Ann. Inst. Henri Poincaré,

Vol. 6, n® 3, 1989, p. 209-232. Analyse non linéaire

_ - ¢
V ~ sy T8 o
[ TN TS oM S0 S

. hiv

Small time periodic solutions of fully nonlinear
telegraph equations in more spatial dimensions

by

Milan STEDRY

Mathematical Institute of CSAV, Zitna 25,
Praha 1, 11567, Czechoslovakia

ABsTRACT. — The solution to the problem is expressed by means of a
couple of new dependent variables—the time derivative of the desired
solution and a function independent of time, which is the trace of the
solution in a fixed time. This simple device makes it possible to prove the
existence of a time-periodic solution without encountering the “loss of
derivatives” phenomenon.

The result provides a small smooth solution, unique in a neighbourhood
of zero, for any equation which is a perturbation of a suitable linear
telegraph equation at least by quadratic terms which can involve any
derivatives up to order two of the unknown function.

Key words : Hyperbolique equation with dissipation, time-periodic solutions.

ReEsuME. — On démontre I’existence d’une solution périodique en temps
pour une équation hyperbolique du deuxiéme ordre avec dissipation et
une force périodique mais petite et avec une non-linéarité composée de
dérivées de la variable dépendante dont 'ordre ne dépasse pas deux.

Le phénomeéne de «la perte des dérivées» est détourné par une simple
transformation de la variable dépendante.

Classification A-M.S. : 35B 10, 35L 10.
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210 M. STEDRY
1. INTRODUCTION

Denoting the number of spatial variables by n we set

5=[";1]+1 and M=n+3,

where [ ] is used to denote the integer part of a real number. With the
usual notation for derivatives we write

Jwy={&du|a|+p<2,a=(0y, ..., }

to denote the jet of all derivatives up to order 2.
Let G=G({); {={l8}/«1+p<2 be a function on a neighbourhood

N (Mo)={&|&&|<m, for |a|+p=2} of 0 in RY, d=<n;3). We shall

suppose that Ge CM* 1 (A" (N,)), G(0)=0 and that the functions
oG
P(ry—
£ (%) ac ©
satisfy
g2(0)=0  for |a|+p<2.

Throughout the paper Q will denote an open and bounded domain in R"
of class CM*', We shall show the existence of a classical solution to the
problem

Au+d,u+xdu+ Y 8, o,u+GJu)+f=0 in QxR, (1.1)

. r=1
u(x,t)=0 for xedQ, teR, (1.2
u(x,ty=u(x,t+2n) for xeQ, teR, (1.3)
where x and all x, are constants,
(A (x, )= Y. (=D'*13;(a,5(x) Eu(x, 1)), (1.4)
laf, IB]21

and fis a smooth and small function. The detailed assumptions on A and
f along with the main result will be given in the next section.

Let us note that those assumptions will be satisfied for A= —A and
x, =0. Hence the equation

—Au+6,u+K5,2u+G(6,i6,ju, 0y, 014, 0., u, 0, u, u)+f=0

has a unique small classical solution which is periodic in time with period
2n and which satisfies the Dirichlet boundary condition provided that f
is 2 n-periodic, sufficiently smooth and small.

In one spatial variable this problem was studied by P. H. Rabinowitz
[7], with the help of a Moser theorem to overcome the “loss of derivatives”

xi
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PERIODIC SOLUTIONS TO A NONLINEAR TELEGRAPH EQUATION 211

phenomenon, see [7], p. 16, encountered when the usual Newton iterative
procedure is applied. In this connection see also [2], where even a bifurca-
tion problem is treated.

The solution u to (1.1)-(1. 3) will be written in the form

u(x,t) =J-tv(x, T dt+b(x),
0

where, obviously, v=0,u and, by virtue of 2n-periodicity of u in ¢, v

2n

satisfiesj v(x, £)dt=0.
0

This device makes avoiding the occurence of the “loss of derivatives”

possible. Hence, by using Schauder’s theorem, we are able to extend the
result of [7] to more spatial variables and also to suppress the explicit
appearance of the small parameter and to improve the assumptions on
regularity of fand G.

The idea of looking for §,u rather than for the solution u itself is not
new. It has been used in time periodic problems at least in those having
the form where it is possible to separate the determination of J,u and the
time independent component of the solution, see [6]. As far as the initial-
boundary value problems for (1.1) are concerned we refer to [8] and [9].

Equation (1.1) was taken in a form imitating the one-dimensional case
of [3]. One of the crucial sufficient conditions for the existence, (2.2), has
been taken over from [5].

The author is indebted to his colleagues P. Krejci, V. Lovicar and
O. Vejvoda for helping with some preparatory assertions and for biblio-
graphical hints.

2. BASIC NOTATIONS AND THE MAIN RESULT

The notations are standard. All functions are real-valued. The spaces
L?(Q) and H*(Q) will be, respectively, equipped with the norms

1 o.a=( leunzdx)”i
1l a=max ] 625 o,

al<k}.
H;(Q) is the closure of CF (Q) in H! (Q). Denoting
Q=0x(0,27)
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212 M. STEDRY

we equip the spaces L?(Q) and H*(Q), respectively, with the norms

2x 1/2
llullo.o= J lu(e, 0> dxdt)

0 Q
|l ulle, q=max {|| 320 ulo, o3 || +p <k }.

C?,(Q2xR) will be the space of C® functions on QxR which are
2 n-periodic in t.

