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ABSTRACT. — We consider, on a compact Riemann surface M, a set of
equations, generalizing harmonic maps from M into the unitary group.

Using a 0O-curvature representation, we describe every solution on S? in
terms of appropriate holomorphic vector bundles (called unitons), extend-
ing some previous results by Uhlenbeck and the author; and we make some
remarks on the Morse and algebro-geometric stability of the solutions.
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RisuME. — Nous considérons, sur une surface de Riemann compacte
M, un systéme d’équations, généralisant les fonctions harmoniques de M
dans le groupe unitaire.

En employant une représentation de Zakharov-Shabat, nous décrivons
toutes les solutions sur S? en termes d’appropriés fibrés vectoriels holomor-
phes (appelés unitons), en étendant quelques résultats précédents de Uhlen-
beck et de I'auteur; nous faisons des observations sur la stabilité de Morse
et algébro-geométrique des solutions.
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234 G. VALLI

0. INTRODUCTION

Let P—» M?2? be a principal U(N)-bundle over a compact Riemann
surface M2,

We study the equations:
F(A)+1/2[®, <D]=—2i1r*u(P)} %
d,®=0, d,*®=0

where: A is a unitary connection on P —» M2, of curvature F(A); and & is
a section of T*(M)®adP [ad P — M?is the “adjoint bundle” associated
to P — M2 via the adjoint representation of U(N)), and p is the normalised
1st Chern class of P.

Equations (v) generalise the harmonicity equations for maps
M? - U(N), and they still maintain a variational origin (cf. §3 and [V 2)).

Here we generalise some previous work in this subject by Uhlenbeck [U]
and Valli[V1], to this twisted situation: we show the existence of a
recursive procedure (called “addition of a uniton” or “flag transform” in
the literature cf.[U], [B-R]), which generates solutions of (%) by means
of choices of appropriate holomorphic vector subbundles.

We prove that, on the Riemann sphere, this procedure generates all
solutions of (¥k), starting from one with ®=0; while, on general surfaces
M?’s, it fails to work, as long as we reach a pair (d,, ®), which is
semistable in the sense of Hitchin (cf. [H 2]).

Our proof is based, as in [V 1], on progressive reduction of the
energy2[<l)[2 of a solution (A, ®); and on a topological expression for
the decrease of energy in a flag transform.

Finally, we apply the same formula to show that the Morse (semi)-
stability of a solution (A, ®) of (%) implies the (semi)-stability of the
holomorphic structure defined by the J-operatord,; to do that, we split
the energy Hessian, restricted to a special class of variations, into sum of
two pieces, the difference of which is a topological term.

We regret that so much of the paper consists of preliminaries; our
notation is anyway the “‘most standard” in current literature (in particular,
cf. [A-B], [D), [H] and § 1).

Finally, we wish to thank J. C. Wood and N. Hitchin for having
informed us about their work.
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1. DICTIONARY

Let M2 be a compact Riemann surface, and P— M? be a given smooth
principal U (N)-bundle. Equivalently, we may consider the associated com-
plex hermitian vector bundle V — M?, associated to P — M? via the stan-
dard representation of U(N) in CN (we will generally prefer the vector
bundle terminology throughout the following).

The adjoint bundle ad P — M?Zis the Lie algebra bundle associated to
P—M?2via the adjoint representation of U(N) in u(N); equivalently, it
consists of the skew-hermitian elements of End (V).

Let o =/ (P) be the space of unitary connections on P — M2 Each
connection A € .2/ (P) defines exterior differential operators d,, defined on
the space of sections of each of the bundles above.

Let 4 be the “gauge group” of smooth automorphisms of the principal
bundle P— M?. Its “Lie algebra” g consists of smooth sections of the
adjoint bundle ad P — M?2.

