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ABSTRACT. - The solution to the problem is expressed by means of a
couple of new dependent variables - the time derivative of the desired
solution and a function independent of time, which is the trace of the
solution in a fixed time. This simple device makes it possible to prove the
existence of a time-periodic solution without encountering the "loss of
derivatives" phenomenon.
The result provides a small smooth solution, unique in a neighbourhood

of zero, for any equation which is a perturbation of a suitable linear
telegraph equation at least by quadratic terms which can involve any
derivatives up to order two of the unknown function.

Key words : Hyperbolique equation with dissipation, time-periodic solutions.

RÉSUMÉ. 2014 On démontre l’existence d’une solution periodique en temps
pour une equation hyperbolique du deuxieme ordre avec dissipation et
une force periodique mais petite et avec une non-linéarité composée de
derivees de la variable dependante dont 1’ ordre ne depasse pas deux.
Le phenomene de « la perte des dérivées » est detourne par une simple

transformation de la variable dependante.

Classification A.M.S. : 35 B 10, 35 L 10.
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1. INTRODUCTION
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Let G = G (~); ~ = f ~~ ~ ~ a ~ + p  2 be a function

y
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~f class We shall show the existence of a classical solution to the

problem
n

(AM) (x. t) _ y ( -

f along with the main result will be given in the next section.
Let us note that those assumptions will be satisfied for A = - 0 and

q = 0. Hence the equation

2 x and which satisfies the Dirichlet boundary condition provided that f
is 2 ~-periodic, sufficiently smooth and small.

In one spatial variable this problem was studied by P. H. Rabinowitz
[7], with the help of a Moser theorem to overcome the "loss of derivatives"

Annales de l’Institut Henri Poincaré - Analyse non linéaire



211. -a-w#"w ---- aa-+ ,- .&#x26;- 4."" ...""-......--.....--..--- -----...----- -~_.._--_......

-- - - - - - - -- ..

procedure is applied. In this connection see also [2], where even a bifurca-
tion problem is treated.
The solution u to ( 1. 1)-( 1. 3) will be written in the form

rt

satisfies Jo v (x, t) dt = 0.

This device makes avoiding the occurence of the "loss of derivatives"
possible. Hence, by using Schauder’s theorem, we are able to extend the
result of [7] to more spatial variables and also to suppress the explicit
appearance of the small parameter and to improve the assumptions on
regularity of f and G.
The idea of looking for at u rather than for the solution u itself is not

new. It has been used in time periodic problems at least in those having
the form where it is possible to separate the determination of at u and the
time independent component of the solution, see [6]. As far as the initial-
boundary value problems for ( 1. 1) are concerned we refer to [8] and [9].
Equation ( 1. 1) was taken in a form imitating the one-dimensional case

of [3]. One of the crucial sufficient conditions for the existence, (2. 2), has
been taken over from [5].
The author is indebted to his colleagues P. Krejci, V. Lovicar and

O. Vejvoda for helping with some preparatory assertions and for biblio-
graphical hints.

2. BASIC NOTATIONS AND THE MAIN RESULT

The notations are standard. All functions are real-valued. The spaces
L2 (Q) and Hk (Q) will be, respectively, equipped with the norms

II - /r... v/2

v0i.0,n 
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we equip tne spaces ana respectively, with tne norms

Bi/2

2 x-periodic in t.

By the same symbol as above, we shall denote the completion
of (Q x R) in the norm" . Q.

By H6(Q) we denote the closure for

all in the norm 11.111, Q.
In what follows, in agreement with the last two notations, all functions

depending on t are supposed to be 2 ~-periodic in t without any particular
reference to this fact; especially, there is no indication of the 2 x-periodicity
in t in the notation of the spaces. As usual, the inner product in L 2 (Q) is

~~ ~+i t

the investigated problem. 
Occasionally, the C~ norms, denoted by ~. ~(Q) and )!’!!c~(n) will be

used. With the above choice of M the Sobolev inequality takes up the form
~~ n I

in cases, where the domain Q c R" appears in lieu of Q.
For A given by ( 1. 4) with /?= M20141+ a ~, the class of

functions which have continuous and bounded derivatives up to order p
on Q, we set

such that 
1 

1 1t
{T - 11 A > C’’_ fnr ~r J..I2 (f)) r’B u! (O) l7 71

where
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HÔ (0) x Ho (Q).
With A, K, Kr and G satisfying the assumptions listed above we have

