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ABSTRACT. - We prove a local holomorphic embedding theorem for
a formally integrable, strictly pseudoconvex CR manifold M with dim
M=2M20141~7. This embedding is obtained as the limit of a sequence of
approximate embeddings into complex n-space, which is constructed and
shown to converge by the methods of Nash and Moser. The linearized
problem is solved using the explicit integral operators constructed by
Henkin. With estimates wich we have previously obtained for these oper-
ators, we show that if M is of class then it admits a Ck embedding
provided 2I - k, 6 k + 5 n - 2 _ m. Our argument is much shorter and sim-
pler than previous arguments, which were based on the Neumann operator
and carried out in the Coo category.

RESUME. 2014 Nous demontrons un theoreme de plongement holomorphe
local pour une variete CR M, integrable et strictement pseudoconvexe, si

Ce plongement est obtenu comme limite d’une suite
de plongements approximatifs dans l’espace Cn. Nous construisons cette
suite et demontrons sa convergence par les methodes de Nash et Moser.
Pour Ie probleme linearise nous utilisons les operateurs construits par
Henkin et les bornes que nous avons obtenu auparavant. Si M est de classe

le plongement est de classe Ck pourvu que k >_ 21 et m >_- 6 k + 5 n - 2.
Mots clés : Plongement CR, existence locale, méthodes de Nash-Moser.
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INTRODUCTION

. _ .......

integrable CR structure of real hypersurface type with positive definite
Levi form. It was first posed by Kohn [3] and has been solved in large
part by Kuranishi [4] in the C °° case. His proof is rather long and technical,
involving a delicate study in L2-spaces of the Neumann operator for
solving the tangential Cauchy-Riemann equations. This was used in con-
junction with a Nash-Moser iteration scheme to produce an embedding.
Due to its central importance and the difficult nature of the original proof,
the problem merits further study and better understanding.

In broad outline our approch here is similar to Kuranishi’s ([4], III),
but differs significantly in several important details. We also set up a

sequence of approximate holomorphic embeddings and show convergence
using the methods of Nash and Moser [5]. But rather than using the
Neumann operator to solve the "linearized problem", we use the totally
explicit integral operators of Henkin [2] on approximating real hyper-
surfaces in C". The necessary estimates, which are given in [10], are much
simpler than those in ([4], I, II). Working entirely in Ck-spaces, we are
able to prove the following version of Kuranishi’s theorem.

THEOREM. - Let M be a (2 n-1)-dimensional CR manifold of differentia-
bility class ~?". Then M admits, locally near each point, a holomorphic
embedding of class C’~, provided

n>_4, 2~-1~7, (0.1)

cients of class C?", then they annihilate n independent complex valued
functions of class C~.

Kuranishi [4] requires n >__ 5, 2 n -1 >__ 9. Recently, Akahori [1] has given
an argument assuming n >_ 4. He also uses L2-methods and the Neumann
operator. In view of the examples of Nirenberg [8], only the case n = 3 is
still open. Aside from this the question of regularity remains to be settled.
The inequalities (0.2) can probably be improved, even with the present
methods. The derivative loss, m - k, comes mainly from small deno-
minators occuring in the estimates of [10].
One aspect of our Nash-Moser argument should be pointed out. Typi-

cally in such an argument one controls derivatives up to some order k at
the expense of allowing those of order k + p, say, to become unbounded.
For ~. > k, some of the constants in section 5, e. g. in (5.3), must involve
negative powers of the inner radius of the domain. As the domain shrinks
at each stage of iteration, this would cause a problem. We are able to
carry out our argument with p  k, thus avoiding this difficulty and greatly
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in (0.2). V.
In section 1 we give a simple Taylor series argument for finding an

approximate holomorphic embedding. This follows from general principles
and might have been omitted. However, it is an integral part of the
argument and contributes to the greater part of the derivative loss. We
set up the "homotopy formula" for the tangential CR complex in section 2,
using the results of [2] and [10]. Section 3, which shows how to alter an
embedding to make it more nearly holomorphic, contains the core of
our argument. Sections 4 and 6 are dedicated to the technical details of

controlling the embedding. Also in section 5 we state the results from [10]
and make some minor modifications of them. Finally, in section 7 we
present the convergence argument for the theorem. Aside from those
considerations required by smoothing most of the ideas of our proof
already occur in greatly simplified form in [9].
This work was brought to conclusion at the Mathematics Institute at

E.T.H., Zurich. Many thanks are due to the staff for their kind assistance,
and to J. Moser and E. Zehnder for their interest in this work and for
several helpful discussions.