The action of ¥ on P induces an action on the space of connections:

Gx A > A, g A)—g, A (1)
defined by:
dpaV=g td,(gvg " ")g (2

for each v in g.
Finally, given a connection A €./ (P), we may split:

d,=0,+0,

using the complex structure on M2,

2. STABLE BUNDLES AND STABLE PAIRS

From a topological point of view, complex vector bundles V — M2 are
classified by their rank, and by their 1st Chern class:

c;(MeH*(M?, Z2)x7

(the last isomorphism being evaluation on the fundamental 2-cycle).
We define the normalized 1st Chern class of V- M?to be

p(V)=c, (V)/rkV 3

Moreover, if BgV is a complex vector subbundle, we then define, for
later typographical convenience:

o(p)=rkp(n(V)—n(p) (4)
Let now V —» M?be a given complex vector bundle.

Vol. 6. n" 3-1989.



236 G. VALLI

By a theorem of Koszul and Malgrange (cf [A-B]), each unitary connec-
tion A on V defines a unique holomorphic structure on V, such that, for
any local section s, we have:

sisholomorphic < J,5=0

More precisely, holomorphic structures onV — M2 are in 1—1 corres-
pondance with J-operators 3, on it.

In the following, we shall indicate the complex vector bundle V —» M2,
equipped with the holomorphic structure induced by 3,, with (V, 3,).

We recall now some standard definitions.

DeriniTION 1. — A holomorphic vector bundle V- M2is called stable

(resp. semistable), if, for any proper holomorphic subbundle pEV we
have: o(p) >0 (resp. =0).

DEeFINITION 2 (cf. [H2]). — Let V- M?be a holomorphic vector bundle,
and let ®, be a holomorphic section of End(V)®K [where K is the
canonical bundle of (1,0) forms]. We say that (V, ®,) is a stable pair (resp.
a semistable pair) if for each proper holomorphic subbundle P<V, which
is ®,-invariant, we have o (p) >0 (resp. =0).

We consider now the case M2 =CP!. We then have a complete classifica-
tion of holomorphic vector bundles.

THEOREM (Birkhoff-Grothendieck).

(1) Each holomorphic vector bundle over CP! splits as direct sum of
holomorphic line bundles.

(i) For each integer k, there exists one and only one holomorphic line
bundle L* over CP! of 1st Chern classk (up to isomorphism).

Using this well known classification theorem, it’s easy to prove the
following.

LEMMA 1. — Let V- CP! be a holomorphic vector bundle, and let ®,

be a holomorphic section of End(V)®XK. Suppose(V, ®,) is a semistable
pair. Then:

(1) ©,=0;
(i) p(V) is an integer;
(iii) V splits as direct sum of N=rk V copies of the line bundle L*™.

Proof. — By the Birkhoff-Grothendieck theorem, we can split V into
the direct sum of N line bundles. Let p<V be the holomorphic subbundle
generated by the line bundles of highest 1st Chern class; then we have
H(p)>p(V), unless p=V.

By standard arguments involving the positivity of the 1st Chern class
of the tangent bundle of S2 (cf.[V 1]), p must lie in the kernel of @, In
particular it is @ -invariant, so that we must have, by the semlstablhu
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HARMONIC GAUGES ON RIEMANN SURFACES 237

assumption, n(p)<p(V); therefore p=V. But this in turn implies
¢.=0. O -

More generally, on Riemann surfaces of greater genus, stable pairs form
a moduli space (¢f. [H2]).