THEOREM 2. 1. - T’here are E>0 and 11 > 0 such that for every f
with ~ I ~ f ~ ~ ~M - i  E, there is a unique u E HM + 1 ( Q), II  11, satisfying
( 1.1)-( 1. 3).
The proof is given in the next four sections. Relying on an auxiliary

result whose proof is put off to Section 4 we give in the next section,
Section 3, the proof of the main part of the above theorem. The auxiliary
result is based upon the study of a linear problem which is postponed to
Section 5. In the last section, Section 6, the proof of Theorem 2. 1 is

completed by showing the uniqueness and improving the regularity result
of Section 3.

3. PROOF OF THEOREM 2.1 (FIRST PART)

In this section we introduce various sets and mappings, whose properties
will be studied later, and we prove the existence of u E HM (Q) satisfying
( 1.1)-( 1. 3). Two minor parts of the proof which will require the applica-
tion of techniques developed in the next sections are postponed to the
closing section, Section 6.
We set

)

--- 

_ , ~ _ _ _~ , _ ~ _ _ , __ ___, , _ _ 
-- ___ _ _ _ ~ - 

-~-- --- - "

show; satisfies

~I03BD~0 ~2~03BD~ (3.1)

---. -. -- .... -----
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find easily after some simple arrangements that

~ _2 i_v _ _ . _ ~ ~ rn _i i_»2 _2 ~_~ 1 n _i ~_v _ i_v __..~ T 2

as 03C4 ~ + and we nave, oy 

over (E, 2 1t - E) and letting 0,

r2R .... _ ’t12 - -

ms gives

from which, by setting z (t) = y (i) di, it follows the following version of0
2n

Wirtinger’s inequality: for any y E L2 (o, 2 03C0), 203C00 y (i) di = 0 it holds

(’ 2 n ~ ~’t ~ 2 (’ 2 n

- -~~ ---- -- ,-----, ,_. -" -- - --, - - - - ---- - , -----c-------o - - 
-- ---

Let us denote the left-hand side of ( I . I) by F (u), I. e.

F (ui = TJh u + G (.T (uii + f

~ 
_ 

B B x 
.. 

~

y 

.. 2014~-~ o B- B2014~~ 2014 -2014~- " - --  > a B B"~~ j j a ~ 

For two positive E" and Eb which are sufficiently small, and which will
be fixed later, we set -

a vi T v c lr B’Vb} L/tJL V T t~t 20142014 t/) io3.LL.1.""" c~ 

of t, and thus simple calculations give r _e
~32~

_ _ _ __ __ 

___r_ 
___ _ 

‘_ _ , _, ~ _ ~ _~~ _~_ __~__ ...s _ ~_ .. , ...~ ~.~ 

__ 
_~ 

,, 
_ -

onvenient form. This will be achieved in (3. S). We begin by arranging
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~B~

a aa r1y

and

Owing to the assumptions on Q, and (2.4), A can also be considered
as a linear isomorphism of Hm (S2) n Ho (SZ) onto for any m,

see Theorem 9 . 8 in [1]. We make use of it by referring to
the inequality

( 3 . 4)

~~h_m--~-1~1~~ 0)

The following lemma is a corner-stone of the proof of Theorem 2. 1
and will be proved in the next section.

LEMMA 3. I. - There exist positive Eb, Ev and E such that for any f with

(i) For every bE B (Eb) there is a unique v E V satisfying
(3.61

6. n~ 3-1989.
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satisfying h=~(~i?(~)), which, by ( 3 . 5) means ‘ Ds
F(u)(., 0)=0 (3.8)

satisfies

i A F - (1 fnr all rn c ~T~ l (11

~20142014201420142014~ 

(3. 8) we have F (u) = 0; i. e. (1. I)-( 1 . 3) are satisfied. Obviously, 
and ut=vEHM(Q). Thus the proof of Theorem 2 . 1 will be complete if
we show the uniqueness and prove also that for a =M+1.
This is postponed to Section 6.