1. INITIAL NORMALIZATION AND APPROXIMATE
HOLOMORPHIC EMBEDDING

Let D be a neighborhood of 0 in (~2 "-1, with coordinates 
and u = u; on which are given n-l complex vector fields X.

of class Cm. We assume that the X~ together with their complex conjugates,
are pointwise linearly independent and satisfy the integrability

condition, Xp] = r~p Where convenient we use the convention that

greek indices run from 1 to n - l, latin ones from 1 to n, and repeated
indices are summed. Our vector fields are determined up to a frame
hange X03B1 ~ C03B203B1 X03B2.

Initially we choose coordinates so that X~M(0)=X.z~(0)=0,
(0) = 6f, and adjust C so that = a~a etc.)

A /1 ~ B

X A?’ =Xo XB =XQ B_ v_
- _ _ _ _ __~ __ _ -----.-.-.......~............. ~""’’’’~A..ae.~ 0 ......-------

fX___ Xol = - i~ ~ ~ _ mod {X- ~ ’.
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We assume mai g is positive definite.
We make a coordinate change F on 1R2 11- 1 to simplify A and B,

7’ II = FP (7 11 ’B = 711 -+ (II (II = () l~l

- - _~__ _ ___ 

r 
-- - - 

-., ~

M)-z"B.(0, u) to get B’(0, M)=0. However, F would be of
class em and A’, B’ only of class Therefore, we replace A(0, u),
B (0, u), and other functions of u appearing in our transformation formulae
by appropriate Taylor polynomials in u. This will result in normalization
at (z, u) = (0, 0). Next we take

~=0.

be removed by this change. If we differentiate (1.4) in the first instance
by Xa, in the second by and set z = 0, we see that A’ (z’, u’) = O ( Z’12).
We next consider Bex’

B,., = (u) zø + O) Z~ + B~ (z, u), B* = 0 (I Z 1 2>.
- 

&#x26;. ’"

2014 - -n - _ _ n- 1

After substituting this into (1.5) ana taKing X03B1-derivatives along
z=0, we find that B~~ (u’) = 0 and that is skew hermitian. Thus we

may arrange that z ~), where g is hermitian and by
( 1. 3) positive definite. Finally, a change z~=z~W~(M), u’ = u makes

= 

This argument shows that with a polynomial change of coordinates we
may achieve

,B R / - v ~~ /"’’B /’B / I ~ x I 2v ~B
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......................., 
- - - - - -- - - -

since X03B1z03B2 = 0 (2), (2). We shall modify Z so that, in addition
Inductively, we assume X03B1Z=O(s), 2  s  m, so that

X03B1zj = I z° P u" + O (s + 1 ),

--_ 

V i r 
__ ._- -----_- __

andb, and the sum is over all indices with p + q + i = s. Since

they are also symmetric in (a b). Therefore, we may
make the change-of-embedding

Z~~ - ~r Z~ ~1i

We shall consider approximate holomorphic embeddings ( 1. 7) of D onto
a real hypersurface M=Z(D) of the following more general form. With
z" = u + iv, M is given by

r- -v+H(z. M~=0. MB

compact closure if p is sufficiently small. We introduce locally defined
vector fields on C" by

y - = a- - r-/r-I a-. 1  a  n - 1 r ; = a : ri, I , , ~ ~,

Also, Y~=0, Ty=0, Tz"=0, Changing our notation from
(1.1), we put

T ( 1.11)

t~ 2014 - -

M"

Vector fields X belonging to the original CR structure which satisfy ( 1.11)
will be said to form a frame adapted to the embedding. They are uniquely
determined by the condition

Y n 1~

J 1 / V / .
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£I’lUn...’-’1. ~tJ

For a function f on M as in (1.8) we define (summing greek indices
om 1 to n -1 )

ou f = Y:: fdz03B1. (2.1 )

L - B "’, ’t’" ’"’~~ 4.’-’

P= y. ..., yA

, , ’’ .*-

3-- f= Y- ~-- n :

___ _ _ _ _ ___ 

__ _ _ ~ _ _ _ 
___ _ __ _ _ __ _ _. _ _ 

_a _ _ 
____ 

__ 

__ _ _ ~ , 
_ . _ ____ . _

=o. =o.