3. THE EQUATIONS

LetV > M?be a complex hermitian vector bundle, A e« a unitary
connection on V, and @ a skew-hermitian section of End (V)®T* M2,

[Equivalently, P— M? is the associated principal U (N)-bundle,
Aes/(P), and @ is a section of ad PQT* M2]

We want to study the following system of equations:

F(A)+1/2[®, ®]=—2ri*pu(V)
d, =0, d,* =0
Equivalently, if we decompose ®=®,+ ®;; using the complex structure
on M? then ®, is a section of End(V)®K, and (¥%) is equivalent to
(Fek): ‘
F(A)+[®,, O]=—2ni*p(V)
(k)
0,0,=0

We remark that equations (v) are not conformally invariant, because
of the term * p(V), which needs a volume form on M? in order to be
defined. Alternatively, let p~ be any 2-form on M2, such that p.rkV is
integral, and represents the 1st Chern class ¢, (V) (this constraint is due
to Proposition2 below, and to the Chern-Weil theory of characteristic
classes). Then we can replace * pu(V) w~ith M, in (v), and throughout
the following. And, up to a choice of u , equations(v) are conformally

Invariant.

()

Remark. — Equations(yk) are “gauge” invariant under the %-action:
Ag, A, P—og, O=g 'Og 5

The simplest possible example of solutions to (v) is the case when
®=0. Then (J¢) becomes:

F(A)=—2mi*p(V)

i.e. A is a connection with constant central curvature —2mi* p(V).
We can generalize this fact, as follows.

Let (A, @) be as above. We consider the loop of unitary connections
on V- MZ%

A,=A+cost®+sent* O, Veel0, 2x] (6)

Vol. 6, n” 3-1989.



238 G. VALLI

Equivalently:
Op=0s+1"tad @ A=e"eS!? M

ProposiTION 2. — The following statements are equivalent.
(i) (A, @) is a solution of (¥%)-
(i) A, has constant central curvature F(A)=—2ni*u(V), Vte[0, 2n]

Proof.
F(A)=F(A)+1/2[®, ®]+costd, D+sentd, *D. []
We call a circle of unitary connections, with constant central curvature,

of the form (6), an ‘“Uhlenbeck loop”.

By proposition 2, Uhlenbeck loops are in natural bijective correspondance
with the space of solutions of (%), modulo the St-action ®,+- "' @,

The system of equations (¥) has a simple variational origin. Suppose
we take two unitary connections on V — M?; we call them B, C (we

should call them A,, A,, because of Proposition2, but we prefer to avoid
proliferation of indexes).

We define B, C to be harmonic one with respect to the other (¢f.[V2)
if fixing one of them (say C) then the other (say B) is critical, with respect
to the %-action, with respect to the natural, conformally invariant, norm
(Energy) on the space of connections .o/:

Ec(B)=Ez(C)= 1/2” C-B []2-—— I/ZJTr(C—B) A *(C—B) (8
d/dt][gh B-C H,2=0=0
for each variation g,
Vgi:(—¢ 8 —>%, go=L
ProrosiTiON 3. — Let B, C be unitary connections with constant central
curvature:
FB)=F(QO)=—-2ni*u((V)

Then the following statements are equivalent.

(i) B and C are harmonic one with respect to each other.

(i) A=1/2(B+C) ®=1/2 (B—C) are a solution of ().

Proof. — B and C are harmonic one with respect to each other if and
only if d, *®=0.

And

F(A)+1/2[®, @)= —27i*p(V)

FB)=F(O)=—2nixpn(V) iff{ 2, ®=0 0O

Annales de I'Institut Henri Poincaré - Analyse non linéairt
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Remark. — Let us consider the special case V=M? x C"; then the gauge
group % is = { smooth maps M? - U (N) }. Set C=0, the zero connection;
and, for fe¥ set B=f,C=f"'df. and A, ®, as above. Then(A, ®) is a
solution of (J) if and only if f is an harmonic map f: M2 - U(N)
(cf[H1], [U], [V 1).

Proposrtion 4. — Let (A, @) be a solution of (%)-

The second variation of energy is then:

H(u, w)=|dyu|*~|[®, u]|? ue¥ Q)

Proof. — Let B=A+®, C=A—®, as above.