4. PROOF OF LEMMA 3.1

In what follows y will stand for a collection of functions ya, +p __ 2.
For a given y we set

Y 

and

~ ~-~’2014 Jr~~2014 20142014~~*~*~~*~ ~~ . jL ~~~~~~~~~ V11 ~.i. Yl VYVV11.1V11 ’-’’-’......’-’’-’... "’’’’’’’’’’’’’ó ~,[1B/ 

V.

LEMMA 4 . 1. - There exists 03B4>0 such that for every 
and both m = M and m = M -1 the following implication holds:

oo, then there is a unique v E Hi ( Q) n Hõ (Q) satisfying
~L (y) v - h, p)o = 0 for all p E H~ (Q. Moreover,

.. ____ _ -- __ 

_L _ ____- ____J .... ... -.

The proof of this lemma is postponed to the next section. A similar
proposition could be stated about the solution of L (y) v = h, cf [7],
Theorem 5, p. 33.

In the course of the proof we arrive at several inequalities involving
EV’ Eb and some norms of f, which we shall suppose to be satisfied see
Remark 4 . 1. We have n + 2  M and thus, by ( 2 . 1) and ( 3 . 1 ), for any

and 

 F ~(f T ~; il_ B
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~~ 

w=J1

03B3~m=max{~m,o,~~,03B3~m,o},

as well as vector function. Obviously

used with 8 equal either to Q c Rn + 1 or 03A9 c The first lemma is a

particular case of Lemma 5.1 expressing the algebra character of the
space Hm ( 8) .

LEMMA 4 . 2. - Let integer m satisfy m >_ n. Then, for any a, b E Hm (9),
it holds

estimate (2. 4) on page 273 of [4] has been achieved. If moreover, =0,
then

-.. ~ r ~_ _

Q~ _1= l~ ... ,1 ~~
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__ __, r--.- ~~~ """’A ..&#x26;..........&#x26;.......................A.-..&#x26;.-,.... ~.~~__~ A"""’- r--- ~_~~.

In what follows ~ (with index, bar or tilde) will denote the constants
obtained as a result of estimates in which Lemmas 4. 2, 4. 3 or both of
them have been applied. t -

For ’Y given by (4. 2) with v E V (E") and bEB(Eb) we have
-. ~-

4.3 to any term behind the summation sign we find that the norm

!!- !!M-2,Q of any such term is estimated by
- ? !~9?t7!L . ~ T. !!i7!L ~.

- - - 

i II’ B£ ’" r .a. 11 11.1.’0&#x26;, ~[ II 

part (ü) of Lemma 4 . 3 since ga (o) =0. Thus

10 tir~

20142014 - - 

~ JL

Lemma 4 . 1 with m = M, a unique (Q satisfying
for all (0) (4. 6)

