid in U ~ Bp (xo)]. Since dT’ =0 in
B03C3/2 (xo) the conditions of Proposition 1.7 (2) are trivially satisfied for T’
and ~’ = aT’ - h’. Hence T’ minimizes the thread problem in U’ with respect
to r’. Applying (2.7) we conclude
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for every X E C~ (U’ ~ spt Rn+ 1) where ~,~ > 0 is determined by

Since E’ L L Ba (xo) and T’ L we obtain

for all X E C~ (xo); 1).
The above argument works for every point in M~ n Bp (xo) with ~

being determined by T L (U ~ Bp (xo)). This completes the proof..
In view of Proposition 2.7 (2) we define the set along which the thread

E "sticks" to the wire r by

2.8. Definition

and

We are going to show that unless E is stationary away from its boundary
the first variation of S does not vanish at all, except possibly along Sr.

2.9. Corollary

Let a minimizer of the thread problem with respect to
( LT), where U c 

Suppose reg r is dense in spt r.
( 1) If (A l) of Theorem 2.3 is satisfied we have

(2) If additionally (A2) and (A3) hold we have

Proof - (1) Let and suppose there exists a

p  dist (xo, spt ar) such that

where we may assume that p  dist (xo, Sr). From Allard’s regularity
theorem ( [A W], [SL], Chapt. 5) we see that inside Bp(xo) the set reg E is
dense in spt E. Using this and the assumption on reg r we may assume
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without loss of generality that

where mr) since M~ is a real-analytic (n - I)-dimensional
oriented embedded minimal submanifold of 

On the other hand we obtain, using (A1) and Proposition 2.7 (1), that
M~ has nonzero constant mean curvature, which is a contradiction.

(2) Suppose xo E (Sr U spt ar) and there exists a

p  dist (xo, spt Sr) such that

Since (Al), (A2) and (A3) hold, we can apply Corollary 2.5 to deduce
that the generalized mean curvature of E is bounded in every open set

W U ~ spt ar. Using again Allard’s theorem we obtain that inside

B (xo) the set reg S must be dense in spt E. In view of the additional
assumption regr=sptr we may proceed as in part ( 1) of the proof.
Proposition 2.7 (1) [in particular (2.29)] and the divergence theorem for
regular minimal submanifolds with boundary then imply bT L B (xo) # 0
thus contradicting (2.34).

2.10. Corollary

Let T E In, loe (U) be a minimizer of the thread problem with respect to
where U c ~~B e

Suppose condition (A 1) is not satisfied, that is we have

In case spt E c spt I~’ we furthermore assume that (reg r (~ spt E) ~ QS.
Suppose we have the following local decomposition of E: Let

xo E spt E ~ spt ar, p  dist (xo, spt aI-’) and Eo E m~ (U) satisfy

Then

Proof - Let us suppose x0 ~ spt 03B403A30.
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If spt 03A3 ~ spt 0 we can choose (by Allard’s theorem) a point
x1 ~ reg 03A3 ~ spt r and a  dist (xi, spt F) such that

where M03A3 is an (n-1)-dimensional oriented, embedded real analytic mini-
mal submanifold of + 1.

If spt L c spt r we select and

6  dist (x1, spt ~0393 ~ Sr). Again by Allard’s theorem we may assume
~1 ~ reg 03A3 such that

where m~T~[0, m r) and M03A3 is as in (2.38). [(2.38) is a special case

of (2.39).] We may also assume xo and choose o-, p
s. t. Bp (xo) n Ba (xl) = 0. (Note that 3Ci E spt 03B403A30 would imply reg E.)
Define

We then have

Using (2.36) and Proposition 1.7 ( 1) we conclude that T is a minimizer of
the thread problem in Bp (xo) U Ba (x 1 ) with respect to r’ as new fixed
boundary part. Furthermore (2.40) and the choice of xo imply
spt b~’ ~ spt aI-’’ ~ Qf . Applying Proposition 2.7 ( 1 ) to T in Ba (x 1) we
derive that M~ has nonzero constant mean curvature which gives a con-
tradiction to (2.39).

2.11. Remark

Corollary 2.10 holds in arbitrary codimension if additionally require
spt spt 0393 ~ 0. Indeed, by virtue of (2.11) we can always find a point
x1 ~ spt 03B4T ~ spt 0393 different from xo. Let Ba (xl) and Bp (xo) Usptr be
disjoint. As in the proof of Corollary 2.10 T minimizes the thread problem
in Bp(xo) with respect to I~’’, where now = 0. Let

(xo); (1~" +’~ satisfy (Xo) ~ 0. From ( 2.1 ) applied to T and

Vol. 6. n’ 4-1989.