We consider a variation g,:(—¢, €) - ¥4, g,=I; and let B,=g, B. Then
we have:

d/dt|B,—C|*=2(B;, B,—C)
djdi*|B,~CP_o=2{|dn, (g~ ' &) |*+<B,~C, dy (2" '8
+[dn (27180, 87 8D Hizo

Setu=g ! 8/:—o- Then, because of the harmonicity equations, we have:

H(u, u)=1/2d/dt?|B,— C|2|,o=|dgu|?+{B—C, [dgu, u]>
={dgu, deud=|dul*—|[®, u]|2. O

4. ADDING UNITONS

Let(A, @) be a solution of (yk) onV —» M?2; and let A, be the associated
Uhlenbeck circle of connections (6).

For each complex subbundle p<V, let p be the associated hermitian
projection operator p:V —p, pP=p. Let us associate to p the closed
1-parameter subgroup of 4: -

g=exp(itp), 1[0, 27]
Let A7 =g, A, Vte[0, 2n].
ProposITION 5. — The following statements are equivalent:

(i) A is an Uhlenbeck loop;
(i} pis a d5-holomorphic subbundle of V, and it is ®,-invariant.

Proof. — A is certainly a loop of unitary connections with constant
central curvature. We have to check when it is of the form (6), for
appropriate ®~, A~. Now, if A=¢", then we have:

&=@" +ip),
[where p* =1—p is the hermitian projection operator onto ()< V] and:
Az =A+271 03

Vol. 6, n° 3-1989.



240 G. VALLI

so that we have:
A =@ +AD) Az + AT P+ D) O (pt + D)
And, using local coordinates it’ s easy to show that:
AZ =M O,p)+(p* Oup  +pOsp+P ®:p)
+AT POt +pOip+pt p) AT (pDpY) (10)

But A" is of the form (6) if and only if A7, does not contain terms
with A, A2

< plorp=0

p®:pt=0,
pto,p=0 (11a)
pr@,p=0 (119)

But (11) are the equations expressing (ii). [

We call equations (11) “uniton equations” (cf. [U]). We call a subbundie
pSV, satisfying equations (11) (i.e. ,-holomorphic and @ -invariant) a
“uniton”; and we say that the new Uhlenbeck loop A" has been obtained
from A, by addition of the uniton p (¢f. [U]), or by “flag transform” (cf.
[B-R 1], [B-R 2)). -

Consistently with paragraph 3, given a solution (A, ®@) of (¥), we call
E=2|®|? the energy of the solutions (A, ®).

ProposITioN 5. — Let (A, ®) be a solution of () on V- M? and let
(A~, @) be obtained from (A, ®) by addition of the uniton p<V.Then we
have: B

12AE=|®~ *—|®[*=2r0c(p) (12
Proof. — From (10) we get:
O =—(ptd,p)+ @D, p)+(p O, p) (13
Therefore:
| @7 P=|p*o,p|*+|p®.p*+|p* ®.p*|?
and:
VR0 20~ 07 Pl <lptoupt p el -0
=|ptoap +|p<1>,pl’—l<l> I>+|®,p"|? —Ip<1>,p |2
=|p* o p|*—|p* ®.p|*—|p®.p
=(p*oap|*—|p®.p* 2)—(|pl5Aplz—|P*®,p|1)-

[The last passage being possible because of the uniton equations (11).]
Proposition 5 follows then from Lemma 6, in next paragraph. O
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5. AFORMULA

Let V- M? be a complex hermitian vector bundle over the compact
Riemann surface M?, equipped with a hermitian metric; let A be a unitary
connection on V, and ®=®,+®; a skew-hermitian section of

End (V) ® T*(M?2).
LemMMA 6. — Suppose (A, D) satisfy the 1st eq. of (¥):
F(A)+1/2[®, ®]=—2ni*xp(V)

Let pcV be any complex subbundle of V, and let p: V—p be the
associated hermitian projection operator. Then we have:

(P oap|*—|p* O:p| )~ (|p* Oup|?—|p* ®.p[)=2nc() (14)