- 

V - 1 - - ~ - 
- ’--- - - 

- - 

J 
- -- - 

- J ...... AJ

We extend the fields Y 0152 in ( 1.10) to a ( 1,0)-frame on ~n by setting
~ _ The dual coframe is 8 - - i ar, af = + A

, q)-form on en has the decomposition A e, where and
’ 

are tangential (0, q)- and (0, q -1 )-f orms relative to M. Since Sl=0,
~ have

= (1",. B11/ + + ~... A It

tending the coefficients of (p=q/ to be independent of v, applying a,
ld then restricting back to M. Thus,

3~(o=3(t)=3~(D+3..(t) n 9. (2.5)

~ ~ Jt. " ~ V

persurfaces Mp in (1.9). For a (tangential) (0, q)-form p, 
~y satisfy

~ ~~ ~ ~ A

s must restrict to n > 4. As noted in [ 10], P and Q annihilate the ideal
erated by 8. Thus, setting PM=P’ and we have the homotopy
’rmula

P- - fn ~ 0.. - rL - (n (2__71

s a Cn-valued or function on Mp.
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3. ALTERATION OF THE EMBEDDING

~ 
_ _ 

-~ - 
_- 

B ~ ~

(1.8) with ax Z sufficiently small, we set
Z.=Z(z, u) + F (z, u), ( 3.1 )

we get 
’

will be introduced later), = ~PM~XZ~ ~ ~~XZ~. From ( 1.11)
(3. 3)

of F will not work in an iteration scheme, since PM does not regain fully
the derivative lost in applying ax to Z. Therefore, we set

( 3. 5)

.. ~-~ ~. u i 

smaller, the pertubation (3.1), (3.5) destroys the form ( 1.8) of M, which is
needed to establish (2.7) and the estimates of [10]. For certain constant
vectors K we have

F(z, u) _

ax z~ (01

set

. va. ...---.



190 .J. 

shall then have 3x~(0)=0 and (roughly)
2)t ~z !P.

t~~JH ~~201420142014A~ ) 

+

~ v asw.., .. --

’n - Tt _ ~a K _ 7

in the fifth. Defining
n=-v ’70152 7j - K 

20142014201420142014~20142014201420142014 

c- - 
--

‘J . 1 Lr~ 111Ci’ 11V YY p, a.a.V

u) +

2014 201420142014201420142014 2014~ ~- 2014p P 
-~ -20142014 

201420142014~J~ 2014~, ~~ ~ ~ v ~~ ~ B , ~

its ( local) inverse:

. Z"=Z~+~ (ZB u~~ , _ _ ..,

the new embedding. By (3.16) and ( 3.19) the new hypersurface M1 has
he equation

. - ---- ----- ---- ---- 

------ - «, - 
-~ -- ,-. - -;

To define the new frame X§ adapted to Zi, we first put
X ’ = cfi X ft- C = T + t- 1
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.........--- ---

original via the map f We have

X! °j?= 8?,

Zl and diffeomorphisms fJ, j = 0, 1, 2, ... We must then show that the
sequences Z~ and converge in a neighborhood of 0
in 1R2n-1 to Z ~ and F~. Then Z ~ will give a holomorphic embedding of
the structure dF 00 or equivalently, F ~ will embed our original
structure.

4. GEOMETRIC PROPERTIES OF THE EMBEDDING

The approximating real hypersurface M given by ( 1.8) has an essentially
nonlinear character, which is fully gauged only via the Cartan-Chern-
Moser theory. We shall not require this theory, but we shall have to
control the function h, which remains non-zero throughout our argument.
Otherwise the domain Dp would tend to shrink too rapidly during itera-
tion. We should point out that the domains u))  p are in some
ways more natural but need not be convex, a point which causes consider-
able difficulty. Thus, we have chosen Dp as in ( 1.9).
We set

x=(Z, u), (4.1)

ORl.