286 K. ECKER

~’ in B p (xo) U B(f (Xl) we then infer [in view of (2.40) and r L 

for ~" +’~ . The stationary of E in and the

fact that ~~o (~o) ~ 0 contradict the choice of xl e spt ~T.
The next Corollary of Theorem 2.3 is valid for arbitrary codimension.

2.12. Corollary

Let satisfy the assumptions of Theorem 2.3. Suppose
E L Bp (xo) decomposes as in (2.36) with Eo satisfying b~4 L B (xo) #0.

Then for Fo = r + E - Eo the inequality

holds for every X E C~ (BP (xo); where is the Lagrange multiplier of
Theorem 2.3.

If we additionally assume (A3) (2.41) implies that the generalized mean
curvature vector of Eo satisfies

where c (xo, p, r) depends on xo, p and the constant c(Bp (xo)) of condition
(A3) (2) (see Cor. 2.5).

2.13. Remark

If we can employ Proposition 2.7 to show that

|H03A30 L reg 03A30| ~ 1 03BB03A3. Here "regular" refers to the parts of Eo where aT is
also regular (as in Prop. 2.7).

Proof of Corollary 2.12. - Taking (2.11) into account we can find a
point xl different from xo such that (A2) holds at x~. We assumed that

We now choose 6 E (o, dist(xl’ spt ah)) such that 
Let r’ and E’ be defined as in the proof of Corollary 2.10. T then minimizes
the thread problem in Ba (x 1) U BP (xo) with respect to r’ and E’ = aT - I‘’.
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Furthermore (AI) and (A2) hold in U Bp (xo) [due to assumption
(2.43), the choice of xl and the definition of E’]. Theorem 2.3 then yields

for every X E C; ( Bp (xo) U Ba (x 1 ); which reduces to

for every X E C~ (Bp (xo); 
Let us now assume that r satisfies assumption (A3). From Corollary 2. 5

we infer

[We denote all constants depending on xo, p, r by c (xo, p, r).] Hence we
can use the monotonicity formula [for E L BP (xo)] and ([SL], 17.9) to
verify that E satisfies (A3) (with ~ =1) in Bp(xo). Applying the same
argument as in the proof of Corollary 2.5 we derive

(using the definition of and the fact that the monotonicity formula
for E yields 8~  c (xo, p, r) e. in Bp (xo)). Similarly we obtain in
view of Ilr Q  p,r + + 

for every W cc Bp (xo).
Altogether we conclude

which enables us to derive (2.42) from (2.41) as in the proof of

Corollary 2.5 by differentiating flro with respect to 
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3. PARTIAL REGULARITY FOR THE TWO DIB4ENSIONAL
THREAD PROBLEM

3.1. Theorem

Let T E I2, lo~ (IJ) be a minimizer of the thread problem with respect to
where U c 3.

S uppose

for every X E C; (U - spt [R3).
In case spt E c spt r we furthermore assume

Then

3.2. Remark

Theorem 3.1. suggests sufficient conditions for assumption (Al) to hold.
In the simplest case (see also [DHL]), for instance if r = mr ~y~ where ~y

is a rectifiable Jordan arc in 1R3 with endpoints Pi and P2 then (A1) is
satisfied if we assume

Proof of T’heorem 3.1. - By exploiting the special structure of one
dimensional stationary varifolds ([AA], Chapt. 3) we obtain that for every
xo E spt or there exists a p  dist (xo, spt and a positive integer
N (xo) such that

where and the I; denote piecewise linear curves through xo (singular
only at xo) without endpoints in Bp(xo). By virtue of Corollary 2.10, any
local decomposition of L which does not introduce boundary points
consists of stationary components only. Obviously this implies

where m E 7~ + and 1 is a line through xo,
Thus every connected component of spt E has to be a line segment.
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3.3. Remark

The Theorem holds for arbitrary codimension if we additionally require
spt 03B4T ~ stp 0393 ~ 0 (as in Remark 2.11).

