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ABSTRACT. - A Mountain Pass Lemma is proved for a convex func-
tional restricted to the class fF of rearrangements of a fixed LP function.

Together with results on maximization and minimization relative to ~ ,
this proves the existence of a least four solutions for a problem on the
steady configurations of a vortex in an ideal fluid.
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RESUME. - On prouve un Lemme du type « Mountain Pass » pour une
fonctionnelle convexe restreinte a la classe ~ des rearrangements d’une
fonction seule en LP. On l’applique conjointement a des resultats sur la
maximisation et minimisation relatifs a IF, a la demonstration de 1’exist-
ence d’au moins quatre solutions pour un probleme qui regarde les configu-
rations stationnaires d’un tourbillon dans un fluide parfait.

Classification A.M.S. : 49 A 36, 76 C 05, 35 J 20, 46 E 30.

Annales de l’Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 6/89/04/295/25/!4,50/(6) Gauthier-Villars

© 198 9 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



296 G. R. BURTON

ACKNOWLEDGEMENT

This research was performed under a grant from the University of Bath,
when the author was on leave from University College London. He thanks
Prof. T. B. Benjamin for drawing his attention to Kelvin’s work, and
thanks Dr. J. B. McLeod for a discussion of his results on minimizers,
which prompted the author to consider minimizers.

1. INTRODUCTION

We are concerned here with the existence of stationary points of a
variational functional 03A8 relative to the class iF c LP of all rearrangements
of some fixed function fo in an LP space. The existence of maximizers for
convex ~I’ was studied by the author [5]. A particular convex ’ was studied
by McLeod [10] using different methods; he obtained an existence theorem
for maximizers, and both existence and non-existence results for minimi-
zers, according to the choice of fo.
The main result of the present paper is a version of the Mountain Pass

Lemma for a convex 03A8 relative to F. In addition we prove a result on
the existence of maximizers and minimizers without the assumption of
convexity.
We apply our results to a problem on steady 2-dimensional ideal fluid

flow confined by a solid boundary. The functions in ~ then represent
possible configurations of a specified distribution of vorticity in the fluid,
and the functional 03A8 represents kinetic energy. The principle that statio-
nary points of ~’ relative to ~ represent steady flows is a modern formula-
tion, following Benjamin [3], of Kelvin’s ideas [9]; Arnol’d [2] has given
the general principle for unsteady flows. We consider flow in a dumb-
bell-shaped region and prove, for a suitable fo, the existence of at least
four solutions; two of these are local maximizers for ’11, one is a minimizer,
and one is constructed by the Mountain Pass Lemma. The existence of
multiple solutions in a region of this shape was envisaged in Kelvin’s
paper. Dumb-bell-shaped regions have also been shown by Schaeffer [15]
to yield nonuniqueness for a somewhat different variational problem
arising in plasma physics.
The plan of the paper is as follows. In Section 2, by way of preliminaries,

we study properties of the set ~ and of its weak closure ~ , and study
the maximization of linear functionals relative to ~; this foreshadows the
prominent role played by convexity in the theory. The Mountain Pass
Lemma and results on nonlinear maximization and minimization are stated
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and proved in Section 3 using the results of Section 2. The application to
fluid dynamics is given in Section 4.

1 LINEAR MAXIMIZATION RELATIVE TO REARRANGEMENTS

The purpose of this Section is to collect some known results on rearran-

gements, and to prove some new ones. For the most part it addresses
the prerequisites of Section 3, but some material is presented simply for
completeness.

DEFINITIONS AND NOTATION. - If (Q, p.) and (Q’, p.’) are positive measure
spaces and p, (S2’) = p, (S2)  oo, measurable functions f : S~ --~ ~ and

g : S~’ --~ R are called rearrangements of one another if

~ ( f - I [[i, oo)) = p.’ [[i, oo)) for every real [i. If (~, p.) is a finite positive
measure space, m = p (Q) and f : is a measurable function, then there
is a decreasing function [0, co] -~ (1~ that is a rearrangement of f when
[0, is endowed with Lebesgue measure, and f ° is unique except for its
values at its discontinuities. The assumption that f is finite-valued ensures
that f ° can take infinite values only at 0 and rn.

If (Q, p.) and (SZ’, p,) are measure spaces, a map p : ~ -~ Q’ will be called
a measure-preserving transformation if for every ~’-measurable set A c S2’,
the inverse image p-1 (A) is p-measurable and p. (p-1 (A)) = p.’ (A). If

additionally p has an inverse, and the inverse is a measure-preserving
transformation, we call p a measure-preserving bijection.
A measure space (Q, p,) will be called a measure interval if there is a

measure-preserving bijection from Q to the interval [o, ~ (Q)]. For example,
any Lebesgue measurable set in rRN, with any finite measure that is

absolutely continuous with respect to N-dimensional Lebesgue measure is
a measure interval; this can be deduced from Royden [11], p. 270,
Theorem 9. Measure intervals are a subclass of the finite separable non-
atomic measure spaces considered in [5]. All the results we state for
measure intervals can be generalized to finite separable nonatomic measure
spaces, but we have not considered it worthwhile introducing the machi-
nery required in the more general context. It will be important to observe
that any measurable subset of a measure interval is again a measure
interval.
Two measures on the same set, and having the same measurable sets,

are called equivalent if each is absolutely continuous with respect to the
other.