~ 

_ .. .. 3...

VoL 6, ir 3-1989.
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1... _ 9 I IA

~ a~L

Ll 6V P OV 

1BJ /~~~ 1 

rtain desired properties. In particular, we have just shown that D03C1 has
impact closure and (4.3) holds on Dp if Co is sufficiently large. (Absolute
instants, denoted by c, c’, c~ etc., are those independent of particular
motions and of the number of derivatives taken in our argument.)
We claim that Dp is a smoothly bounded strictly convex neighborhood

f 0 if Co in (4.5) is sufficiently large. Since diy (0) = 0, it will suffice to
ow that the hessian of 03C8 is positive definite on Dp. But
r/~Y~2014~~-~h~-t-~..~ ~

Next we estimate the distance between aDp and for 0ol.
For this take x 1 By the mean value theorem on xo xi,

« ,,) >

wes ae l’Institut nenn romcare - Analyse non linéaire
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pol VI D03C1  a.rC necessary Ior Ineestimates of [10]. For this let W=(w, w") be a second coordinate vector
for C" and put

c ~~ ~ ~ ~ B.

In [10] we required

- -- - - - - -------- 

_. L _ -, _-.-..~ .........&#x26; .. y,. - iai 

First consider S p ( S q is similar and simpler),

large.
For (4.9) we take a second order Taylor expansion of c about Z,

r i

ttL L ’V A U~. 

r(Z)=r(~=0 ‘,
tv2014u)!~ "? h ~~-~ u~r o!n~7 I 

H M i v - -

-2014 c~’

t- ... 12 i

on Dp. By increasing co, (4.9) is attained with an absolute constant c2.

Vol. 6, n~ 3-1989.
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, ESTIMATES

a function f on a domain D in 
1 1 _~,~f ) 

egin with some elementary properties of these norms relating to the

roduct rule, chain rule, and inverse mapping lemma. With a fixed k in
ind we shall consider differently derivatives of order b which are low
 k, intermediate k  b  2 k, and high b > 2 k. High derivatives and the
sual methods [7] for dealing with them will not enter into our arguments.
From the product rule we clearly have

I ~.,«wl ~I I i - I /~~B

~ J 1 - r

ore than k can fall on only one function; thus
I I f I 1 I I 1

_ _ _ - - - . _ . _ __ _ _ _ - 

, .." - 
_ _-- _ _ _ _ - _ _ -- _ - __.-- _

For the chain rule let G : U ~ V, V - where U c V c For

i 1, I J =_j, we have

1+J JL 20142014f 20142014 fV

-- I-I 
. I ~ ~ ~r=’-’ ..- .. _ _ ., _ ... ~ .t. ~ ~ ._. 1 . - ‘~ _ . ~ _ _ _ .,.. 1 

-- --- - --

’ 

the terms with s  k, and S2 the rest. If in 81 one > k, then the rest
’e  k. Thus,

v v

11 T 1 ~ .. _ c (k + ul ( 1 + I G 1

.
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. 1 / I _ ’-

For the inverse mapping lemma let D and D’ be domains containing 0
in R". Suppose f maps D onto D’, f (0) = 0, f = I + f 2, f 2 = O ( x ~ 2), and f
has inverse g=I+g2 mapping D’ into D, fog(x’)=x’. With d denoting
the Jacobian matrix and ~~1, we also assume

I - - I 1 , - I

........a._--

1.,1- I

- --- ---- -----.-.--------- ----..---..-- ...- ---------- r=-"- 
...- --- 

B---.,., ....- --- ’-"-.I’

(5.9), (5.6), (5.8) to get
I dQ, Ir../ 1- . I  c (k - 1 + ui ae I (0 Ir.. 1- . I -- + I Q Ir../ L . L -- 1.

adaptations. It’s easy to see that inequalities (4. 5) of [10] hold with 8==c p7
for Mp as in ( 1.9). Since D?x R is convex, the norms over Mp in (4.12)
of [10] are bounded by the norms over Dp.