By H*(Q), the same symbol as above, we shall denote the completion
of CZ,(QxR) in the norm ||. ||; o

By H}(Q) we denote the closure of {ueCy (QxR); u(.,)eCF(Q) for
all teR } in the norm ||. ||, o

In what follows, in agreement with the last two notations, all functions
depending on t are supposed to be 2 n-periodic in ¢ without any particular

reference to this fact; especially, there is no indication of the 2 n-periodicity
in t in the notation of the spaces. As usual, the inner product in L2(Q) is

(u, v)oszEJ u(x, t)v(x,t)dxde.
o Ja

For later use we also mention here the norm

¢ e = max ([ [l - 1] 65 * [lo,

which was implicitely used in [7] and which is of a basic importance in
the investigated problem.

Occasionally, the C* norms, denoted by ||. ||, and ||. ||t @ will be
used. With the above choice of n the Sobolev inequality takes up the form

lulle@=Csllullze 2.1

which, for simplicity, will be used with the same constants Cgs and n also
in cases, where the domain Q < R” appears in licu of Q.

For A given by (1.4) with a,,eC;(Q), p=M—1+|cx , the class of
functions which have continuous and bounded derivatives up to order p
on ), we set

n

Lou=Au+0,u+xdu+ Y, 0, 0,u

r=1

Throughout the paper we shall suppose that there exist positive A and C,
such that

(Lot Aoz Collullq  for ueH*(QNH}Q, (2.2
where

Au=38,u+\u. (2.3)
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PERIODIC SOLUTIONS TO A NONLINEAR TELEGRAPH EQUATION 213

In particular, when u is independent of t, (2.2) assumes the form,
ue HL (€Y,

Y g (x) 2 u(x) Bu(x)dx2(Co/M) ||u|l}, a0 2.4
lal,IBl=1JQ
the condition of ellipticity of the bilinear form generated by A on
H5 () x Hg (Q).
With A, x, x, and G satisfying the assumptions listed above we have

THEOREM 2.1. — There are £€>0 and >0 such that for every f
with || f l|lm-1 <€, there is a unique ue HM*1(Q), |lully, q<m, satisfying
(1.1)<1.3).

The proof is given in the next four sections. Relying on an auxiliary
result whose proof is put off to Section 4 we give in the next section,
Section 3, the proof of the main part of the above theorem. The auxiliary
result is based upon the study of a linear problem which is postponed to
Section 5. In the last section, Section 6, the proof of Theorem 2.1 is
completed by showing the uniqueness and improving the regularity result
of Section 3.

3. PROOF OF THEOREM 2.1 (FIRST PART)

In this section we introduce various sets and mappings, whose properties
will be studied later, and we prove the existence of uc HM(Q) satisfying
(1.1)-(1.3). Two minor parts of the proof which will require the applica-
tion of techniques developed in the next sections are postponed to the
closing section, Section 6.

We set

H; (Q)={uEH"(Q); r"u(x, )dt=0 for all er}
0
and
(Iv)(x, t)=fv(x, 1)dt
0

for any ve H¥ (Q). Obviously, Iv is also 2 n-periodic in ¢ and, as we shall
show; satisfies

1o]lo,q=2lvflo. - (3.1)
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214 M. STEDRY

For any ze H!(0,2n), z(0)=2z(2®x)=0 and almost all t from (0,27), we
find easily after some simple arrangements that

2 4 <22 (1) cotg A ) =2z (V] —z*(1) —[2 Z (1) —z (1) cotg3:|2
dt 2 2|

Since z2 (z) cotg% -0 as 10, and T—>2n_, we have, by integrating
over (g, 2n—¢) and letting € \ O,

2n 2n T 2

j [(22)% -2z dtzj |:2z’—zcotg—] dt=0.

4] 0 2
This gives

2= 2n

J z2(1)dt<4 J [z (D] dr,

0 0

t
from which, by setting z ()= J y(t) dr, it follows the following version of
0

2rn
Wirtinger’s inequality: for any yeL2(0, 2n), j y(t)dt=0 it holds
o

J“(Jty(r)dr)zdt§4f2ﬂy2(t)dt.
4] 0 0

From this inequality (3. 1) is easy to obtain by integrating over Q.
Let us denote the left-hand side of (1.1) by F (u), i.e.

F)=Lou+G(J @) +f
and by L (g(J (u))) v its linearization at u, i.e.
LT @)v=Lov+ 3 gIW);of,

Ja|+p=2

where g (J (u)) is short for {g2(J (W)}, 4|+ p<2-
For two positive ¢, and ¢, which are sufficiently small, and which will
be fixed later, we set -

V(e ={veHY (Q NHE(Q:|[v]h oSt}
B(Sb)z{bEHM(Q) MYHS (); Hb”M,nésb}-

For any ve V(g,) and b € B(g;) we have ,(I v+ b) =, since b is independent
of ¢, and thus simple calculations give

8, F(Iv+b)=L(g(J(Iv+b))) v+0,f. (3.2
We now express F(Iv+b) (.,0), the trace of F(Iv+b) on Ox{0},ina
convenient form. This will be achieved in (3.5). We begin by arranging
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PERIODIC SOLUTIONS TO A NONLINEAR TELEGRAPH EQUATION 215

the components of Ju like this
Ju={uororu}, |[B|<2, |v|+p=2  p21,
so that the derivatives with respect to x come first. Denoting
J:ch‘:{ 6gu}| Bi<2>
J u={6;6f’1 “}]7|+p§2,pg1,
so that J' u contains at most first derivatives of u, we have
Ju={J2u,J' 8,u}.
Thus
J(Iv+b)={J2(Iv+b),J v}
and
J(Iv+b)(x,0)={I2b(x),J'v)(x,0) } (3.3
since for t=0, as it is the case, all terms containing the integral disappear.
Owing to the assumptions on Q, a.4 and (2. 4), A can also be considered
as a linear isomorphism of H™(Q) N H}(Q) onto H" 2(Q) for any m,