If (Q, n) is a positive measure space, 1 _ p  oc, if q is the conjugate
exponent of p, we identify the dual space of with and if
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we write

If (Q, ~,) is a positive measure space, 1 _ p  oo and F c we denote

by F the closure of F in the weak topology.
When Q is an open set in we denote by the space of real

locally (Lebesgue) integrable functions on Q whose distributional partial
derivatives of orders 1, ..., m are locally integrable functions.
The first lemma is common knowledge; we supply the proof for comple-

teness.

LEMMA 2.1. - Let (Q, ~,) and (Q’, positive measure spaces with

~, (~2) = ~,’ (~’) _ ~  let f : ~ ~ (~8 and g : S2’ --~ (~’ be measurable

functions, and suppose f is a rearrangement of g. Then

(i) For every Borel set A c f~ we have ~ (A)) _ ~.’ (g-1 (A)).
(ii) If (p: R - R is Borel measurable then f is a rearrangement of
g.

(iii) If f E L 1 { ~,) then g E L 1 ( ~,’) and

Proof - (i) The family ~ of Borel sets A that satisfy
is closed under complementation and under

countable disjoint unions, and [P, for all hence !/ contains

all Borel sets. (ii) If ~3 is real then (cp ~ f )-1 [P, oo) - f -1 (cp-1 [~3, oo)) and

cp -1 [[i, oo) is a Borel set, so (i) can be applied to give

(iii) The positive and negative parts of f and g can be considered separ-
ately, so suppose f and g are non-negative and for s > 0 define

Then by Fubini’s Theorem

(iv) follows from (ii) and (iii). 0
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LEMMA 2.2. - Let (Q, ~) be a measure interval, 1 _ p  oc, let fo E LP (~)
and let ~ be the set of rearrangements of fo on Q. Then

(i) ~ is convex, so ~ equals the closed convex hull 
(ii) ~ is weakly sequentially compact.
(iii) ~ with the weak topology is metrizable.

Remarks. - The cases 1  p  oo and p =1 of (i) follow from work of
Brown [4] and Ryff [14] respectively, on Markov operators. The author [5]
rediscovered (i) and gave a direct proof. The case 1  p  o0 of (it) follows
trivially from (i), and the case p= 1 follows readily from the Dunford-
Pettis criterion for weak compactness in L1. A countable family of continu-
ous linear functionals separates points of ~ , so (iii) follows from (it).

LEMMA 2. 3. - Let (Q, ~,) be a measure interval, let let
1 _ p  oo, let fo E LP (~,), and let ~ be the set of all rearrangements of fo
on S~. Then ~ is the set of extreme points of , and

Remarks. - This result is due to Ryff ([12], [13]), who showed when
p= I that the set defined in the curly brackets is weakly compact and
convex, and that its set of extreme points is ~ , so the result follows from
Lemma 2.2 (i) and the Krein-Mil’man Theorem. The case 1  p  oo is

easily deduced from the case p =1.

LEMMA 2.4. - Let (Q, ~.) be a finite positive measure space, let w = ~ (Q),
let 1 _ p  oo, let fo E LP (~,), let ~ be the set of rearrangements of fo on SZ,
let q be the conjugate exponent of p and let g E Lq ( ). Then

(i) For all f E F we have f, g ) _ .f o g°’-

(ii) Suppose there exists an increasing function cp such that

Then

Jo

(b) is a maximizing sequence for ., g> relative to F then) ) fn -f* ) ~p - o as n - aJ .
(c) f* is the unique maximizer of ., g> relative to F.
(lli) If (~, ~,) is a measure interval, then there is a measure-preserving

transformation p : S2 ~ (p, w] such that g =g° ~ p. Then f* = f o o p E ~ and
satisfies

Vol. 6, n: 4-1989.
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(iv) If (S2, ~,) is a measure interval and ~ . , g ~ has only one maximizer
f* relative to ~ , then there is an increasing function cp such that f* = cp = g
almost everywhere in ~.
Remarks. - (i) is well-known in many versions, and its origins can be

traced to Hardy et al. [8]; one proof that is valid in a general measure
space is given in [5]. The author [5] proved (ii) and (iv), and Ryff [12]
proved ( iii) .

LEMMA 2.5. - Let (~2, ~.) be a finite positive measure space, 1 _ p  x,
let q be the conjugate exponent of p, let fo E LP ( ~.), and let ~ be the set of
rearrangements of fo on Q. For all g E Lq (~2) define a (g) to be the supremum
of ., g> relative to F. Let G be the set of g E Lq ( ) such that g~F
for some increasing function c~, and let k (g) = g for this cp. Then

(1) |6 (g) - a (h) ( f0~p ~g-h ~q for all g and hE Lq 

(ii) k : G ~ ~ is strongly continuous.