I = 1 (L.. - 



196

a

e - 11

.ounded away from 0 on Dp. With b = k - 3, (5.2) and ( 1.8) readily give
I t~! I 1 ’1B

____ _ ~ ~._~ _... ~ r __~ 
~_ ~_ _~ __~ 

__-_ _ _ _ -__ _ _ _ _ _ 

’ ’

,v . 1 t I l~ 1 C1

~~.

For the intermediate derivative estimate we take ~=~20143+~ ~~~-3,
id write + S~ where Si is the sum on j from 0 to k - 3.
i(5.12~) forSi, al + ... +~=~20143+~2014j, so that at most one ai > k - 3.
hus

,. - ’2&#x26;

cin;e, 

perators. For each integer k > 0 and for 0  t  00 one may construct Sr
hich is convolution with a smooth function supported in a ball of radius
in ~2 "-1. Thus, by (4.7)

f . £""10 /T~ B B n.. - ~ - - - 1 - - i ~ 1 AB

the following two properties aiso nom,

t~ f I rl 1
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6. ESTIMATES FOR THE NEW EMBEDDING

Vl 

and that we have an approximate holomorphic embedding Z on D . Also,
we assume inequality (4.5) with co so large that all the results of section 4
hold. With 071/2, we make the perturbation (3.1),
(3.5). Then for p=p(l-2(r), (5.20) with a = k - 3, b = k and (5.13) give

~_c~klt-3IP~.~~Z1_" __, ...

. - " "-8" / .,

c (k). Then ( 5. 20) ( a = k - 3, and ( 5.13) give
IFI~ ~_,  t ~ " 0. fl  u  k - 3- ( 6- 2i

B / J Lr ’B.,,,,,,,,

(3.11), we have, using ( 5.15), ( 3.14),
(6.3)

{

~ ’ ’ 

S~ ~ CX p~l/2) (m-k+ 3)~ 
~ ~’

fixed, ( 6.1 ) and ( 5.14) give
8"  c~ (kl p~1~2) (m- 5 k-4 n+ 13~_ (6.6)

- 

- 7 
-, - 

1 
~ 

L- - 
---- - 

~~ . ~ 
-- - 

--, . - 
_ 

- ..I

m > 5 k + 4 n - 10.

assume 0  t  1, 0 _ ~ __ 0  1 in the following.
Next we analyse the properties of the map f (3.19). We want to show

that f maps Dp onto DP ~ 1 _ a~ and has inverse g mapping into Dp.
For this we fix x’ in and must show that the transformation

W {x) = x’ - f 2 (x) has a unique fixed point x in Dp. Since f2 = O (2), ( 6. 3)
and (4.3) give, for xeDp,

- , . - ,
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- - o -

-~~ VV11V..~J.11~. -3 - "* "~ "i? "2 a.~.a... ~~~ ~~~y .. - 2014~2014~ --2014

alue theorem on the segment xi x2 and use (6.3) to get
!w~~2014w~~!=~f~Y-~2014f~Y:~! I

- -- - 

_ ~ ‘ _ _ _ ~ ) 
- _ _ _ _ _ _ . - 

., v v t’ -

(ed point, f~g (x’)) * x’. It follows that g = I +g2. By (6.3) and (6.8), (5.6)
so by ( 5.9) and (5. 10)

1 ~_ 1- ._ ,.  ~ I f- 1- L (6.9)

Len will be less than c-11 p*o(4.7) on Dp*(l-a>, so that
f(D...,, _J= 1).., for p* D.

wever, its proper domain will be [see (1.9), (4.2)] 
’ 

... , , , , , ......-

E Dp, (3. 10) and (4.5) give
I lil’ - B11 I  I Z’~ - 7~ 1 (1 1 + ? I ’7n I -+ 1 7’~ - Z~ I 1-

.~ ».. 

p?

