
On the local solution of the tangential

Cauchy-Riemann equations (*)
by

Sidney M. WEBSTER

School of Mathematics, University of M
Minneapolis, Minnesota, U.S.A. 55455 

’

.4nn. ina. Henri Poincare,

Vol. 6, n° 3, 1989, p. 167-182. Analyse non finealre

ABSTRACT. - We study the solution operators P and homotopy formula
introduced by G. M. Henkin for the tangential Cauchy-Riemann complex
of a suitable small domain D on a strictly pseudoconvex real hypersurface
in complex n-space. The main difficulties stem from the fact that P is an
integral operator with a rather complicated kernel. For U c c D, we derive
a Ck-norm estimate of the where the constant
K blows up as U increases to D. We obtain careful control of the rate of
this blow-up and of the dependence of K on the derivatives of the function
defining the real hypersurface. Our estimates are sufficient for application
to the local CR embedding problem.

RESUME. 2014 Nous etudions les operateurs integraux P dans la formule
d’homotopie de G. M. Henkin pour le complexe tangentiel de Cauchy-
Riemann sur un petit domaine d’une hypersurface reelle strictement pseu-
doconvexe dans l’espace Cn. Avec les Ck-normes pour les domaines
U cc D nous derivons une borne, dans laquelle le
constant K tend vers + oo lorsque U tend vers D. Nous constatons cette
croissance de K et la dependance de K sur les dérivées de la fonction qui
definit 1’hypersurface.
Mots clés : Hypersurface réelle, complexe tangentiel, noyau integral.
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INTRODUCTION

This paper is concerned with the 03B4b., or tangential Cauchy-Riemann,
--- 

r ~r __ 
__ _ _ ~_ __ ~_ - _ _ ____ 

_~_ _ o~ _ _ -----c------ - -- -- --,., - - ---~---,

omplex on a small portion Mp of a strictly pseudo-convex real hypersur-
iace M2 n-1 in complex space Under suitable restrictions on MP, there
xist solution operators P and Q satisfying the homotopy formula

Pcp + Q ~b cp, (0 . 1)

rity properties of certain of these operators. 
°

Various aspects of the equation (0.1) have been studied by a number
of people since the early works of H. Lewy [6], Kohn-Rossi [5], and
Andreotti-Hill [ 1 ]. We should mention the works of Henkin [4], Romanov
[8], and Skoda [9], in particular. We shall work with the explicit operators
constructed by Henkin in [4], in the formulation given by Harvey and
Polking [3]. As shown in [4] (0. 1) holds on the compact manifold-with-
boundary

11~_=~ zFM-_r°(zln~_ ((l_21

of [4] and [3], the higher differentiability properties of similar such P and
Q were studied by Boggess [2].
For M as above of differentiability class Cl, we take Mp as in (0.2)

with r0 a real function of one of the holomorphic coordinates, both
suitably chosen. Our results yield estimates of the form

~. (0.3)

II lip, k is the usual sup norm, taken over Mp, of the derivatives up to
order k of the coefficients of the form po The same estimate holds for Q.
A much more precise result is stated in theorem (4. 1) below.
The formula (0.1) and the estimates (0.3) for s= 1 form a major

element of our proof [11] of the local embedding theorem for formally
integrable, strictly pseudoconvex CR structures of dimension 2 n-l. The
restriction 1 - s _ n - 3 limits it to 2 n -1 >_ 7. To be sure there is a "weak"
homotopy formula (0.1) for the case 1 _ s = n - 2, as we shall indicate
below. However, in this degree the operator Q inherits an additional term
for which we have no estimate. The argument of [11] is based on the
methods of Nash and Moser, with (0.1), (0.3) being used in solving the
"linearized problem".

Hopefully, our estimates in theorem (4. 1) will eventually be improved.
This would probably decrease the derivative loss in the main result of
[11]. For k=O, Henkin [4] has obtained (0.3) with s=0. For it

seems difficult to avoid 5>0. Major difficulties stem from the boundary
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complex were used in [10] to give a proof of the sharp form of the
Newlander-Nirenberg theorem. The paper [10] may serve as a useful
introduction to the methods of the present work and of [ 11 ].

In section 1 we recall the construction of Henkin’s ~b-homotopy formula.
We take the first derivatives of Pp in sections 2 and 3, and estimate the
higher derivatives in section 4.

1. THE HENKIN ~b-HOMOTOPY FORMULA

We begin by sketching the particular results needed from [4], making
use of the exterior calculus developed in [3]. Let E and w =g (~)
be a sufficiently smooth map. Using a dot product notation, we define a
{ 1,0)-form

- ..J... .. 

n

generalization of the Cauchy kernel, since
~w

we define, on the set where all denominators are non-zero,( l, 0)-forms 03C9j, we define, on the set where all denominators are non-zero,
the (n, 

o~ ~2014~i A A A i A A  i ’:B)

which a 1 + ... +(x~=M2014/. 1.
We introduce the vector field v,

n ~

---- -.-...- 

wv. viiv ’I’ ...,.a................,...,.