Proof. - (i) Let g, let E > 0 and choose f~F satisfying

Then

Since !! f ./o! letting E tend to zero we obtain

The same inequality is valid with g and h interchanged, hence (i).
(ii) If g E G then k (g) is well defined, since k (g) maximizes  . , g)

relative to ~ , and the maximizer is unique by Lemma 2.4. Fix geG and
let sequence in G such 0 as n - 00. Now

as n - oo by (i). Therefore ~k (gn)~~° ~ is a maximizing sequence for  . , g )
relative to F, so ( I k (g") - k (g) ~p ~ 0 as n - ~, by Lemma 2.4. Q

LEMMA 2.6. - Let (Q, ~.) be a finite positive measure space, let
1 _ p  oo, let fo E LP and let ~ be the set of all rearrangements of fo
on S~. Then the relative weak and strong topologies on ~ coincide.

Proof - It will suffice to show that every strongly open subset of ~ is
weakly open. Let q be the conjugate exponent of p and let U be a strongly
open subset of F. Consider f1~U and let fl, so and

fi = tan ° g. It follows from Lemma 2.4 that if E > 0 is sufficiently small,
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then every fE satisfying (f, g) > ( fi, g ) -E must lie in U. Then

g ) > - E~ is weakly open andflEV c U. 0

LEMMA 2.7. - Let (Q, J.l) be a measure interval and let 1  p  oo. Then

Remarks. - This result belongs to folklore. A neat proof in the case
when f and g are non-negative follows from Corollary 1 of Crowe et al. [6],
and the case when f and g are bounded below follows immediately from
this. Now fix f, and for m  0 define

for x E Q. Then

As m tends to - oo the pointwise limits of fm, gm, f m and gm are f, g, f °
and g° respectively, and the Dominated Convergence Theorem can be
applied to deduce the general case.

LEMMA 2.8. - Let (Q, ~.) be a measure interval, let 1 _ p  oo, let

g: SZ --> U~ be a measurable function and let fl, f2 E LP (p.). Suppose there exist
increasing functions 03C61 and cp2 such that f i = 03C61 ° g and f*2 = 03C62 ° g are
rearrangements of fl and f2 respectively. Then

Proof - Write c~ = (Q). If i =1 or 2 then cp~ ~ g° is decreasing and is a
rearrangement of so Therefore

by Lemma 2.7. Q

LEMMA 2.9. - Let (SZ, be a finite positive measure space, let f : S2 -~ Q~
and g : SZ -~ (~ be measurable functions, and suppose that every level set of g
has zero measure. Then there is an increasing function cp such that 03C6 ° g is a

rearrangement of f. In particular,

Proof - Since the level sets of g have zero measure, g° is strictly
decreasing and therefore injective. A right inverse for g~ is defined by the

VoL 6, n’ 4-1989.
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decreasing function

that is, ~r (g° (t)) = t for 0  t  ~. Define cp = ~r, which is an increasing
function. Then g° = hence g is a rearrangement of f Q

LEMMA 2.10. - Let (SZ, ~,) be a finite positive measure space, let
1 _ p  oo, let 1 _ r  oo, let J be an interval, let let
i : J -~ fl~ be a continuous function such that fo E L’ ( ~) and let ~ be the
set of rearrangements of fo on Q. Then f....... f defines a continuous map
from ~ to Lr ( ~.) .

Proof - 1 be a sequence in ~ converging to a limit f E ~
and let E > 0. For M > 0 define

when seJ. Fix M so large that I  E, so  ~ for

n =1, 2, ... by Lemma 2.1. Then

Since iM is bounded and continuous it follows from the Dominated

Convergence Theorem that as hence
for all sufficiently large n. D

LEMMA 2.1 l. - Let (Q, u) be a measure interval, let 1  p  oo, let

fo E and let ~ be the set of rearrangements of fo on Q. Then 3F is

path-connected.
Proof - It is sufficient to consider the case when (Q, u) is an interval

[0, Let We construct a path from f to f o as follows. Let
T : R ~ (0, 03C0) be defined by i (s) = 03C0/2 + tan-1 s. Let F = i ° f, so F E LP [0, 03C9]
also, and for s, t E [0, c~] define

Then F* is a rearrangement of F for each t E [0, c~] and is a

continuous map from [0, ~] to Lp [0, ~] by Lemma 2.7. Define

0 Fi for 0  t  co, so Then ff =f and f~*=.f’°=fo, and
the continuity of the map follows from Lemma 2.10. It now follows
that any two points of F can be connected by a path through f03940. m
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LEMMA 2.12. - Let (03A9, ) be a measure interval, let 1  p  ~, let q
be the conjugate exponent of p, let fo E LP (~,), let ~ be the set of rearrange-
ments of fo on Q, let g E LP (~,), suppose every level set of g has zero measure,
and let cp be an increasing function such that f* = g Let f Then
there is a continuous path from f to f* in ~ , along which ~ . , g ~ is

increasing.

Proof. - The existence of cp follows from Lemma 2.9. Define

z : R ~ (0, 03C0) by let F = 03C4 ° f and let so F,
F* E LP ( ). For - oo  s  oo and x ~03A9 define

By Lemma 2.9 for each - oo _ s _ oo we can choose an increasing func-
tion (ps such that I h (s) is a rearrangement of We extend

cpS so that cps (t) = 0 for t  s, define F; on Q, and define
Observe that F* ~ = F*, that F ~ = F, and that F: is a

rearrangement of F for each s. Consider -~~s~t~~. Then

r (t) c r (s) and by Lemma 2.8 we have

Therefore is continuous from [- oo, oo] to 
Define Then ft* defines a continuous

path in IF from f * to f, by Lemma 2.10. It remains to check that

( fi*, g ) is a decreasing function of t. Then

Relative to r (s) we and that is a rearrangement
so it follows from Lemma 2.4 that

as required. D
Lemmas 2.13 and 2.15 are steps in the proof of Theorems 8 and 9

of [5], but the proofs given here are clearer.