__ _ __ _ _ _ 

"""’ 1 - 7 - - 
_ _ . _ 

~ 
_ 

J A

V(Ev) into itself. We shall continue by showing

"’ ~ B CV ~ J ~ .?t~.t~~ J 
_ ........ 

~~~

(L(? (w.))(u, -M,) + ~(D~ =0 f0)

v 

~2014T 1

- 

- - . ’" i v 1. i ~~~
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III J, II L-

. - ____ _ _ _ _ _ -- - ~- ~ - - - - -- 

- ~ 
.. - - - - 

__ _ _ __ _ -_ _ _ r 
- 

, - f ___- 11 

norm: 1 |~03B1x ap v2 111M - 2 cannot be estimated via II v2 Q. Next,

- ; , -; ~ , r, ~1(~Q’p.... _ ..a.,~._. ,,- -..

III ~03B2x aq (I 2~03BD1- 03BD2~M- 1, Q.

,. I ! I ~ I

_

consequence of ( 4 . 11 ) .
V (Ev) is a compact and convex subset of HM - 1 (Q) which W maps into

itself. Moreover, by (4. 8), W is continuous in 11M -1, Q. Hence, by
Schauder’s theorem, there is a fixed point of ’II in V(eJ, say v, which, by
virtue of (4. 6), satisfies (3. 6).
We now show (3. 7). Let i=1, 2. According to what we have

proved, there are satisfying, i =1, 2,

(Q).

v t B t "

1
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v J -i _ 
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~ t~~ ~~ ~ ,

11

_ _ . _ _ _ _ _ . 

~ ~ ~

1

q, B*-* ~~ y~~ ..._ ~~~ ’ 20142014 ~ -

Part (ii) will be proved by using analogous techniques. We start by
showing that ~-~D(~(~)) maps B (Eb) into itself. We shall use a very
simple version of the trace theorem, namely,

i ~~ i

~f~ 1 * . 1 ,-j l 
-- ~ ~-- -- _ _ - 

. _

lave 

‘ V r ~I 1 

B ’e
..,~ ~ n» I I ~ .~ l ~ 12

With K=l+IKI+ £ |03BAr| and v=v(b) we get by ( 3 . 4) :
r = 1

-.- .. , , - . - , , - . -- , ,

~9 ~~_l2l~./’~

As a closing part of the proof we show
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~ ~ B !// r ~ ~~~ t ’- fJ " r / ~

of ( 3 . 7) in the last inequality that

II hI, dl) -G (J; b2, d2) l l - , n

forward. Considering ~ -~0 (b, v (b)) as a mapping of B (Eb) into itself, we
get a fixed point by Schauder’s theorem. This completes the proof of
Lemma 3 . 1.

Remark 4.1. - The proof has been carried out on condition that Eb
and Ev satisfy (4. 1), (4.4), (4. 13) and (4. 14) and f satisfies (4.5) and
(4.15). It is possible to choose E" and Eb so small that all four inequalities
are satisfied. Since (4 . 5) and (4 . 1 S)
~an be satisfied by taking s sufficiently small.

5. LINEAR PROBLEM

In this section we give the proof of Lemma 4. 1. The technique, a
Galerkin approximation, is rather standard. Only m = M is dealt with
since the case m = M -1 is even simpler to treat. Thus, it is to be proved
:hat for every y with ~Y~M-2~ ~ sufficiently small, and any h,
II h IIIM-2  00, there exists a unique (Q) Ft HÕ (Q) satisfying

(L (y) v, (03C6)0=(h, 03C6)0 for all 03C6 e H0# (Q). (5 .1)

We denote by 03C9s and 03BBs the sequence of all eigenfunctions and eigen-
values of the problem

Moreover, we shall suppose

r , ,_ , , t C*

i J B / , , / J , ~~ ~ - -’ ~

or j = -1, - 2, ..., so that the constant function is not considered.

’ol. 6, n:; 3-1989.
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v; ~x) e; tt)~

jn 

in L2 (Q with the inner product ( , )o defined in Section 2. !
The proof of Lemma 4. 1 is divided into three steps. We start with an !

auxiliary estimate in step 1. In step 2 an approximating solution from X~
is f ound and its estimate in H 2 (Q) is obtained. Letting S -~ oo we get an
approximating solution which, as we show in step 3, is even an element
of When an estimate of this solution in is obtained, we
get v satisf ying ( 5 . 1 ) and ( 5 . 2) by letting N -~ oo .

STEP 1. - Let 1 - k - M and Then

, """".1. "" J. ~ ~J --.,x.-- wj B ~ ~’/ ~~~K W~H ~t~~tJL~~~~~ t* ’" ~t~~B/t~~~B/tA~

only on k which can grow in each of the several stages of the proof.