1 W 19 - 1 1 ~l7f11~ 1 - n

---- ---- ---- --~ - "--0- r------ 
-- -- . - -- --- ------------ -- 

j.

I $j  n. If we take the interior product of equation ( 1 . 6) with ( 1 . 4) and

Vol 6, n= 3-1989.
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20142014 B~* ~/) e’"’

l

. ~ ~ jj-1 A 1

~Sr~1 l i w i ~1 i 1 i. r..

r or tnls we wnie

i

’3~ 1 ... I ~ ~ ~ ~ i+ 1 ._

a 1 + ... +(x~=~2014/+1, (x~~: 1, and X~ o) the sum with

a 1 + ... +(x~=M2014~+l, (x~=0. The expression E~,1 ~ + E~, o) is independent
of j, so the first alternating sum vanishes by ( 1. 7). The second alternating
sum is precisely the right hand side of ( 1. 8) . Only the cases

9Q~=0. fl.9)

~ B~~ ~~ ~~ ~

make the substitution w=~2014z. Decomposition according to z-type gives
n n2014~

~t~t~~~~~j~~ a. ‘i, .~ f I. Vl ~VL/~ B., J J

in z and type ( n - i, in ç.
We shall work with a real hypersurface M which is a graph over

the (z0153, xn)-coordinate hyperplane yn = 0, Zn = xn + iYn. We assume that the
defining function r is at least three times continuously differentiable, and

__n___- - . _._._____ ___._. _ _ --.-- - . _ ~,,...._..~ y...~.._
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a small perturbation of the identity matrix We define

ft 141

. - -- - 

, 
- -

morphic coordinate zn only. This is a slight departure from [4], where r°
is assumed to be pluri-harmonic. In either case a most natural choice
would be r0=Relog zn, for a suitable branch of log, so that

(A different choice of r0 turns out to be more
appropriate in [ 11 ]. ) We further define

0’+ = ~+ = r- = ~r ~Yl r 

and w = 03B6-z, one shows (e. g. see sec. 4 of [ 11]) that g+. wand g - . w
vanish only for 03B6=z, if p is sufficiently small. (We assume Mp shrinks to
0 as p - 0. )
From ( 1.10), ( 1.12), and the decomposition we get

n ± - 2014n+ 2014n

~ 
_ 

J 
_ _ _ __ _ _ -~ 

-- -- --------- --- J- -------7

for s ? l. Since co is holomorphic in §, for ~2014l2014~~l~
or s _ n - 2. Thus, 

’3 r~+ 2014 ) 3 n+- _~ ~ ~..r~ ~, ~, , z,

{03B6 E M03C1:|03B6 - z| -- - ---- > o, for a fixed z in Mp, and let ~ tend to zero. The
resulting residue at z is a non-zero constant multiple of cp (z). Moving the
exterior derivative aZ past the integral sign, we obtain formally

rn - R rn - rn 4- (1 _ ~rn ( 1 171

Vol 6, n" 3-1989.
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z. For the general case we may assume that p has compact support in
Mp and apply either theorem ( 3 . 2) of [4] or theorem ( 9 . 13) of [3]. In
these theorems ( 1. 17) is verified in the sense of currents of type
(n, n -1- q) along M, which results in equality only mod ar. This is to be
understood in (0.1) or (1.27) below. Only the tangential part of the
homotopy formula, which gives equality, is used in [ 11 ].
To transform the boundary integral ( 1. 20), we use ( 1. 11), which gives

*~ ~~n + 2014 *~ ~~f~ -)- 2014 ~-~ -t- 2014 _0- - n n ,.- - - .

~ E z E Mp. Also, a~° =o, = a~ ~+, and = 7~ ~-, so that
...n ~ ~r~ ~ .

1 nus,

We insert ( 1. 23) into ( 1. 20), use Stokes’ theorem over aMP to throw ~s
onto cp (0 in the first integral and take ~z outside the second integral to
get

where

We bnetly consider the case 1 _ s = n - 2, in which we have ( 1. 27) with
the boundary integral of q> A added to the right hand side. Follow-
ing Henkin [4], we approximate Z,~ -1 d~n by z) where
pj is a sequence of polynomials converging uniformly for 03B6n on the arc

=0, Im~>0, and  0, zn fixed. We also approximate 
by Denote the resulting form by 

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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r

.&#x26;.0.7 .&#x26;..&#x26;."’.&#x26;."’~"’... 1"’’’’’’’’’’’’’ ":) ~~~~* t~~t~~t~~t~~~~y ~f~~ ~v~~. A~Ht~~.