LEMMA 2.13. - Let C be a convex set in a real vector space X, let x*
and y* be linear functionals on X, let I be a real number and suppose there
exist xl and x2 in C such that x* (xi)  I  x* (x2). Suppose xo E C is such
that y* (x) _ y* (xo) for all x E C satisfying x* (x) = I. Then there is a real
number ~, such that xo maximizes y* + ~. x* relative to C.

Vol. 6, n~ 4-1989.
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Proof - Let J be the range of x* on C, and for a E J define

Then J c R is an interval, V is a convex function, I is interior to J and

V (I) = - y* (xo) > - oo. It now follows that V is everywhere finite-valued,
and that V is subdifferentiable on the interior of J. Let aV (I). Then
for all x E C we have

therefore

LEMMA 2.14. - Let (~, ~) be a finite positive measure space, let
1 _ p  oo, let fo E LP (~,) be non-negative and let ~ be the set of rearrange-
ments of fo on Q. Let Then f >__ 0 and

Remarks. - Since f E conv F it is clear that f > 0, and the remaining
assertion follows from Lemma 5 of [5].

LEMMA 2.15. - Let Q be an open set in ~, a finite positive measure
on Q equivalent to N-dimensional Lebesgue measure, and let

define a linear partial differential operator in Q, where the a" are measurable
and there is no 0-th order term. Let 1 _ p  oo, let q be the conjugate
exponent of p, let fo E LP be non-negative, be the set of rearrange-
ments of fo on Q and let n Suppose maximizes

~ . , g ~ relative to ~ and that ~ g >__ , f* almost everywhere in ~2. Then

f* ~F and there is an increasing function cp such that f* = 03C6° g almost
everywhere in ~.

We first show that g (x) __ y for almost all x E S2BS. Suppose this is false.
Then for some f3 > y and for some set A c having positive measure
we have g (x) > 03B2 for all x E A. Let 03B2 > 03B4 > y. Then by the definition of y
there is a subset B c S having positive measure such that g (x)  ~ for all
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Since A and B are measure intervals, we can replace A and B by
subsets of themselves to ensure further that 0  ~. (A) _ ~ (B). There is then
a measure preserving bijection x : A -~ B. For v E LP (~.) define

Then T : -~ is bounded and T(ff) c IF so T(ff) c ~. Write
f~ =T f *, so fl We have

which is impossible since f * maximizes  . , g ~ relative to ~ . Thus
g (x)  y for almost every as claimed.
We next show that every level set of g S has zero measure. Suppose

and let g(x)=03B1}. Then g=0 almost everywhere in H,
by for example Lemma 7. 7 of [7]. f * > 0 in S, so p (H n S) =0.
In particular, we now have g (x) > y for almost all x~S. It follows from
Lemma 2.9 that there exists an increasing function cp such that S)
is a rearrangement of f o I [O, s]. Since g > y on S and fo > 0 we can
suppose that and cp is undefined on ( - oo, y]. It follows from
Lemma 2.14 that s > o, hence f o = 0 on [s, if we now define cp (t) = 0
for t  y, the function cP is increasing and is a rearrangement of f t,
so It follows from Lemma 2.4 that 03C6°g is the unique maximizer
for ( ., g )> relative to ~ , D

3. VARIATIONAL PRINCIPLES

DEFINITIONS. - Suppose (Q, u) is a positive measure space, that

1 -_ p __ oc, that q is the conjugate exponent of p and that
K : LP (~) -~ Lq (p) is a bounded linear operator. We say K is symmetric if

for all We say K is positive if

( r, K v ~ >_ 0 for all and we say K is strictly positive if in

addition, equality only holds for v = O.

VoL 6, n - 4-1989.
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We present three abstract variational principles, each of which ensures
the existence of a stationary point of a functional W relative to the weak
closure iF of the class ~ of rearrangements of a function fo. We give
three Corollaries in which the stationary point is shown to lie in ~ in the
case of certain boundary value problems. The trick used there is

Lemma 2.15, and it requires .fo >_ 0. Our first result is an analogue for the
present situation of Theorem 2.1 of Ambrosetti and Rabinowitz [I], which
applied to C~ functionals on a Banach space, without constraints. The
terms and notation used in Theorem 3.1 have been defined at the beginning
of Section 2.

THEOREM 3.1 (Mountain Pass Lemma for rearrangements). - Let (0, u)
be a measure interval, let 1  p  oo, let ~ : LP (~.) --~ (1~ be a continuously
differentiable convex functional, let fo E LP ( ), let F be the set of rearrange-
ments of fo on Q, let eo, el and define

Suppose

Then there exists a sequence in ~ satisfying
tv~~ ~ ,

as n -~ oo .