2E€m<M+1, see Theorem 9.8 in [1]. We make use of it by referring to
the inequality

A7 @llm aZCal|@]lm-2 2 (3.4)
Eventually, as the last notation of this section, we put
Ob,v)=—-A" (v(.,00+x3,v(.,0)
+ 3 %3, 0(.,0+GJ2b,J'v)(.,0)+1(.,0)
r=1
which satisfies
F(Iv+b)(.,00=A (b—®(b, 1)) (3.5)
as we immediately verify using (3. 3).

The following lemma is a corner-stone of the proof of Theorem 2.1
and will be proved in the next section.

LemMa 3.1. — There exist positive €, €, and & such that for any f with
WS- <€ it holds:
(i) For every beB(g,) there is a unique veV (g,) satisfying

(LgFdAv+b))v+0,f,9)0=0, VoeH? (Q); 3.6)
when this v is denoted by v (b), then
l0®)—v®2) h-1.o=[1b1 —b2{lm-1. - 3.7

{ii) The mapping b — ® (b, v (b)) has a fixed point in B(g,).

Vol. 6, n° 3-1989.



216 M. STEDRY

Proof of Theorem 2.1. — By part (ii) of Lemma 3.1 there is beB(g,)
satisfying b=® (b, v (b)), which, by (3.5) means
F(u)(.,0)=0 (3.8
for u=Iv(b)+b. By (3.2) and part (i) of Lemma 3.1 this function u
satisfies
(0, F (u), 9)o=0 for all ¢eHg (Q

which, since obviously d,F (u)eH? (Q), implies 8,F (u)=0. In virtue of
(3.8) we have F(1)=0; i.e. (1. 1)~(1.3) are satisfied. Obviously, ue H%(Q)
and u,=ve H“(Q). Thus the proof of Theorem 2.1 will be complete if
we show the uniqueness and prove also that #2ueL?(Q) for |a|=M+L
This is postponed to Section 6.

4. PROOF OF LEMMA 3.1

In what follows y will stand for a collection of functions yZ,
For a given v we set

L(y)v=Lyv+ Y yPd%0Pv,

laf+p=2

a|+ps2.

and

1 Wl =max { [ 2 [llns | ] + 2= 23

The proof of Lemma 3.1 relies on a proposition concerning the linear
case.

Lemma 4.1. — There exists 8>0 such that for every v, |||v]|lm-. <8,
and both m=M and m =M —1 the following implication holds:

When (| h||,.-» < 0, then there is a unique ve HF (Q) M HL(Q) satisfying
(L(y)v—h, ®)o=0 for all e H? (Q). Moreover,

[[©[lm, @ =K 2 [}~ 25
where K depends only on 8.

The proof of this lemma is postponed to the mext section. A similar
proposition could be stated about the solution of L(y)v=h, cf. [T},
Theorem 5, p. 33.

In the course of the proof we arrive at several inequalities involving
g, & and some norms of f, which we shall suppose to be satisfied, see
Remark 4.1. We have n+2<M and thus, by (2.1) and (3.1), for any
veV(g,) and beB(g,)

lez0r(To+B) [lc = Cs (| 1072, o+ B |74 2, 0) _
<G (2| v]lm, @+ Bl D <Mo
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PERIODIC SOLUTIONS TO A NONLINEAR TELEGRAPH EQUATION 217

for all (o, p), || +p <2, provided that

Cs(2e,+8,) <Mp- 4.1)
As g7 are defined on .#"(1,), We can set
=g7(w), w=J(Iv+b) (4.2

and derive an estimate of ||| ¥ [|[u- .- This is done via an auxiliary norm

17 lllw =max { | ¥{lm, o: | ¥ [lm. o }»
where, as above, the same symbol is used to denote the norm of a scalar
as well as vector function. Obviously

Ul Um0l H15-

In obtaining various estimates the following two lemmas will often be
used with 8 equal either to Q=R"*! or Q = R*. The first lemma is a
particular case of Lemma 5.1 expressing the algebra character of the
space H™(0).

LEMMA 4.2. — Let integer m satisfy m=n. Then, for any a, be H™(0),
it holds

l|abllm.0 =0 | @llm, o /| lm. o

LemMma 4.3. — Let geC™(A), # ={(eR) ||<n,i=1, ..., 1}, mzn
(i) There is a constant o such that Hg(z)“m o< O for any z—(zl, A
satisfying || z;||m e <M/Cs, j=1,
(ii) If, moreover, geC"‘“(./V) and g(0)=0, then
”g(z)“me cmax{”zJ”m 0 J _1 l}
(iii) If geC"*2(A"), g(0)=0 and also (6g/6Cj)(0)—0 for j=1,...,1
then
18 @ lIm. oS o max {||z[[7 o3 j=1, .. -, 1}.

Part (i) of this lemma can be proved along the same lines the proof of
estimate (2. 4) on page 273 of [4] has been achieved. If moreover, g(0)=
then

L og
= d
g2(2)= :Zl . 6ci(tz) T2z

By part (i) of the present lemma

j —(‘rz) dt

and thus from Lemma 4. 2 apphed to the last equality, it follows
12@ oS omax (]|l e j=1 - -, 1},

<c

="

m, 8

Vol. 6, n° 3-1989.