.~ - 

P1 
.. - 

~_~~ _ ~ _.«r...._ _ --1 -"’’’’’-6 &#x26;..J. -J , A. , J

Z, f z, u) - Z (z, u) _ (0. i (H, ~z_ ul - H (z.
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- ~~2014 ~-,.2014~, ~~.~~, ~~.~~, ~~.~~, ~~.2014~, B-- ")’

Ih,-hI_ ,I. +.T,4

1z..*I- 

By (3.23), (3.22), (3.21), and ( 3. 8) 
’ ~’ ’ 

I - I

- 

---,., - -~------ T~ ,-a - -" 0-’--

I x 

¿ - ¿
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nu 

- -2014~2014~~, ~~.~~ ~~

~ , j j~y ~~ ~ 20142014 ~ ~ 
_ r -

*t~J~~~~~At~ ~ tt~~~~ ...~, "’" ~~t*T~~

TT ...."........ &#x26;, V-~ .J I ,..., ..V 0-’"

,

v ~~ ~~ t~ ’~7 B ~« ~~ J  f~* ’ 2014’~*

I ~~ ~ 2014 1 + u v~ ~ f ) *

I i L .

- - v v i r v i ~ ~ . - 
_

or I2, we have

~_~_KI~,.~~ZI.."__, 

I T.. I_ . ~ r-1 3

Õ1 
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- -- ~~___ ___r ~ __ _ _-_- __ _ ,~ , ,~ , 

(6.15) but using the corresponding intermediate derivative estimates, we
have

Ih.L 

D J 6"""

~ h -~ h * ~ ~..  ~ ~1~

t-~J Bv. B2014* ~~-/) *~~* B~* ~/

-- -2014 - ~ - ~. ,

1 f i . i -

I__ L

1 I 1- I

2014201420142014y 201420142014 ~, ~ ~ v _

T 

7. THE SEQUENCE OF EMBEDDINGS

We must show that the foregoing process can be repeated an infinity
of times and leads to a sequence of embeddings which converges to a

VoL 6, n° 3-1989.
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n... == n.n -5-y~. cr.=5’~’~ )f7.n 1

nfinite product, one sees that 
00

t t ~~ .- ~ ,_ ~~B

waiw. _~__ _ .. - __~ . _ _ _ __ - 

J "./ 
- 

J/ ,. J"

with

cr, N i ~ ~  1, (7 . 3)

f or convergence.
We define

F. =/:o ~ . 0 - - . 0 f"=f ~ F~_, : U, - (~2"-1. (7.6)

specify. However, since the D(pj) :::> B (2 p3/3) (4 . 3), and they decrease,
all the Gl are defined on

n*= r~ ~nfo~:07:oo ~ A

11 WC show

±1~ - ,- "~~: 20142014B 9 ’ ~: B a

ding defined on a neighborhood of 0 in 1R2n - 1. The corresponding vector
fields ( 1. 10), Y~, will converge in Ck-1 to Since, ( 1. 11),

(7.11)

to X:=V: in Ck - 3. Thus, we shall have produced an embedded real
hypersurface of class Ck which is, in fact, equivalent to our original
structure. However, we shall not yet have produced a Ck solution to

for the original We must still analyse the maps FI, G"
as in [9].

Annales de l’Institut Henri Poincaré - Analyse non linéaire



203

...> ,_. -" y~, ’-/

I 

we have -

dG,=(dG,_, dgj,

~ - - I . r J.’ ~ 
20142014

the uniform convergence of the G~ to a continuous G~: D* -~ D(po). For,
arguing as for J 1 in (6.15),

I G f - G f ~ L ~  o prj!_ 1 1 g, , f 11- - ,.~~rm 0 . N ~-

set U* = G* (D*), and we have a common bound
I F, L T 4  II dF~ I L _ h’_

verge uniformly on D*. Since the dGl now have the positive lower bound
I /b’ in norm, it follows that the Gl converge in C1-norm to G*, which is
a diffeomorphism (after shrinking D~). Thus, U* is an open set and the
FJ converge in C1 to a diffeomorphism F~. F* is a CR equivalence between
the structures Xf, X~.
To show that the F~ converge in Ck to F*, we fix s, 2  s _ k and assume

that we have a bound

IF. L y .~ . L f7~5~

dF,=(df, ~ F,_,) (dF~_ ~),

1 
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_~ ~:~ ._ ~~ ~ i 1_ ...

tj ~ 
- - . ~ -

I., _ .  c ( ~l I d f., , .!..  n -!-~_.~’~!.~

If we can establish an a priori upper bound N* > and then shrink

po so that co N* J£  1, (7. 3) will hold for all j. From (6 . 18)