Proof - There is no loss of generality in supposing (Q, u) to be the
interval [0, co] with Lebesgue measure. Introduce the notation

for eo] where q is the conjugate exponent of p. Let E > 0 satisfy

We will prove the existence of a point v~F satisfying both

Suppose, to seek a contradiction, that no point v of ~ satisfies both (3.3)
and (3.4). Consider any satisfying
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Define

so y > 0 in view of ( 3. 2), (3.5) and the convexity 
Write for the linear subspace of Lq [0, m] spanned by the functions

sin ... , whenever N is a natural number, and let AN
denote the nearest-point map from Lq [0, cn] onto VN. Then AN is strongly
continuous. Let us choose N such that

for all 1], so that in particular AN ~’ (h (t)) ~ o. Each level set of
each nonzero element of is finite so by Lemmas 2.9 and 2.4, for each
te[O, 1] there is a unique maximizer k (t) for the functional

( ., AN ’P’ (h (t)) ~ relative to ff’, almost every-
where for some increasing function cpt. It now follows from Lemma 2.5
that k : [0, 1] ] ~ ~ is continuous.
Let 0  t _ 1. We now show that

Consider first the case when ~’ (h (t)) >_ c + 2 E. Then by convexity we have

where we have used (3.6) and the maximizing property of k (t). Thus (3.7)
holds in this case. Now consider the other case, when 03A8 (h (t))  c + 2 E.
Then by (3.5) we have (3.3) for v = h (t) so (3.4) must fail. Thus

By convexity, (3.6), (3.8), Lemma 2. 5 and ( 3~ 5) we have

This completes the proof of (3.7).
By Lemma 2.12 we can choose k o and k 1 in C([0, 1], ff) such that for

! = 0, 1 we and ~P’ (e~) ~ is an increas-
ing function of t E [0, 11. Thus

VoL 6. n~ 4-1989.
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Define

Then ho and 03A8 (h (t)) > c for 0  t  1 contrary to the definition of c.
So for all sufficiently small E > 0 we can choose v E ff satisfying (3.3) and
(3.4) as required. D

COROLLARY 3.2. - Let 03A9 be an open set in let  be a finite positive
measure on S~ equivalent to N-dimensional Lebesgue measure, let 1  p  oc.

let p -1 + q -1=1, let
-. r, _. __

define a linear partial differential operator on S~, where the a°‘ are measurable
functions for 1  I m and there is no 0-th order term, let
K : LP (~.) --~ Lq (~,) be a compact, symmetric, positive linear operator, suppose
K v E W"‘ (03A9) and  K v = v almost everywhere in Q for all v E LP ( ) and let
w E Lq (~) n Wm (S2) satisfy ~ w = 0 almost everywhere in ~. Let

for all v E LP (~,), let fo E LP (~,) be non-negative, let ~ be the set of rearrange-
ments of fo on Q, let eo, el E ~ and define

Suppose

Then there exists v E ff and u = K v + w such that

almost everywhere in Q, for some increasing function cp.
Proof - Write

for By Theorem 3.1 we can choose a sequence 1 in ~
such that
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as n ~ oo. Passing to a subsequence we can suppose vn - v weakly in
as n -~ oo, for some Then K v -~ K v in the q-norm, and

Lemma 2.5 shows It now follows from

(3.10) that

We also almost everywhere. It now follows from
Lemma 2.15 with g = K v + w that v e ~ and v = (K v + w) almost every-
where, for some increasing function cp. Hence u = K v + w has the required
properties. D

Remark. - In applications of Corollaries 3.2 and 3.4 we anticipate that
K will be defined by inverting ~f with homogeneous boundary conditions.
Non-homogeneous boundary conditions may then be accommodated by
an appropriate choice of w.

In [5] an abstract result concerning the existence of maximizers for a
convex functional relative to a set of rearrangements was proved. Here
we remove the convexity assumption. The results obtained are weaker,
but they are adequate for applications to boundary value problems, and
they apply equally to minimization problems, in contrast to the results of
[5]. We also study the variational conditions satisfied by local maximizers
and local minimizers.

THEOREM 3.3. - Let (Q, a) be a measure interval, let I - p  oo, let
and let ff be the set of rearrangements of fo on ~2. Let

‘I’ : be a weakly sequentially continuous Gâteaux differentiable
functional. Then

(i) There exists a maximizer (resp. minimizer) for ~ relative to ~ .
(ii) If v* is a maximizer (resp. minimizer) for 03A8 relative to F then v*

maximizes (resp. minimizes) ~ . , ~’ (v*) ~ relative to ~ .
(iii) if U is a strong neighbourhood of v* relative and if

‘l’ {v)  ~’ (v*) (resp. >_ ) for all v E U, then v* maximizes (resp. minimizes)
( ., ’P’ (v*) ) relative to ~ .

Proof - We first consider the case of maximization. Since ~ is

weakly sequentially compact the existence of a maximizer relative to ~ is
immediate. Suppose v* maximizes ~’ relative to F. The variational condi-
tion is now proved by a standard argument as follows. Consider v~F
and 0  t  1. Then by convexity ( Lemma 2. 2), so we
have

as t tends to zero, whence

This proves (ii).