218 M. STEDRY

i.e., part (ii) of the lemma. Similarly for part (iii).

In what follows o (with index, bar or tilde) will denote the constants
obtained as a result of estimates in which Lemmas 4.2, 4.3 or both of
them have been applied.

For vy given by (4.2) with eV (g,) and beB(g,) we have

avi= Y Enaas
|pl+a=2 OG}

since b is independent of t. Applying Lemma 4.2 and part (i) of Lemma
4.3 to any term behind the summation sign we find that the norm
Il |- 2. @ of any such term is estimated by

01 [|050 0| hu-2,0=5:[|]lm. o

Further, ||Y2|jy_». o is estimated by o, (|||, o+||P|lm ) in virtue of
part (ii) of Lemma 4. 3 since g£(0)=0. Thus

v lil-2=0s ([0l o F 1B .0 <3 (4.3
as soon as
o, (g,+8) <d. 4.4
Let us suppose
101 fllw-2 <eJ/K (4.9)

and fix any beB(g,). Then, for any veV(g,), we get, by applying
Lemma 4.1 with m=M, a unique ve HY (Q) N H}(Q) satisfying

(L(g(JAv+b))v+0,f,0);=0 forall peH? (Q) (4.6)
and, by (4.95),
2l e SK |8 lllm-2. 0 S50 4.7

This means that the mapping v — v, which we shall denote by ¥, maps
V (g,) into itself. We shall continue by showing

” Y (v)—¥ (v) “M~1, 0S¢g,0,K “ v, —0, ”M—l, Q (4.8)
for any v;€V(g,), i=1, 2. Setting v,=¥ (v;), we immediately get
(Lgw)) (0, —0)+h,9)y=0 VYoeH; (Q 4.9
where
h=L(gw))v,—L@Egw)v,= 3 (g2 (w))—gE(wy) 3387 v,
lal+p=2
and

w,=J (Iv; + b).
Lemma 4.2, applied to d,(ab)=(d,a)b+ad,b, yields
ab Il <swmlilalllx Il o[l (4.10)
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Hence,

I

Obviously, for [a|+p=<2,
10207 v, |llvi—3 /307 0 -2, o= 22 ]I, 0 S &0r

Here comes out the reason why we are not able to prove (4.8) with ||. ||u, o
norm: ||| 8% 67 v, |||55— » cannot be estimated via || v, |y, o- Next,

hlli-s<om-s 2 Me2wD—gZwy)|lm-alll 8207 v, |-

lal+p=2

1 y
Zw)—gZw)= Y a—gi(w(r))draﬁaf(l(a—ﬁz))

181+as2Jo OC}
with w(t)=1tw; +(1—1) w,. By (3.1) and by the definition of norms
1662 X @1 —02) [li-3 <2123 =02 -1, -

From part (i) of Lemma 4. 3 it follows, 0<1<1,

ogz T osk <c.
“ FTRNA I PR W
Hence,
-3 e 02 ll2s =22 [lu-1. 0 (4.11)

When Lemma 4.1 with m=M—1 is applied to (4.9), (4.8) follows as a
consequence of (4. 11).

V(g,) is a compact and convex subset of HM~1(Q) which ¥ maps into
itself. Moreover, by (4.8), ¥ is continuous in ||.|jy-1 o Hence, by
Schauder’s theorem, there is a fixed point of ¥ in V(g,), say v, which, by
virtue of (4. 6), satisfies (3. 6).

We now show (3.7). Let b;e B(g,), i=1, 2. According to what we have
proved, there are v;€ V (g,) satisfying, i=1, 2,

(L@ Tv;+b)) v;+08,£,0)=0 VeoeH] (Q.
Setting w,=J (Iv;+b;), we find

(Lg(wy) (U1_Uz)+7’: 0)o=0, (4.12)
where
h=L(g (‘;1)) v,—L (g(‘;z)) Uy = Z (g2 (‘;1) _gf(‘;z)) 0307 v,.
laj+p=s2
Since
togh

(...)do B[ (v —vy)+(by—b))]

g(w)—gl(wy))= Y
' 2 sz o 3

Vol. 6, n° 3-1989.



220 M. STEDRY

we get by repeating arguments leading to (4.11)
WA ll-s=€,050[01 =2 llm-1,0+ ]| B2 = b1 -1, 0)-
If
£,0; K <1/2, 4.13)
Lemma 4.1 with m=M —1 applied to (4.12) yields

1
ljv,—v, -1, 0= E(H'Jl—vz ”M—1,0+|Ib1_b2 lw-1.9),

an equivalent of (3. 7). This completes the proof of part (i) of Lemma 3.1
Part (ii) will be proved by using analogous techniques. We start by

showing that b — ® (b, v (b)) maps B(g,) into itself. We shall use a very
simple version of the trace theorem, namely,

flw(..0) “m,n§CTmwm;,oécT“W“mH,Q-

As above J1={328%|a|+p<1} and for simplicity we shall write for any
norm ||. |, || I* w||=max {|| 830 w||;|a|+p=1}. Hence,

HJl v(.,0) ”M—z,nécT“U“M,QécTeu

for any veV(g,). By this inequality and by part (iii) of Lemma 4.3 we
have

HG(Jib,(Jl U)(-,0))I|M—2,n§°4(8u+8b)2-
With k=1+|x|+ ¥ |x,| and v=0v(b) we get by (3.4):