(1.27) holds with However, we are not able to obtain
any useful bounds for the operator Q2’
Returning to (1.27) with 1 ~s~~20143, we introduce the notation

-/~ -B_~ /~ - ’B ~./~ -B_~ - ’B 1&#x26;H _~ - /i ~r~B

~_ r n tr i A ~ ~_ A r A

tors Po, Qo, Pi, Q1. Each annihilates the ideal of forms generated by ~r.
This is because each integrand contains the factor a, r, and restricting to
r = 0 i. e. to M, d, r = a~ r + ~~ r = 0. Thus any term in p (Q or W (I) containing
~~ r is annihilated by the wedge product.
We need to determine the nature of the operators P and Q as acting

on the coefficients of the form (p~’~(0 or ",0, s+ 1) (Ç) relative to the
differentials ~. For this let Dp be the projection of Mp onto so

that by ( 1. 13) Mp is a graph over Dp. is a typical such coefficient,
then Po and Qo are (sums of) operators of the form

r

1 ’ 1 

- _ _ _ r _ _ _ ..~ . ,

Occuring in each numerator in ( 1. 30), ( 1. 31) is
Q - a /- 1 - y A /~ -B ~
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’ _ 

2014"2014 .)B*’/ ** ’ ~5 ~J 

form p(O, s) (Ç) A (Ç, z) as a linear combination of the differentials
.....

~. 1 A ... A ~C- A ~ 1 /B... /B /B ... /B 1 !M, (1.35)

second derivatives a 1 r, evaluated at ç or z or integrated as in (1.34),
and of ~2014~, ~2014~. Further, we express ( 1. 35) as a~ (Ç) dV (~), where each
a~ (~) is an easily computed expression in al r (~). It follows from ( 1. 30)
that k (~ z) can be put into the form

where 03B1~1, 03B2~1,and I, J are non-negative multi-indice.

I I I + J I =1. ) A is constructed from ç, z and up to a certain number

(initially 2) of derivatives of the defining function as described. Simi-
larly, the kernel I (Ç, z) has the form

I (La z) = A z) RIJ r~ -°‘ a- ~ w7 Y- ( a 37B

taking derivatives of ( 1. 32) and ( 1. 33). We shall only have to consider
~-derivatives of ~(~).
We denote by p, p (k), or p (f) an upper bound.

u>2~-~-4-v-!i!-!jL 

- r 2014 ~ -

As shown in [4], [3], k (Ç, z) is then absolutely integrable in ç, uniformly in
z. Thus Kf as well as Lf are continuous over the interior of M.
We denote by 03B4z a vector field in ell tangent to M,

(1.39)

- ~ s - -. -

such fields ðz, we shall take the real and imaginary parts of

rn (z) aza - r a (z) 1  a  n - l,

of r. Any of the = xa + iy03B1, x)-coordinate partial derivatives is a linear
combination, with function coefficients, of the fields of this basis, and
conversely. Thus, to measure the C’-norm of Kf or Lf, it suffices to apply
up to j of these vector fields ~Z.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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2. FIRST DERIVATIVES OF THE KERNEL k

the derivative onto f via integration by parts. The nature of the kernel
( 1. 36) complicates the process. For similar arguments involving the 3
complex, one may consult [3] or [7], for example. We shall make use of
the operator

T _.: ’/-.2014 ~ -. ~-B /" .4"

to M. It has been used in [7] number of other people. From
( 1. 29) and r >- 1, we may assume that