Vol. 6, n= 4-1989.
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Now suppose the assumptions of (iii) apply. By Lemma 2.6 the weak
and strong topologies agree on !F, so we can choose a weakly open set
W c such that = U. Consider any w~W n !F. Since F with
the weak topology is metrizable, w is the weak limit of a sequence

~ . For all sufficiently large n we have WnEW and therefore
~’ (v*). By weak continuity it follows that ‘~’ (w)  ’~ (v*), and

this holds for every Now let and 0  t _ ~, so

by convexity. If t is sufficiently small we also have
and then

as t tends to zero, whence

This proves (iii).
The corresponding results for minimization follow by considering

- ‘f’. ©

COROLLARY 3.4. - Let Q be an open set in let p be a finite positive
measure on Q equivalent to N-dimensional Lebesgue, let 1 _ p  oo, let q
be the conjugate exponent of p, let

define a linear partial differential operator on Q, where the are measurable

functions for 1  ~  m and there is no 0-th order term, let
K : be a compact, symmetric, linear operator, suppose
K v~Wm (Q) and  K v = v almost everywhere in Q for all v E and
let ~ satisfy ~ w = 0 almost everywhere in Q. Let

for all v ~ LP (~.), let fo E be non-negative, and let ~ be the set of
rearrangements of fo on S2. Then

(i) There exists a maximizer (resp. minimizer) for 03A8 relative to F. If f*
is any maximizer {resp. minimizer) of 03A8 relative to F then f* E F and if
u = K f* + w then u = 03C6° u almost everywhere in 03A9, for some increasing
(resp. decreasing) function c~.

(ii) If f* if U is a strong neighbourhood of f* relative to ~ such
 ’~‘ ( f *) (resp. >_ ) for all fEU, and if u=K f* + w then

~ u = u almost everywhere in Q, for some increasing (resp. decreasing)
function tp.

Proof - The existence of a maximizer relative to F follows from
Theorem 3.3 (i). If f * is any maximizer for 03A8 relative to F and
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u = Kf* + w then almost everywhere, and f * maximizes ~ . , u ~
relative to F by Theorem 3.3 (ii). It now follows from Lemma 2.15 that

almost everywhere, for some increasing function tp.
’ 

Now suppose the assumptions of (ii) are satisfied. Then with u = K f * + w
it follows that f * maximizes  . , u ~ relative to ~ by Theorem 3.3 (iii).
By Lemma 2.15 there is an increasing function cp such that 
almost everywhere.
The results for minimizers follow by considering -’~. D

Remarks. - In some situations one can prove uniqueness of the mini-
mizer as follows. Let (Q, p.) be a measure interval, 1 - p  oo, and let
‘~ : --~ f~ be strictly convex. Then, since iF is convex, ’II can have at
most one minimizer relative to ~ ; if ~ is also weakly sequentially continu-
ous then any minimizer of ’P relative to ~ is also a minimizer relative to

~, hence ~’ has at most one minimizer relative to ~ .
McLeod [10] has considered an example, that satisfies the assumptions

of Corollary 3.4 except that fo takes positive and negative values, and
where furthermore 03A8 is convex, and has shown that there is no minimizer
relative to ~ . This contrasts with the maximization of the same ’P, where
McLeod has proved the existence of a maximizer. Theorem 7 of the
author [5] proves the existence of a maximizer for a convex ’~ in quite a
general context.
We now turn our attention to constrained maximization and minimiza-

tion. Problems of the type considered below have been proposed by
Benjamin [3], although we shall not apply our results to any examples
here.

THEOREM 3.5. - Let (Q, p) be a measure interval, let 1 - p  oo, let q
be the conjugate exponent of p, let let ~ be the set of
rearrangements of fo on ~, let let I be real and let

( ~ v, w ~ = I~. Suppose there exist fl and f2 E ~ with

~ f l, w ~  I  ~ f2, w ~. LP (~.) -~ (~ be a weakly sequentially con-
tinuous Gâteaux differentiable functional. Then

(i) There exists a maximizer (resp. minimizer) for 03C8 relative to F ~ A.
(ii) If v* is a maximizer (resp. minimizer) for ~I’ relative to ~ (1 A then

r* maximizes (minimizes) ~ . , ‘~’ (v*) + w ) relative to ~, for some real 

Proof. - (i) The convexity of ~ and the existence of fi and f2 show
that ~ (~ A =~ 0. Since ~ is weakly sequentially compact it follows that
’~ has a maximizer relative to A.

(ii) Let v* maximize 03A8 relative to F ~ A. Consider v~F ~ A and
0  t  1. Then U A by convexity, so we have
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as t tends to zero, whence

This holds for every v~F~. It now follows from Lemma 2.13 that
there is a real ~, for which v* maximizes ~ . , ~’ (v*) + ~ w ) relative to ~.
The case of minimization follows by considering - ~’. D

COROLLARY 3.6. - Let Q be an open set in (J~N, let ~, be a finite positive
measure on Q equivalent to N-dimensional Lebesgue measure, let 1 _ p  oo,

let q be the conjugate exponent of p, let

define a linear partial differential operator on SZ, where the a°‘ are measurable
functions for 1 _ ( a (  m and there is no 0-th order term, let
K : be a compact symmetric linear operator, suppose
K v E Wm (03A9) and K v = v almost everywhere in S2 for all v E LP ( ), and
let w E LQ ( ~) ~1 W"‘ (Q) satisfy w = 0 almost everywhere in Q. Let

for all v E Lp (u), let fo be non-negative and let ~ be the set of
rearrangements of fo on Q. Let I be a real number such that there exist fl
and f2 in ~ satisfying

Then there exists a maximizer (resp. minimizer) for ~I’ ( f ) relative to

and if f* is any such maximizer (resp. minimizer) then f* ~F and there
exists a real and an increasing (resp. decreasing) function cp such that
u = K f * + w satisfies ~"° u = u almost everywhere in ~2.