H‘D(b»v(b))“M,néCA(‘EHJlU(wO)HM—z,n
+”G(J;2¢ b, (J* U)(-’Ol)llM—Z,ﬂ_*'“f(-a0)“M~2,ﬁ)
éCA(KCT8u+U4(8u+8b)2+CTm f“];{—z)ésb’

on condition that the next two inequalities hold

Ca(xCre,+0, (g, +8)) <8&/2, (4.14)
M £l 2 Se/(2CA Cy). (4.19)

This implies @ (b, v (b)) e B(g,)-
As a closing part of the proof we show

” O (by, v(b,)) —DP(b,, v(b3)) “M—l,ﬂéCA Cs H b,—b, “M— 1,Q 4.16)
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PERIODIC SOLUTIONS TO A NONLINEAR TELEGRAPH EQUATION 221

for any b;e B(g,), i=1,2. Setting d;=J'v(b) (.,0), we get with the help
of (3.7) in the last inequality that

1G(2b,,d)) —G(I2bsd5) [m-3.0
<o5(||J2(b;—b,) M=3,0+ l|d,—d, Im-3,0)
<o5(||by—b;|lm-1, 0+ Crllv®B)—0(B)) [lu-1,0)

<65(1+Cp) || by —bsm-1.0

This proves (4. 16) since the estimates of the linear part of ® are straight-

forward. Considering b — ® (b, v (b)) as a mapping of B(g,) into itself, we

get a fixed point by Schauder’s theorem. This completes the proof of

Lemma 3. 1.

Remark 4.1. — The proof has been carried out on condition that g,
and ¢, satisfy (4.1), (4.4), (4.13) and (4. 14) and f satisfies (4.5) and
(4.15). It is possible to choose €, and g, so small that all four inequalities
are satisfied. Since max (||| £;{lm-2 || £ ll-2) S|l £ lllm=1- (4. 5) and (4.15)
can be satisfied by taking € sufficiently small.

5. LINEAR PROBLEM

In this section we give the proof of Lemma 4.1. The technique, a
Galerkin approximation, is rather standard. Only m=M is dealt with
since the case m=M —1 is even simpler to treat. Thus, it is to be proved
that for every y with |||y][jm—2<3, & sufficiently small, and any h,
[llB]llm-2 < oo, there exists a unique ve HY (Q) N H (Q) satisfying

(L(y) v, 0)o=(h, ®), for all peH? (Q. (5.1)
Moreover,
2]l e SK [l [l 2 (5.2)

where K depends only on 3.
We denote by ®, and A, the sequence of all eigenfunctions and eigen-
values of the problem

A 0=, oeH?(Q) NH Q).

[Due to the assumptions on Q and A we even have o, e HM*1(Q) ]
Moreover, we shall suppose

f @ (x) ©py (x) dX =8y
o]

Further, we set e;(t)=(m) " */?sinjt for j=1,2,. .., and ¢;(t)=(m) "2 cosjt
forj=—1, —2, ..., so that the constant function is not considered.
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For positive integers N and S we set
XN={o= Y v;(x)e;®),v,eL?*(Q)},

1=5fjl=EN
XI;:{U;U: Z Usjms(x)ej(t)}
1=]jI=N
s<S

and denote by ITN (resp. II}) the orthogonal projectors on XN (resp. X§)
in L?(Q) with the inner product ( , ), defined in Section 2.

The proof of Lemma 4.1 is divided into three steps. We start with an
auxiliary estimate in step 1. In step 2 an approximating solution from X¥
is found and its estimate in H?(Q) is obtained. Letting S -» oo we get an
approximating solution which, as we show in step 3, is even an element
of H¥(Q). When an estimate of this solution in ||. ||, o is obtained, we
get v satisfying (5. 1) and (5.2) by letting N — co.

Step 1. — Let 1<k <M and veX¥N N\ H*(Q) N HE(Q). Then
(LMo (D TAFE V) 2(CofloF v]l1, q

—3KH ol % ol (-3

where A is defined by (2.3) and K} will denote a constant dependent
only on k which can grow in each of the several stages of the proof.
Integrating per partes (all functions are 2 n-periodic in ¢ and no boundary
terms therefore appear) we get, by virtue of (2. 2),

(Lov, (1) P AZ* Vo)g=(LodF 10, A0F 1 0)o2Col|0F 0|3 o
Hence (5. 3) follows as soon as we have shown that every
(Y2 dz oo, (=1 P AGF* V)], |a|+p=2,
is estimated by
8K |ofle ol 0lls o (5.4

To get this we begin by rearranging the scalar product.

We suppress the indexes of y? writing simply y instead and, integrating
per partes, we obtain

(Y23000,(— DL A * ),
o k=1
-2 () @naarad,
s=0

+ (YO0, (—DF B2 E D),

k—1
=3 (k_1>1:-1’+u:-v.
s=0

N

At first, I3 ? will be dealt with. If [a|§l, then the desired estimate is
easily achieved after simple computations. For example, when ‘a}:l and
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p=1, then
1
|T5 7| =|(y &2 0f v, & v)o | = 5]((6';7) OF v, 0¥ v), |

s -lavlc@llvlk oll @ vy o

[SEE

since v(x,t)=0 for x€dQ. As, by (2. 1),

”a:Y”C(G)é(:S“Y”n_+1,Q§Cs”Y“M—z,Q§Cs”|Y”IM—z,qéCs&
the estimate of I§ ? has the form (5. 4).
For |a|=2, i.e. p=0, we must be more careful.
Since 05=20,, 6,:1. for some i and j,

I?), P=(Yaxi ax_,- 6:‘- ! v, af v)O

= %(ya 0,05 1v, 8% v),

xi U Xxj

x; Y x;

+%(76 0,01, 0 v),

1
= E[((ax,’Y) axjaf—l v, af U)o
+ ((ax_,- Y) axi a:‘— 11 a;‘ U)O]
- % { (Y axj a:‘_ ! v, axi 6;‘ v)O

+(Y axi a::—l v, axjaf U)o }
As above, the terms in [ ] can be directly estimated. The terms in { }
equal
(Y’ at ((axj 61‘7 ! U) ax; af_ ! v))O = ((at Y) axj 6:‘_ ! v, axi atk_ ! U)O
which is also easy to estimate. Thus I%? is estimated in the form (5.4).
On estimating I3'?, s> 1, the following lemma will be applied.