Proof. — Let us equipp p with the connection induced from A. If V is
the associated exterior differential, then we have, for each section v of p:

Vo=pd,v=d,v—d,pv
And the curvature F (V) is:
F(V)=p(F(A)+d,p A dsp)p
By the Chern-Weil formulas for characteristic classes, we have:

—2i1rc1(]_))=fTrF(V)=J‘Tr(pF(A))+fTr(pdAp Adap)

= —2infTr(p)*p(V)—1/2]Tr[<D, <I>]p+jTr(pdAp Adyp) (15

(using the hypotheses of the Lemma).
But we have:

fTr(pdAp A dap)=—i(|p*3ap|*—|P3ur )
=—i(|p*osp|?=|p 0sp|?) (16)
(because pd,p=d, pp* and p*d, p=d, pp); and:
1/2J.Tr[d’, ®]P=ITr [@,, ®1p=—i(|®.p*—|p®.[*)
=—i(|p* @, pP—|p®.p*[? (17
fTr(p)*u(V)=rk(g)u<V) (18)

Substituting (16), (17) and (18) in (15), we get:

—2ine, @=(-2imrk@uV)+i(p* . p[*~[p®.p* %)
—i(p* Aplz—lp*t‘uplz)

which is (15). [J
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6. MAIN RESULTS

THeorEM 7. — Let (A, ®) be a solution of (¥¢) on V — M?. Then there
exists a solution of (¥¢) (A°, ®°) such that:

(i) ((V,d,0), ®Y) is a semistable pair;

(ii) (A, @) is obtained from (A°, ®°) by a finite number of flag transforms,
each one making the energy E'=2|®|? increse by a positive integral multiple

of 8njrk (V).

Proof. — If ((V, @,), ®,) is not a semistable pair, then there exists a
J,-holomorphic subbundle pc 'V, ®,-invariant, and with o (p) <0.

Therefore p is a uniton, and we may add it to (A, @), to produce a
new solution (A~, ®~) of (), such that:

AE=2(|®" P—|®]})=4 (@] ?—|®.[)=8no(p) <0

(using Proposition 5).
Moreover

S (p)=rk (@) (L(V)—u(p) =7k @) p(V) —c, (P)
=1rk(V){rk @) c, (V) —rk (V) ¢, ()}
Repeating this procedure, if necessary, we must eventually come to a
stop, when we reach a semistable pair (A°, ®°). [J

THEOREM 8. — Let (A, @) be a solution of (¥) on V — CP'. Then:
(i) u(V) is an integer;
(i)) (A, ®) is obtained from a solution (A°, ®°), with:

°=0
F(A9 )= —-2ni*pu(V)
by a finite number of flag transforms, each one making the energy E'=2|@'|*
increase by an integral multiple of 8 n/rk (V).
(iii) V, with the 8 ,0-holomorphic structure, is a direct sum of N copies of
the line bundle L* ¥ — CP*,
(iv) E=2|®]*=1/8n{ap(V)+b} where aeN, beZ.

Proof. — 1t easily follows from Theorem 7, Lemma 1, and Proposi-
tion 5. O

Remarks. — The flag transforms in Theorems 7, 8 may be chosen to
be “canonical” in some sense. For example, we can choose at each step
the most energy-decreasing uniton, which is the one generated by all the
unitons p’cV, with o(p’) >0. Another possible “canonical” choice, when
M2=CP!, is to choose the image bundle (or the kernel bundle) of @, at
each step as uniton: it is not necessarily energy decreasing, but it arrives
to the O-energy solution, after a finite number of steps, as in Theorem 8.
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For a more detailed analysis, ¢f- [V 3]. For a more explicit description of
the factorization, when M?=CP?, with a unicity result, cf. [W].
Let (A, @) be a solution of (k) on V - M? We want to use Lemma 6
in order to study the energy hessian:
H(u, wy=|d,u|*—|[®, u]|? %)

where ue g is a smooth skew-symmetric section of End(V) - M2,

We consider infinitesinal variations of the form u=ip, where p: V> p
is the hermitian projection operator onto a complex subbundle p<V; we
may call this kind of variations Grassmannian variations. h