ntegrating per partes (all functions are 2 x-periodic in t and no boundary
erms therefore appear) we get, by virtue of (2.2),
(L.F.f-l)~’A~~-~~=(L.~-~.A~-’~>Cj!~--~!!~.

I 

’ ~t~~-N.~-~~.~~~~~~ ’"~y 1

~-~ ~~~~~ TT ~~ 20142014_y ~AA~~ 

We suppress the indexes of y~ writing simply y instead and, integrating J
cr partes, we obtain

~~ A ~2(~-1).,B

. .. a. ) !*~ ) A~-’

asily achieved after simple computations. For example, when a =1 and

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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1

2014* " 

B"?’/ ~ va ~~~-~20142014. ~~~) vJ . ir ~ 1 1’

 ~c~ !!~v!L..

  ~ _ 
____ _ _ ___ _ _ 

__~ 
__ _~__~__~. _ u_ ..__,__.. ~u ~

equal

( 03B3, at ((ax : ~k-1t 03BD) ar_ ~k-1t 03BD)) = - ((~t 03B3) aY . ~k-1t v. aY. ak -1 vo
------- -- 2014" 

"201420142014~/ -- 1V TJ.

On estimating s >__ I, the following lemma will be applied. ’.
LEMMA 5. 1. - Let r integer

.* 

for completeness we present the proof. For simplicity we set m = n + 1. We

VoL 6, n° 3-1989.
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(i) I1 +mJ2r,

ing the first factor in (D1l a) (D12 b) with 
i 

the help of this, 
i 

we get the
estimate in the lemma.

Case (ii). - Entirely analogous, since now

- 

,-- ~ ~ ’-’ ,

.I 1 i r i r

Case (iv). - In this case
II nil niL - . -. 

..................

/ "

, . ---.. ~ - - L-.1. 
- 

----,---- . ~ ""’, ...---...........,......................- ..........- A.a..... --........,.- B,A..,A,JJ"’’’ "’’’’’’’’’’’’’’YYU

1>2 and by Hölder’s inequality

- _ - - , - _ _ , ..... ..&#x26;0’ ". , ,

estimate. 
’

Case (v). - Now

~..... ,

s derived like in (iv).
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_-_ 
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By assumption, r > m/2. Hence x =1/ 2 m r -1 1. Along with from (12)
ind q from (b2) this x satisfies

1 1 1 i

~ 

I bl I

account. This completes the proof of Lemma 5.1.
We now return to estimating s> 1. The case s = k we leave as the

final stage of this step and we shall suppose 1 - s _ k -1 at first. This

implies that k must be at least 2. Obviously,
, n..

m 

(a) If then

(b) Now let k = M and let us treat s=M-l. Then,
J«~ p = J~: ~ , = I I aM -1 v I I" " I I a°~ ap v I I~. ,~~  C~ ~ ~ ~ y ~ ~ ~,~ _ -

(c) Further, let k = M and 1 _ s -_ M - 2. Then, as above,

( c’~ vl a°‘ aM -1- s + p v = ~ -1 ( a_ vl aM - 2 - s ( a°‘ a~ + 1 v~-

Finally, we estimate 1~ P. For k = 1, transferring, if necessary, one deriva-
tive we get v the estimate of form

(5 . 4). For k >_ 2,
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iu, oy Lemma 3. 1 with r = M - L,

~~-2~~~~)) _~_ 

STEP 2. - Let N and S be positive integers. When k =1, then (5. 3)
takes up the form

I U I I 2 .... 

--- _ 

1 
_ 

V _ --1 r _ __ __ 
- 

_ ~______~__, ----- -~- -..~

E XS C n HA (Q). As II~ L (y) maps XS into itself, (5. 5) shows that
ere exists vs E XS satisfying

( L f vl vN. = (h. d (0 F ( 5 fii

’ter simple calculations, for 8 small,

A 03BDNS = -gNS + 03A0NS h,

.-- -

hen, as above, K =1 + I K then
r=l

I l QN H _  r 1I ~ 1 I &#x26; S- II I ..,~

independent of ð and v. 
I J 

-- ----- -- ---- -- . ---- -- -------- 

; j
The norm ~ at in ( 5 . 7) is close to ~ 03BDNS~2, Q in the sense that only

the L 2-norm of second order derivatives, i. e. , ~ a~ /10, Q’ I ~ = 2, are

missing. In obtaining these we shall apply the lemma, which will be useful
also later.

LEMMA 5. 2. - Given g E X N and a nonnegative integer s -_ M -1, let
us suppose gEHS(Q). Then there is a unique 03BD~XN ~ H10(Q) with
a~ v E HS (Q), I 131 I _ 2, satisfying A v =g. Moreover,
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The proof is straightforward. For g~XN we have

g = Y g i (x) e r (t)