LeMMA 5.1. — Let ae H' (Q), r integer,
r>nm+1)/2 [fe, H(Q = C(Q]
Then
(D" a)(D'2b) }o, o= aul] all.. o [ B 1. o

for any be H'(Q) with 1, +1,=I1<r. Here, D denotes any derivative 0% 07,
|af+p<t.

Remark 5.1. — In other words, H'(Q) is a modul over H"(Q). Only
for completeness we present the proof. For simplicity we set m=n+1. We
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shall distinguish the following six cases:
@ L+mi2<r,
(i) I,+mj2<l,
(iii) I, +m2=r, l,+m/2=1,
1) L+m2>r, L, +m/2=],
(V) L+m2=r, l,+m/2>],
(vi) L, +m2>r, L, +m/2>1

Case (i). — By the Sobolev inequality || D" a||c g <Cs||a||,, o- Estimat-
ing the first factor in (D'tq)(D'2b) with the help of this, we get the
estimate in the lemma.

Case (ii). — Entirely analogous, since now

[D"2blc@=Cs|lbll: o

Case (iil). — By embedding theorems,

() D" allr=cfall.q
and
(B [D'2blLe =] b1 o

for any p>0 and g <0. Lemma follows by Holder’s inequality.
Case (iv). — In this case

(Y1) D" allr = 0ollal..q
with
1 1 r=l
(v2) ? = 2 m

From I, <r [l =r implies [, =0; thus I=r and we are in case (ii)] it follows
p>2 and by Hélder’s inequality

[(D1a)(D"2b)[|o, o< o || D't a1 [ D*2 b [fre o
with g=2p'/(p’—1), where p’=p/2. Owing to (y,) and (B) we have the
estimate.
Case (v). — Now
(31) [D2blls =]t o
with
1 1 - 1 I

d —=—— .
(82) g 2 m 2 m

From I, >0 [I; =0 is covered by case (i)] it follows g=>2 and the estimate
is derived like in (iv).
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Case (vi). — We get m>r, when summing up the inequalities in (vi).
2 . .
By assumption, r>m/2. Hence = 1/(_r — 1)> 1. Along with p from (y5)
m

and q from (8,) this 7 satisfies
1 1

! =1
P2 q/2 %
By Hélder’s inequality,
(D't a)(D'2b) [lo, o <|| D't al|tr (g [| D'2 b ||re @) (meas Q) V2 »

from which the inequality follows when (y,) and (§,) are taken into
account. This completes the proof of Lemma 5. 1.

We now return to estimating I>?, s>1. The case s=k we leave as the
final stage of this step and we shall suppose 1<s<k—1 at first. This
implies that k must be at least 2. Obviously,

|17 |<32 7|0 " o]l10
where
J2P=||(&7) (820 P o) o, o

We shall distinguish several cases:
(@) If k<M —1, then

(B 030,71 Po=0;"1(,7) 051 T° (83 OF ).
By Lemma 5.1 (a=4,vy, b=0%0Pv, D'1=08"1, D2=0¢"1"5, r=M—3=n,
sothat |, +l,=s—1+k—1—s=k—2<M—-3=r),
12?202 [0, Y w3, 0ll 8280 v [k—2, o= G2l Y Im-2 1l Ik, >

which implies an estimate of type (5.4) for I7*.
(b) Now let k=M and let us treat s=M —1. Then,

Jo P =Tl = ” 6?‘_17”0,12” 0% 65””0(6)§Cs”|YIHM—2”U“M.Q

which yields the right estimate of I§;?;.
(c) Further, let k=M and 1<s<M-2. Then, as above,

(By)aedt Tt Py=05"1(9,y) 0 2GR  v).
By Lemma 5.1 (a=d,y, b=aor*'y, D1=¢""', D=7,
r=M-3=n, I, +l,=s—1+M-2—5s=M-3),
J:’pécu—sHatYHM—s,Q”“j:afHU“M‘s,QéCM—sl“YmM—z“"Hm,o

and I>* again satisfies the estimate of type (5.4).

Finally, we estimate I3 ?. For k = 1, transferring, if necessary, one deriva-
tive from 8% 9P v, we get |(y 0% 07 v,v)o | 8K} || v]|}, o, the estimate of form
(5.4). For k=2,

|G |=|(@ 2 (yazaro), o)l A2 (13070 lo.oll & vlli0
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and, by Lemma 5.1 with r=M—2,
“ 61‘_2(76: af’”)”o,oécu—z m'Y”lu—z “ 6;551’“1:—2, Q’
which results in an estimate of type (5.4) for I *.