..,...u...... ~ .. ~_ ~ .. ~_ a.~...._.~~___ ~.~___ .._ ..... »__... _ .. ~ .~_ .....»_..,...~.__ .. _ .. _~ _ _

determined, we define

Y - ~- - S ~ 1~T 1~T ! 1 1 L.1 _ _ ~ - S - 3 ’~ V W T 11 1 L 1 l ’7 fl l i

_ . _ _ _ _ _ _ __ _ _ _ __ 

_____~ __________ _~____ __ _ _~ ____ ~

we can show ~~ _ 1, then by (7. 4), (7. 1)

Now we assume that we have constructed Zi, i~j, satisfying (7.4), (7.5)
md for a constant M

1

any li+1~ci03C1i+103C3i+1, we may construct Zj+1 on 
(6.18), ( 6 . 27), ( 6 . 28) and ( 6 . 29) we have ( 7 . 20) and 

zj + i on D03C1j+1. n y

8.~~K.8?+f:’~K*L.uY (7.231

- - 
- -- - - - - 

_l~ __~ __~, 
-- - - . 

J ’- - " .. - 
-- 

J - - / ;; - - - - , 
7

( 7 . 21 ), (7. 22), ( 5 . 14), ( 5 . 18) we have, successively increasing c(k)> 1
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- --7

_ 

__w ~ . _ - _~ 
__ 

~ _ _ ,_~ 
_____ 

~_ 
_

N;+ ~ ~l) ~ .~ ~n~ ~~

Next we consider ~+1. By ( 7 . 21 ), ( 7 . 23), ( 7 . 26), ( 7 . 27), we have
:..J....1 t:~; 3K~~, N:~, ri~ ~’’’ ~ t-’ K.8? + tr’ "’’K* L. fu) ~ r

J ~ 1 i) i

. ~_~. ~. 2S~’S _

(7.4) holds for j then 
’

then (7. 4)~+ ~ holds.
To (7. 5) and (7. 22) we add the inductive hypothesis

__ _ .,_ ~ _ _ __ __ . _ _ __ _ _ .. , 1 _ _ .

~N~~N~’B so that ( 7 . 5) may be replaced by the stronger
c (k) t; N2k -1 03C3-1i  1. ( 7 . 32)

exceed (A:)~’~ 5. This will be less than one if po is chosen

sufficiently small, and ( 7 . 32)~ will imply ( 7 . 32)~; + l’

VoL 6, n~ 3-1989.
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-------j . - - ------ .. - -,j+ I 
-- .. - - - -

n.=WV 

~ ’" - 20142014 -~7 ’" - 20142014 20142014 ~7 
~2014201420142014 

J - - - J

~1) ~N~)

~ ~ J - -~~..

~>2s+6, (K- l)ti>3s +10.
B ~ 

’~ 

W ~ ~ ~ r

... - +, i__ 4’ v __

- - --- - _.__ ___-_ _ _ - __~_n - - 

~ 
___ 

J J r ~ ) ~ - 2014 - ~ ~ 7

if po is taken sufficiently small (7. 31)~+ 1 will hold. This completes the
induction step.

It remains to verify the above conditions for j =0. For this we take
to = po J3 > 1. Then (7.4)0 holds and ( 7 . 32) o will hold if po is
small enough. We can achieve (7. 31)o by shrinking po if [see (5.14) and
(5 . 18)]

f~.. 0~ ~1 ~ ’~ .. /~7 ’1 A i

v) ‘i . ",",U.I...l B ’ . .1..1.

~ -j~ -t-3->2B~ -~ ~ -t- 4~4- ~ -16.

small, the construction is possible for all j and yields a sequence of

embeddings Fj of the original CR structure which converges in C’‘-
norm on a neighborhood of 0 in to a holomorphic embedding. We

may take s = 1, K = 7 4, and u=18. Since ~k-3, we need k ? 21. By the

construction of section 1 we may take Zo to be a polynomial. For j> 1
the Zj as constructed in section 3 are Coo. Hence is finite, and by
( 1. 11) ~XjZj is as smooth as (A’, e. of class C"’. By (6 . 25) 
will If we then (7.34)
holds and ( 7 . 35) becomes m >_ 6 k + 5 n - 2. This implies m >_ k + 15 since
k > 21, and the theorem is proved.
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