ProPoSITION 9. — There exist two quadratic functionals H'(p, p),
H2(p, p), on the space of Grassmannian variations, such that we have:

H' (p, p)+H?(p, p)=H (ip, ip)
H'(p, p)—H?(p, p)=4nc(p), VpsV (19
Proof. — Define:
H!(p, p)=2(p* 8sp*—|p ®,p*|*
H2(p, p)=2(|p* dur —|p* .0 [)
and apply Lemma 6. []
CoroLLARY 10. — Suppose the energy hessian (9) of a given solution

(A, ©) of (¥) is positive definite (resp. semipositive).
Then the bundle (V, 0,) is stable (resp. semistable).

Proof. — If (V, 8,) is not (semi)-stable, then 3p<V §,-holomorphic
subbundle, with o (p) <0 (resp. <0). Let us take a variation u=ipeg, with
p projection onto p. Then we have:

H?(p, p)<0, so that:

H(ip, ip)=2H?(p, p)+4nc (p)=0 (resp. <0). J

CoroLLARY 11. — Let (A, ®) be a solution of (%) on V- M?; let
PSV be a 04-holomorphic, ®_-invariant subbundle (i.e. a uniton), and let
p:

V - p be the associated projection.
Then u=ip is critical point for the functional (9):

H(ip, ip)=|ds @ |*—|[®, p1
restricted to the space of Grassmannian variations.
Proof. — Because of Proposition 9, it’s sufficient to show that p is a
critical point of:
H2(p, p)=2(1p* 3up|*—|p* @, p|?

on the space of p’s.

Vol. 6, n° 3-1989.



244 G. VALLI

The Euler-Lagrange equations for p [we allow variations of the form
p—>g; ' pg, with g, : (—¢, £) > %] are of the form:

D'(p)+D” (p)=0 (20)
where D’(p), D" (p), are differential expressions in p, coming out from
the Ist and 2nd term in H?(p, p).

But D’ (p) =0, because p* 3, p=0, so p is a minimum of |p*3,p
therefore a critical point for [ ptoap |2, in the space of p’s.

Similarly, D" (p)=0, because p is ®,-invariant. Therefore, if p is a
uniton, it satisfies the Euler-Lagrange equations (20). [] -

2 and

Remark. — Corollary 11 still holds if p is an “antiuniton”, i.e. a
d,-antiholomorphic, ®_-invariant subbundle of V. Indeed, just repeat the
proof above, considering now H!; or observe that p is a antiuniton if and
only if p* is a uniton; and that H (ip, ip)=H (ipt, ip*) for each p. O

7. SOME OPEN QUESTIONS

Question 1. — Is the converse of Corollary 10 true?
This question is closely related to the following:

Question 2. — Is the converse of Corollary 11 true; in other words: is
every. critical point of the functional (9) on the space of complex subbundles
of V either a uniton or antiuniton?

Question 3. — Is it possible to generalize some of the constructions and
of the results in this paper to the case when M is a Kihler manifold?

For a partial answer to Question 3, see [O-V], where factorization
theorems for pluriharmonic maps (in the sense of Ohnita [O}]) into Lie
groups are obtained.

Question 4. — Motivated by a theorem of Gaveau (c¢f. [G]), we ask if
the following is true.

Let V— M? be a complex vector bundle on a compact Riemann surface
M?2; and let (B, C) be two unitary connections on V, gith constant central
curvature F(B)=F(C)= —2ni* p(V).

Then there exists a unitary connection B™, gauge equivalent to B, such
that B~, C, are harmonic one with respect to the other.

This would give information on the moduli space of solutions of (¥).
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