3.4. Theorem

Let satisfy the assumptions of Corollary 2.5.
Then for every point x0 ~ spt 03A3 ~ spt ~0393 there exists a radius

p  dist (xo, spt ~0393) and a positive integer N (xo) such that

where and each as is an embedded oriented 1-curve through xo
without endpoints in BP (xo). Moreover all ai have the same tangent at xo.
Proof - Let spt aI-’, p E (o, dist (xo, spt aI’)). The decompo-

sition theorem of ([FH], 4. 2. 25) implies
m

where each aj is an embedded Lipschitz curve parametrized by arc length
and L denotes the length of a curve.
Corollary 2.12 (in particular 2.42)

where po  dist (xo, spt ~0393) is fixed. H(cri) denotes the generalized curva-
ture of Using ([SL], Lemma 19.1) we may choose some p  po small
enough depending on c (xo, po, r) such that Bp (xo) does not contain any
closed ~~.
Moreover each ?~ has to be of class C1~ ~. Indeed, since the a~ are

parametrized by arc length, the first variation formula for reduces to

for all (0, n BP (xo)))-
Since x0 ~ spt 03A3 we can find for every p (j > 1) a curve 03C3j intersect-

ing Bp (xo). Because there are no closed a~ inside Bp (xo), each a~, has to
intersect ~B03C1 (xo) at least twice, which implies (by the continuity of the cr)
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for large enough j. Hence (3.4) and the fact that L Bp (xo))  oc

imply that there are only finitely many al contained in Bp(xo). If we

choose p small enough we can even ensure that there exists an 
such that

where each ~~ contains xo and coinciding curves are counted with multipli-
cities.

We can the employ the decomposition argument of Corollary 2.13 to
conclude that the tangents of all ai at xo have to agree. Otherwise we
could find a decomposition of £ consisting of components which are not
even differentiable at xo.
We are now able to prove a monotonicity formula for T at points of

spt 03A3 ~ spt ar.

3.5. Proposition

Let T satisfy the assumptions of Theorem 3.4. Let r be supported in an
oriented embedded Jordan arc of class C1~ «.

Then for every xo E spt ~0393 we can find a radius

p (xo)  dist (xo, spt such that for every 0  p __ p (xo)

where c depends only on the and the multiplicity of r.
Note in particular that (3.5) is independent of E.

Proof. - Let xo = o. If p (o) is small enough we can, for 

p  p (0), i. e. for those p s. t. a (r L Bp (xo)) is well defined (note that the
following argument holds for arbitrary dimension), find a bi-Lipschitz-
homeomorphism gP in satisfying gP and

where 0 ~ Bp(0)) denotes the cone over L (We
can, for instance, look at spt (F L Bp (0)) as a graph over

For tE[o, 1] let and
define
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From ([SL], 26.23) we obtain

Bp (o)),
s"

which, since implies

where c depends on the °‘-norm and the multiplicity of r.
Suppose now that

and that the slices  T, r, p ~ and L Bp(0)) are defined. (This holds
for p.)
Define

We obviously have for every E > 0

Furthermore

which gives

Hence for every E > 0 we have (set Bp = Bp (O))

Using the special local structure of one dimensional threads given in (3.3)
of Theorem 3.4 which implies that for small enough p 0 ~ L B.,) is

supported in a finite number of line segments we obtain

Applying Proposition 1.3 we derive

Since = 0 we can let E tend to 0 to conclude

which by (3.6) and the definition of 0 ~ ~ T, r, p ~ implies
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The coarea-formula yields for e. p > 0

Hence we obtain in the usual way

The result follows by integration..

3.6. Remark

The monotonicity formula remains valid if we assume that in a neigh-
bourhood of each point Xo E spt r r is supported in a finite number of
C 1 ~ «_arcs which intersect at xo. We only have to check that an estimate
like (3.6) still holds in this case for some current Tp connecting r L Bp (xo)
to the cone over L Bp (xo)).

3.7. Corollary

Let T and r satisfy the assumptions of Theorem 3.4. Then at each point
xo E spt E ~ spt or there exists a mass-minimizing tangent cone C (with
"vertex" 0) such that

where lr are the tangent directions of 03A3 and r at xp, mr is the multiplicity
N (xp)

o f r and m i,

Proof - As in ([SL], Chapt. 7).

3.8. Remark

Bi (0)) is given by a combination of great circles and great circle
segments with multiplicities which has boundary

mz (xo) r1 ~B1 (0)] + mr [lr U aB i (0)].
Note that in view of the interior regularity of C the curves involved are
disjoint except at the endpoints of l03A3 ~ B1 (0) and lr ~ Bi (0).

If in particular xo spt r, the tangent cone C either will be

supported in the union of halfplanes with boundary 1~ or is a plane
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containing l03A3 with some multiplicity p on one side of l03A3 and m1: (xo) +p on
the other side of lz.

If xo E spt spt ar the cone C may have (possibly in addition to full

planes and halfplanes bounded by l03A3 and/or lr) decomposable components
supported in the union of the two oriented regions into which the plane
spanned by l03A3 and lr is divided by the lines l03A3 and lr.
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