2014- 

20142014- ~ 2014 2014 ~ *~p 
~~~2014 ~-. ~~~~~~~~~~~~ ~~~ 9, ~~ 

To compute

/x 1 x 1 A TtiJ

. _ _ _ 

J ~ _ _ _ _/ ---- - - -...... --..................... j~~ . ~.i ... v ., J 

20142014~ 2014~~~--2014~~~~~~ ~ s ~.111 V 1,.LG11 V V * ) 7 20142014 

h 

- -- - 

’7 
- - - - - - -



176

~ ~s 

I (t- ?I ~ (T- /l1~ ’ 1

2.6)

r

LI ~- ~ - 
- _

Since one has (see e. g. section 4 of [11])
’7BI>f’lr-",12 7)I>rlr-712 l?__ 1()~

A BI’ T~ [E p - °‘ q - ~]
{2.11)

(ð -4-~ k :

~../~

~0-~’ Â 0

V

E=So(~r,j~2), and w 1 is a first order operator with coefficients

S2(~r,~3). In each case So, S~ have denominators

Annnales d!p l’Institut Herlri Poincare - Analyse non linéaire
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of r.

3. FIRST DERIVATIVES OF Kf AND Lf

We compute in the sense of distributions. Let g be a smooth
function with compact support in Dp, then

r

, ° ’ " £ ’ .-J .-c~.-’7

_ r r

~ 

- ------ ~2014201420142014~~-~~-~ J9 4 ~Jt~~ -5 -- 

integrals. For this we consider the integrals as over M m C", and denote
by N~(Q, and N~ (z), respectively, the outward unit normals tangent
to M for the domains which lie
on M. Since M is of class at least C 3, we have

r (l i 1

- 

- - - - - - 

2014~ B 7 / ~~~j~~~ ~~JtT~ 

divergence relative to M. The resulting integrals over the interior of Mp

VoL 6, n= 3-1989.
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-- - - -

~. (l2) _ ~. -1= 2 ~-- -- -- -> o 
- 

the samep (l2) = p - 1 = 2 n - 2. Therefore, Is -+ 0 as s - 0 by essentially the same
argument as for formula ( 3 . 18) in lemma 3. 3 of [4]. Since all the integrals
over the interior are convergent, we get

- - - r ~ __ - - - - - 4... - - ,--- - - - - - - .

... "’.LA.~ 7 ~ . W ~*~~/ 20142014 B Z ’ pil 11 J 111 ~11V 1~

and K f are both continuous, it is a derivative in the ordinary sense, and
we have

/"x 1 B - W’ ~’~ ~’’ 1 l A ~f l "’’M A .. - .. (17 B - ’) ’M 1 t l. ~".

with ~(~’)=~-1, ~,(k3)=~.(ll)=~..
In order to state lemma (3. 1) a little more precisely, we must introduce

some new notation. For an integral over Mp (or Dp) of the form ( 1. 32),
( 1. 36) we use round brackets,

~=~f A~ n ~
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of the form ( 1. 33), ( 1. 37) we get
T l / L’ A B - / l’ A B / o 1’

1. Wl.iVV ..uv aavvwvsvaa avi w ~~W .~ vwaia va a.aav

sa.me value for  ( 1. 38). We also let a represent any, and all, our first
order operators 5. Then, with the notation (2 .14) and  = 2 n -1, we have

. ~ ~ ~ -

the operator ðz fall on the kernel I(§, z), worsening the singularity at the
boundary. From ( 1 . 37) we have

n 1 ~ ,n ’am niJ - - a - - B ... - y I A n rnIJ _-a .....-8~..-Y1

,w

A

V,’ Q.w? a 1’Y 1 

the first term.

4. HIGHER ORDER DERIVATIVES

From ( 1. 30) and ( 1. 31) we see that P and Q have the character

)/~AB ..20140~1 1 

ire constructed from ç, z, and j 2. From (3 . 8) we have, taking b
erivatives

J""B~ ~o . " , ~o ~ . , " , , ~ ~’B.

taking a second derivative or  using (3. ana com o1nlng
several terms gives
12 I F A B - / X2 j ....2 A B I l a~’ ... ,.~ A B I / F ,.,2 A B

operators of the form 1UU1@aLwo applied to A in some order. After takingoperators of the form (2.14) are applied to A in some order. After taking

VoL 6, nC 3-1989.
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~tt x ~* A ~ ’B. V~ J _.:.- : L J*~

.. ’"’ -- -~~~~~~ 

vaaaD ~.v

il 

. - w - ~ M O -

_ __ __ __ __ r

SU 

AISO,

- _ - 

~ - - - -p7 -2014-’-p~2014y~ 

~ 
- - --_ 

,,- - 2014~?

a 

t! ~ / ~ A B ~~ ~-~ tt ~!) A )t s

’ 
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again by regarding wo as a wi (2. 14). Then

1~ Br t*20142014~F* ~ v 2014- ~. B~’ ~7? B~* ’/?

md (4. 8) gives
h

~u c,~ t a a.~ 9 U F~

1 _ i _ 3. Also there are b-j further differentiations. Such a term is there-
’ore a sum of terms of the form

derivatives a‘ r. By A-LA-m«A denominators are bounded away from 0 by a
positive constant depending on b. The construction of A (Ç, z) and related
expressions involves r and its derivatives on the line segment in ell from ç
to z ( 1. 34) for all points ç, z E Mp. Therefore we denote

__ ... ,.__

u louows mat

Combining the above gives the following more precise form of (0.3).

THEOREM (4.1). - Let the real hypersurface M in ( 1. 13) be of class CI
and the ( 0, s) form p, 1  s  n - 3, be of class Ck on the closure of M,

VoL 6, n° 3-1989.
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rcere ck unu Y ure positive constants aependaing uri k.
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