Proof - From Theorem 3.5 and Lemma 2.15. p

Remarks. - A special case of Corollary 3.6 was given in [5~ as

Theorem 9. Strict convexity of ~’ is sufficient for uniqueness of the mini-
mizer in Theorem 3.5, and therefore strict positivity of K is sufficient for
the uniqueness of the minimizer in Corollary 3.6.
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4. MULTIPLE CONFIGURATIONS FOR STEADY VORTICES

NOTATION. - Let r > R~ > E > 0, let Q(l) and Q(2) be open discs
in the x1 x2 plane having radii R 1 and R2 whose centres are ( - r, 0) and
(r, 0) respectively, and let Q be the union of SZ ( 1) and Q(2) with the
rectangle xl  r, x2  E. Thus Q is a dumb-bell-shaped region with
ends and Q(2) connected by a channel that forms part of the
rectangle.

Let J.1 denote 2-dimensional Lebesgue measure, let K : L2 (SZ) -~ L2 (Q)
be the inverse of - A in Q with zero Dirichlet boundary conditions on
c0, and for v E L2 (Q) let

THEOREM 4.1. - Let 0  a  oo, let 2  p  oo and let fo E LP [0, a] be
a positive function. Let  R 2 _ R 1  ~. Then there exist

r E (R 1, oo) and E E (0, a/r) such that when the region Q has dimensions
R1, R2, r, £, the following holds:
Let fo be extended by defining fo (s) = 0 for a  s _ let F be the

set of rearrangements of fo on Q, and for i =1, 2 let

Then

(i) For i = l, 2 there exists a maximizer vi for 03A8 relative to and vi
is a local maximizer for 03A8 relative to F. If then -0394ui=03C6i ° ul
almost everywhere in Q, for some increasing function cpi.

(ii) There is exactly one minimizer v3 for ~I’ relative to ~ . If u3 = K v3
then -0394u3=03C63 ° v3 almost everywhere in 03A9, for some decreasing
function 

(iii) Define

Then

and there exists a such and satisfies
almost everywhere in S~, for some increasing function cp4.

Before giving the proof, let us interpret this result physically. Any
function u that satisfies -0394u=03C6(u) in Q for some sufficiently smooth cp
and that satisfies u = 0 on represents the stream function for the steady
flow of an ideal fluid in two dimensions, confined by a solid wall in the
shape of The velocity field is given by and the
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vorticity, which is given by the curl of the velocity, has magnitude - Au.
In Theorem 4.1, flows are sought in which the vorticity is a rearrangement
of a prescribed function fo, and it is shown that at least four solutions
exist. These solutions represent different configurations of a region of
vorticity in an otherwise irrotational flow.

Integrating by parts in the formula for 03A8 (v) yields

so ‘~ (v) represents the kinetic energy of the fluid. Our variational methods
are based on the principle that steady flows correspond to stationary
points of the kinetic energy relative to rearrangement of the vorticity.
We do not investigate the regularity of the solution or the smoothness

of cpi here; some results on this subject would be required before it could
be asserted that our velocity fields satisfied the hydrodynamic equations.
We now derive some estimates that are needed for the proof of

Theorem 4.1.

LEMMA 4.2. - Let 0  a  1 and 0  ~i  Ac. Then there exists

k = k (a, ~) > 0 with the following property: ’if R > 0, and DR denotes a
disc of radius R in the plane, if u E W2~ 2 and v = - ou, and if u and v
are non-negative I 1 > ~i R I f v I ~ 2, then u (x) _>_ k ‘ v If 1 for all x E Da R,
the concentric disc of radius a R.

Proof - First consider the case R =1. Define

Then S is closed, bounded and convex, since ~ ~1 is additive over non-
negative functions. Hence S is weakly compact, and S 7~ 0 since 
For let T v be the solution of -Au=v with u = 0 on Then
T : Lz ( D 1 ) -~ wz ~ z ( D 1 ) is a bounded linear operator, and the embedding

(Di) -~ C (D1) is compact, hence the function m : L 2 (D1) --~ (~ defined
by

is weakly sequentially continuous. Write

Then k = m (vo) for some vo E S, and m (vo) > 0 by the Maximum principle,
so k > 0. It now follows that if is non-negative and

~ ~ v’ ~ ~ >_ ~ ~ ~ v ~ ~ 2 then T v (x) >__ k ~ ~ v ~’ 1 for all x E Dcx; any non-negative
u ~ W2~ 2 (Dl) such that - Au = v satisfies u > T v by the Maximum princi-
ple. The result is now established when R = 1.
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Now suppose u E w2 ° 2 (DR), - Au = v, u > 0, v > 0 and ~ v~1 ~ 03B2R~ v~2.
Taking all discs to have centre o, define

for x~D1. Then u satisfies -0394u=v, and

so f or we have

as required.