Step 2. — Let N and S be positive integers. When k=1, then (5.3)
takes up the form

(L) 0, A0)02C,||v]]} o (5.3
with C,=C,—8K} positive for & sufficiently small and any
veXy c XN HL(Q). As IT§ L(y) maps XY into itself, (5.5) shows that
there exists v} € XY satisfying

(L(Y) U?’ (p)O = (h’ (p)O’ v ¢ GX?- (5 6)

Inserting @ = —Ad2 oY in (5.6) and v=0o§ in (5.3) with k=2, we have
after simple calculations, for & small,

Colla, 15 |1, oS (1+M) || 0kl o + 8 K] 052, o (5.7
Since A o,=A, 0, A,>0, (5.6) is equivalent to
Avy=—gl+TIYh, (5.8)

where

gi=0vs+xof i+ ¥ & I5 0, 9,05+ Y TS (v P op).
1

r= fej+p=2

When, as above, k=1+]|x|+ Y, |k,|, then
r=1

&5l o= x| 0,081, o + 806 || 5|2, 0 (5.9
since
I (v2 8202 v) |lo. <] Y2 8287 v |0, o
sl le@llaze?ollo, o <Csll Y liw-2l? 2.

Also here o (indexed and/or barred) is used to denote various constants
independent of & and v.

The norm || 9,28 [|;, ¢ in (5.7) is close to ||o}]|,, o in the sense that only
the L>-norm of second order derivatives, i.e. ||080Y o o, |B|=2 are
missing. In obtaining these we shall apply the lemma, which will be useful
also later.

LEMMA 5.2. — Given geXN and a nonnegative integer s<M—1, let
us suppose geH’(Q). Then there is a unique ve XN N\ HL(Q) with
AveH(Q), |B|<2, satisfying A v=g. Moreover,

max { || 38oll, o3| B|=2} <6, ] 2]l o (5.10)
max{”&ﬁv“o_Q;[Bl§s+2}§csmax{||6§gno,Q;|a|§s}. (5.11)
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The proof is straightforward. For geX" we have

g= Z gj(x)ej(t)

1s]7]sN
and the corresponding ve XN M H} (Q) satisfies
v=" Y v;(x)e;(t)

1=<ljlsN

with v;=A"" g5 where A~! is taken in the sense of (3.4). Since
lgl3 o= Z]]g,“o « and similarly for o, (5. 10) follows.

Only for an easy reference in the next section we state:

LemMA 5.3. — The space X~ in the preceding lemma can be substituted

by L*(Q =H’(Q.

Really, for any geL2(Q) we can write

g(x’ t) = Z gj(x) ej(t)a
JjeZ
where e, (t)=(2 ) ~*/2 and the proof, as above, follows from the properties
of A™!in L2(Q).
Coming back to (5.8) we begin by applying (5. 10) with s=0 which,
along with (5.9), implies
max { || &£ o5’ [lo, os | Bl§2}§80A(||g§”0.0+“h“0,0) ~
<60 (x[[2,08]]1, o +8 06 || 05 ]]2.0 + S0 [ 2 l0, o
From this, in virtue of (5.7), it follows
C,max { ” agv?”o,q; [ Blé%} R
<d0,(xK¥+C,04) H oy HZ,AQ A
+oo(x(1+2)+Cy) H[ h ”Io'
By considering (5.7) and the least inequality we have

[} 8 ]l2. o =K ||| 2]llo

for & sufficiently small. Letting S —c0, we get vNeXNﬁH2 (QNH(Q
satisfying

(LMY 0)o=(h9)o, VoeXF, (5-12)
””NHZ =K |l ]lo- (5-13)

Also, (5.5) shows that o~ is unique. Besides, (5.12) is equivalent to
AvN=— 3 TIN(y? 30N g%, (5-14)

lel=2
&=tV +x N+ Z K0, 0,08+ Y Ny o2 aP ™) +TINA. (5.15)
r=1 laj+p=2
px1
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STeP 3. — We shall denote by Z¥, 2<k, a collection of functions for
which
l|0llzx=max {|| 00 li—2,qi | 2|2} < co0.
For any o, |a|<2, 8% is a continuous map of Z* into H*"2(Q). On the
other hand (5. 10) shows that A ™! is a continuous map of H*~2(Q) NX~

into Z* N\ XN N HE(Q). With the help of Lemma 5.1 is therefore easy to
see that

v— Y ATIIN(y? 82v) is a contraction on any Z* N H3(Q), (5.16)
lal=2 |

0<k=M,

provided that || ¥ |lu-2, o is sufficiently small.
Further we shall proceed by induction. Suppose

vNer+2(Q) mH(l)(Q)me

for some k, 0=k <M —3, which is true for k=0 by the preceding step.
Then just by looking on (5.15) we find that g¥e H***(Q) (since v e XV,
there is no worry about derivatives with respect to t) and therefore
A gNeZ* P NXNNHL(Q). In virtue of (5.16) there is a unique
veZ**3 MHF(Q) N XN satisfying
v=— Y AT'IIN(Yiv)—AT'gN
lal=2
Obviously, v=v" and thus NeZ**3NXNNHL(Q) which means
NeH "3 (Q MHE(Q) N XN, This induction argument eventually gives
NeHM(Q).
Let L be any integer, 3 <L <M. We shall suppose that

0¥ -1 0 =Koy [ Al -3, (5.17)
which for L=3 is true by (5.13). Setting ¢=(—1*" 1AL YN in
(5.12) and applying (5. 3), we get after simple calculations