v = 5l 

~ ~ g ~ I o, Q - ~ ( ~ g~ ~ ~ o, ~ and similarly for v, ( S . 10) follows. 
’ ’

Only for an easy reference in the next section we state:

LEMMA 5. 3. - ~he space XN in the preceding lemma can be substituted
bY L2 ~~ = H° (~-

Really, for any g E L2 (~ we can write

~ (x, t) _ ~’ g; (x) e; (t),

w , , / " , ..L"" ~ a i

of A -1 in L 2 ( S2) .
Coming back to ( 5 . 8) we begin by applying ( 5 . 10) with s = 0 which,

along with ( 5 . 9), implies
~)

satisfying
( L (vi cnl n = ( h. V v EX N, ( 5. 12)

A lJN= - y ~~-~. (5.

. --- .., - - ___._
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~7. 
20142014 

V J ~~~ 9 , ~~~ ~~~~~~~~~~~~~ va "

hich

hJt .2014~~~~)t~~!! I 

1 1~., LI~. 2014- ~~ ux U 111..V ~~ B~(/* ~~~* ~*~~

other hand ( 5 . 10) shows that A -1 is a continuous map of Hk-2(Q) 
into Zk n XN n HÕ(Q). With the help of Lemma 5.1 is therefore easy to
see that

v - 

j 

A -1 nN is a contraction on any Zk U Hl (Q), (5.16)

Further we shall proceed by induction. Suppose
.,N , uk + 2 I (11 r1 U1 l lll f1 wN

’hen just by looking on (5. 15) we find that (since vN EXN,
lere is no worry about derivatives with respect to t) and therefore

In virtue of ( 5 .16) there is a unique
EZk+3 n H~ (Q) U XN satisfying

~20142014 V 

This induction argument eventually gives

Let L be any integer, 3 ~ L ~ M. We shall suppose that
ls 171

( 5 . 12) and applying ( 5 . 3), we get after simple calculations
 

m~Y~))~~~!!~ ~’)R!-4-/7=T.

h, and y. By induction we now show that ( 5 . 18) holds even for I = L.
To this end we start by supposing (5 . 18) holds with some 1, 1  1 _ L -1.

Further, we give (5. 12) the following form

A vN- -~-~-~k_ 1 9i
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and

2014~J~~~M~ ~ t ~~~ ~~.~~~~ 

., A~’~’J> j I r I = - - ~

II a~ a~ -[- 1 ~ "n ,, ð K’ .. 4 "1,N I L ". %~- .

.&#x26;. 
- . 

_ ______-r 
-- - -- 

~ _ _ ~ . J ---- 

‘~.. ~ ~ J. vaiavv

_ L - 2, we can apply Lemma 5 . 1 to obtain

to (5.20) along with (5.21) ‘_ _ _ and (5.22) ____ _ yield 
- 

In particular, this shows that (5 . 18) holds also with 1+1 in lieu of I.
Hence, as said above, we can put I = L in (5.18) and, for 8 small, obtain

which is ( 5 . 17) with L in place of L -1. Hence
Letting N-+oo, we have v satisfying (5.’1) and

(5. 2) whose uniqueness follows from (5.5). This completes the proof of
Lemma 4. 1.

6. CONCLUSION OF THE PROOF OF THEOREM 2.1

We shall prove the uniqueness of u found in Section 2. Let us suppose
there are ul, u2 E HM HÕ (Q), 1/ ui~M Q  ’11, satisfying F (ui) = 0, i =1, 2.
Since 

’

t~~~ ~2014T7~,. B2014i a~ 

6, n" 3-I9~9.
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~ t.. 1 A,

the right-hand side of the last inequality can be estimated from below by
C 1 ~!!~.Q. Ci>0, provided that ~ is sufficiently small. This proves
uniqueness.

It remains to show As explained in Section 3 this
means only to show for ~=M+1. If as

in Section 3, then u satisfies
A ..,- ~/T2.....B , .~ ~c B I

where

and

1"~! l T TB . - ’I i ~ i ~ 7 ~ ~ v .v ..

d. f p}, wnere is a sulti-

ciently small positive number subject to conditions specified later. By
Lemma 4. 3 (iii),

.~B!) I ~1- -~.~~ r 1 1 t)2 D m oi

~~ 

- 

.---,20142014. 2014- ~~ . ~...~~ ..... ~ 
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~zM+1~M-1(~G(J2xU,w) ~M-1,0+~f

-- ----- --

117M+l

~ ~ 

~M-1~2~
J=E(U), L ?.

6 .1 ) and using ( 6 . 5), and ( 6 . 4) both with j = 2, we get

.. --"nn ..&#x26;...&#x26;.-.&#x26; vs.yV

a =M+1. Since 11, E and p can be’ taken so small to satisfy (6 . 6)/ (6.7),
(6.9) and all the above inequalities they are subjected to the proof of
Theorem 2.1 is complete.
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