LEMMA 4.3. - Let R~ > 0 and c > 0 be given. Then there exist
R1 with the following property: If r _>_ ro and 0  E  R 2, if i =1 or 2,

and satisfies v = 0 almost everywhere in then

Proof - We lose no generality by taking since the inequality
R ~ plays no part in the ensuing argument. Assume r ~ and

let G (x, y) be the Green’s function for -.A in the half-plane x 1 > - 2 R ~ - r
so

where (Xl, X 2) and (Yi, Y 2) are the coordinates of x and y referred to
(-2Rl-r, 0) as origin and Let vEL2(Q) satisfy almost

everywhere in S~B~ ( 1), and for xeQ write

Then u E W2~ 2 (Q) is a strong solution of - Au = in SZ, and u is positive
on hence by the Maximum principle u (x) for all x e Q.
Now suppose xeQ(2). Since the contribution to the above integral

from is zero, we need only consider We then have

_ 4r, 3Ri and hence

Then u (x) _ (12 r) I U I ~ 1. We obtain the result by taking

Proof of Theorem 4. I . - Let k = k (oc, ~i) be the positive number provided
by Lemma 4. 2 with chosen such that and

Let r be the number ro provided by Lemma 4.3
with Ri 1 and R~ as in the statement of the Theorem and c=k/4. Let
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Eo = a/(4 r)  R 2, and let M E (o, oo) be such that for all 0  E  ~a, if ~

has dimensions R~, r, E then

for all The existence of M may be established by using the
Maximum principle to compare K v with the function u introduced in the

proof of Lemma 4. 3. Fix 86(0, Eo) satisfying

Let 6 = (p - 2)/(2 p - 2), so 0  b  1 and the interpolation inequality

holds for all v E Lp (SZ). Write Fix i =1 or 2, let j=3- i and

let Q (i, a) be the open disc of radius 03B1Ri concentric with Q (i).
Consider v~F and write and w = v - v (j). The subset V of

Q(i, a) where v vanishes has at least as great measure as the set where
v (j) is positive; since both of these sets are measure intervals, there is a
rearrangement v (i) of v (j) that is defined on Q and vanishes outside V. Let
v = w + v (i) Also let w (i) =1 ~ ~i~ w and wo = w - w (i), which vanishes in
Q (i) and Q (j). Then by (4.2) we have

We have

In view of the definition of J3 we can choose a positive 0  ~ ~ fo ~ ~ 2 such
that

holds for all uEL2(Q) satisfying for some If
 9 we can now apply Lemmas 4.2 and 4.3, and relations (4.1)

and (4.5), to obtain
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From this, (4.2) and (4.3) it follows that

We can choose v > 0 and r~ e (0, 0) such that

for all u E LZ (Q) satisfying II u  2 r~. Then

~ i ~ ~ - ~~ "i ~~~, 
.. ,

provided that ( v fi) ( 2  2 r~.
Let ~i be the set of maximizers of 03A8 relative to It follows from

Theorem 3.3 (i) that ~i is nonempty. Let

where the distance is calculated in the 2-norm. Then U is strongly open
relative to iF. Consider v E U. Then there exists with ( 2  rl,
so we have

Hence, if v~Fi is formed from v as above, we and
so

if ‘~ (U) = sup then we must have and Thus

if It now follows from Corollary 3.4 (ii) that if and
almost everywhere in Q, for some increasing

function 
The existence of a minimizer v3 for ~’ relative to ~ follows from

Corollary 3.4 (i), and by Corollary 3.4 (ii) we almost

everywhere in Q, where and cp3 is some decreasing function. The
uniqueness of v3 follows from the Remarks after Corollary 3.4.
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We now turn to the existence of the fourth solution. Choose any 
for i =1, 2 and let ~ and c be as in the statement of the Theorem. The
unique minimizer of ’~ relative to L2 (Q) is the zero function, which does
not lie in ~ , hence

Let i =1 or 2 be such where j = 3 - i, let r~, v, U be
defined as above and let au denote the boundary of U relative to ~ .
Consider v~~U. Then dist (v, FI) =~. As above let us write v

and form v~Fi by replacing v(j) with a rearrangement of itself vanishing
outside Q (i, a). Then as above we have

and further

hence from (4.6) it follows that

Thus

Now so if we have for some tE[O, 1 ], therefore

and therefore in view of Lemma 2.11 we have

Corollary 3.2 now applies to prove the existence of a and an

increasing function cp4 such and if then
- 0394u4 = ?4 ° u4 almost everywhere in Q.

Finally let us observe that c > ~ (v3). For otherwise, by uniqueness of
the minimizer, we would have v3 = cp3 ~ u3 = cp4 ~ u3 almost everywhere,
where (p3 is decreasing and cp4 is increasing, so v3 would be constant,
which it is not.

Remarks. - The functional ’~ does of course possess at least one global
maximizer relative to ~ , but we believe it coincides with v~ or v2. In the
case when R ~ = R 2, one can construct a fourth solution by maximizing ~
over the elements of ~ that are even in Xi, without using the Mountain
Pass Lemma.
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