Coll 0™ 0N |ly, o =8 KE || N[l o + (1 + W) [[[ A fJlL -2
This inequality says that
max { || 98 870" [lo, o3 | B| +q=L, | B[ <1} R
S3KE [0l o+ Rl Alll-2 (5-18)

is valid for I=1. Constants K¥ ; and K, , are positive and independent of
o™, h, and v. By induction we now show that (5. 18) holds even for I=L.
To this end we start by supposing (5. 18) holds with some [, 1 <I<L—-1
Further, we give (5. 12) the following form

AN=—gN—ghih, (5.19)
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with
h
g1 =0,"N+x 7N+ Y x,0, 6,0
r=1
and
_ N N
g= 3 MN(yrozord™,

laj+p=2
applying &~ ~'~! to (5. 19), we have
A(a,L"“UN)=—a,L"“(g‘erg?—h). (5.20)
It is easy to check that the inequality, |B|<I—1,
[0%20r ™' 8Y flo. =8 KE 1a [0V L. o+ Re s B flle-20 (5.21)

is a consequence of assumptions (5.17) and (5.18). Since
|B|+L—I—1<L-2, we can apply Lemma 5. 1 to obtain

192077 &8 llo. o= 012 8[|, o (5.22)
Really,
oy TN (v2 82 82 v™) [|o. o

=[TINogar 1t (yraz a7 o™ [lo, o
Sor2[|¥E|l-2.0ll 0208 vlL-2 0=0L 280" ||t o

Obviously, |37 == 38 h|lo, o <|| k|0, L - 2- Thus (5. 11) with s=I—1 applied
to (5.20) along with (5.21) and (5.22) yield
max {[[ 30,7 N[0, o3 | BT+ 1} <8KE 1oy [ V||, o + Ry vws | Bl -2

In particular, this shows that (5.18) holds also with [+1 in lieu of I
Hence, as said above, we can put /=L in (5. 18) and, for § small, obtain
0¥l =K ||| #||lL - 2> which is (5.17) with L in place of L—1. Hence
| N w=Ku||A]lu-2 Letting N— o, we have v satisfying (5.1) and
(5.2) whose uniqueness follows from (5.5). This completes the proof of
Lemma 4. 1.

6. CONCLUSION OF THE PROOF OF THEOREM 2.1

We shall prove the uniqueness of u found in Section 2. Let us suppose
there are uy, u,€ H(Q) M H(Q), ||u; ||y, <™, satisfying F (1) =0, i=1,2.
Since

F(u;) —F(u;)=Lou+ Z Y203 07 u

laef+p=2
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with

1
u= Uy —u,, 7—’£=J‘ g (¥ (uy +1(uy—u,y)))dr,
0

by (2.2) we obtain
O0=(F (u)) —F (u), A(u; —1))o 2Co |6} o+ Y (Y2O20Pu, A,

lal+ps2

Simple estimates, completely imitating those leading to (5.5), show that
the right-hand side of the last inequality can be estimated from below by
C,||ull} o, C,>0, provided that n is sufficiently small. This proves
uniqueness.

It remains to show ueHM*!(Q). As explained in Section 3 this
means only to show d3ueL?(Q) for |a|=M+1. If J,={J2u,J',u} as
in Section 3, then u satisfies

Au=—GQ2u w)+f*, 6.1
where
—f*=0,u+xdlu+ ) 0, du+tf
r=1
and

w=J'0,u
Since u,=v, ||v|jy, o< and || f |y, o<& we have
[f*lw-1.0Skn+e  and  |[wlly_yq<n. (6.2)
We shall be concerned with a mapping = given by
E(U)=A"(-GJIU,w)+1*

on a ball B={UeZ"** NH{(Q); || U||M+1<p}, where p<m is a suffi-
ciently small positive number subject to conditions specified later. By
Lemma 4.3 (iii),

| G(W,w) Im-1.0So max {|WIR_, o lIwlli-1.0)} (6.3
By Lemma 4.2 (ii), for j=1, 2,
G (W4, W) =G (W w) .
§51+jmax{HW1 “M—J’,Q’
“WZHM—LQ’“W“M—J‘,Q}le—wzuu,j,q- (6.4
In virtue of (5. 10), we further have
fA T gllmr2s<0u- gl =12 (6.)
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By this inequality with j=1, (6.2), and (6. 3), we get
2 [l 1= 0m-1 (|G UZU W) hi-1. 0+ |1 /* ha-1. )
< Oy-1(6, max{p% N’} +xn+e)
p

A 1

as soon as
On-1 (0, max{p%n2}+xn+e)<p. (6.6)
By (6.4) with j=1, we have
[E(U)—E(U,) ||+1
<oum-y ” G:iULw)~-G(IiU,w) “M— 1,Q
<6y-; 0, max{p,n} ” U, = U, |1
for any U, U,€B. If (6.6) and
Oy_.;0,max{p,n}<l, (6.7
are satisfied, then Z is a contraction on B and thus there is U € B satisfying
U=E(U), i.e.
AU=—-GQJiU,w)+f* (6.8)
On the other hand ue HY(Q) = ZM satisfies (6. 1). Subtracting (6. 8) from
(6.1) and using (6. 5), and (6.4) both with j=2, we get
lu—U||MESy-2 || G214, w) —G (2 U, W) |ly-2.0
<Gu-2 Gz max { [[u[lm || Ullm|[ -2, o} [u—U [l
<0y-203max{n,p}|u—U|m

which in case
Om-20;max{n,p}<l (6.9)

implies u=U. Thus ueZM*! which, in particular, yields 62ueL?(Q) for
]cz1=M+ 1. Since 1, € and p can be taken so small to satisfy (6. 6), (6.7),
(6.9) and all the above inequalities they are subjected to the proof of
Theorem 2.1 is complete.
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