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ABSTRACT. — We prove that the only probability measures supported
at connected subsets of 2 X 2 matrices without rank-one connections and
commuting with the determinant are Dirac masses. We also prove some
regularity results for fully nonlinear 2 X 2 elliptic systems of the first order.
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ResuME. — Soit K un sous-ensemble connexe de matrices deux par
deux sans connexion de rang un et soit v une mesure de probabilité
concentrée sur K qui commute avec le déterminant. On démontre que v
est une masse de Dirac. On démontre aussi quelques résultats de régularité
pour des systémes elliptiques deux par deux du premier ordre.

1. INTRODUCTION

Let Q = R? be open an bounded. For functions v:Q — R? we consider
nonlinear systems given by Dv(x)eK, where K is a submanifold of the
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set M?*2 of all 2x 2 matrices. We shall be interested in regularity of
solutions of these systems and also in the following question: if v;:Q > R?
is a sequence of functions such that |Dv [<c and dist(Dv;(.), K) -0 in
L?, what can be said about compactness of the sequence Dv in L?? Since
for every A, BeM?*? with rank (A—B)=1 we can construct a sequence
of piecewise linear functions whose gradients oscillate between A and B,
a necessary condition to get some positive results is that rank (A—B)>2
for any two distinct matrices A, BeK. Tartar’s conjecture (see [14]) in
our special situation says that this condition should be also sufficient for
the compactness of the sequences above. Here we prove that this holds true
under the additional assumption that K is connected. (Without additional
assumptions the conjecture fails. For a counterexample with K consisting
of four matrices see [7]. Counterexamples in higher dimensions can be
found in [2].) We also give a simple proof of the fact that if K is connected,
rank (A—B)=2 for each A, BeK distinct, and the system Dv(x)eK is
elliptic (i. e. planes tangent to K do not contain rank-one directions), then
the solutions which are Lipschitzian belong to C** for some o>0. If,
moreover, K is smooth, then the solutions are smooth. A4 priori estimates
for the C"*norm of twice differentiable solutions of the systems consi-
dered here are well-known. (See, for example, [8], Chapter 12.) T am not
aware of any previous regularity results for Lipschitzian solutions, with
the exception of the Monge-Ampére equation, which, of course, can be
considered as a first-order elliptic system. In general, if K is two dimen-
sional and is contained in symmetric matrices, then the equation Dv (x)e K
can be viewed as a fully nonlinear scalar equation of the second order for
the potential of the vector field v. 4 priori estimates for solutions of such
equations in arbitrary dimensions have been obtained in [5]. See also [8],
Chapter 17.

2. PRELIMINARIES

Throughout this paper Q denotes a nonempty, bounded, open subset
of R%. The Lebesgue spaces L?, the Sobolev spaces W*? and the spaces
C*k* of Holder continuous functions are defined in the usual way.

Let us briefly recall basic facts concerning Young measures. (We refer
the reader to [1] or [14] for more details.) Let z;: Q — R" be a sequence of
functions bounded in L*(Q). It is possible to prove that there exists a
subsequence z, of z; such that for any continuous function f:R" — R the
sequence f° z, converges weakly* in L* (Q) to some function /,. Moreover,
it is also possible to prove that there is a subset S of Q of measure zero
and a family {v,, xeQ\ S} of probability measures on R" such that for

Annales de I'Institut Henri Poincaré - Analyse non linéaire



ON TARTAR’S CONJECTURE 407

each continuous f:R" — R we have &, (x)= J Sf)dv, (\) for almost every
RII

xeQ. We shall use the notation f S av, (M) ={v,, f>. If almost all of
R’l

the measures v, are Dirac masses, then the sequence z, is compact in
L"(Q) for any r<oo and vice versa. The measures v, are called Young
measures.

We shall use the following lemma.

LemMaA 1. — Let K be a connected topological space and let g: K X K - R
be a continuous function such that g(x, y)=g(y, x)#0 for every x, yeK,
x#y and g(x, x)=0 for every xeK. Then either g(x, y)=0 for every
x, yeK or g(x, y)<0 for every x, yeK.

Proof. — We notice that if g changes sign on K x K, then there exists
yeK such that g(-, y) changes sign on K. Indeed, supposing this is
not the case, we consider the sets K*={yeK, g(-,»)20 on K} and
K ={yeK,g(-,»=<0 on K} These sets are clearly closed and
K*NK~=¢. Since K is connected, we cannot have K* UK =K.
Therefore the lemma will be proved if we show that under our assumptions
the function g(-, y) does not change sign for any yeK. Suppose this is
not true and let y,eK be such that g(-, y,) changes sign. Let
K,={xeK, g(x,y0)20} and K_={x€eK, g(x, yo)<0}. We claim that
K, and K_ are connected. To see this, suppose that K, =UUV,
where U, V are nonempty disjoint closed subsets of K ,. We can suppose
¥o¢ V. We now consider the sets U=K _ \J U and V=V. These are closed
sets covering K, i.e. U U V=K. We have

ONV=K_NVHUUNV)=EK_NKIN\{yo}-

Since g does not vanish outside the diagonal, the last set is empty. Since K
is connected and U is nonempty, the set V=V must be empty. This shows
that K, is connected. The proof for K _ is the same. Let x, e K, \{y,}
and x_eK_\{y,}. The function g(x,, .) is positive at y, and does not
vanish on the connected set K_ containing y,. Therefore it is positive on
K_ and in particular g(x,, x_)>0. On the other hand, the function
g(x_, -) is negative at y, and does not vanish on the connected set K,
containing y, and therefore g(x_, x,)=g(x,, x_)<0, a contradiction.
The proof is finished.
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3. COMPACTNESS

Lemma 2. — Let K be a connected subset of M?*2 and suppose that
rank (X—Y)=2 for every two distinct matrices X, YeK. Then either
det(X—Y)=0 for all X, YeK or det(X—Y)<0 for all X, YeK.

Proof. — This is an obvious consequence of Lemma 1.

LeMMA 3. — Let K be a bounded Borel measurable subset of M?*2 such
that rank(X—Y)=2 for any itwo distinct X, YeK and suppose
that det(X—Y) does not change sign on KxK. Let v be a probability
measure on M?*? carried by K (i.e. v(M2*2\K)=0) and satisfying
{v,det y=det (v, identity ). Then v is a Dirac mass, i.e. v=3, for some
Aek.

Proof. — Let A={v, identity ) be the centre of mass of v. Let b be the
symmetric bilinear form on M2?*2 determined by det X=%b(X, X). We

can write
J dv(X)f dv(Y)det(X-Y)
M2 x2 M2 x2

=J dV(X)J v (Y)(detX +det Y- b (X, Y))
M2x2

M2%2

= dv(X)(detX+detA—b (X, A))

M2x2
=detA+detA—b (A, A)=0.

Since det (X —Y) does not change sign and vanishes only at the diagonal
of K xK, we see that the measure v ® v is supported at the diagonal of
K %K and therefore it must be a Dirac mass. The proof is finished.

WP uf

THEOREM 1. — Let U‘j)=< > be a uniformly bounded sequence

WP oy
of matrix-valued functions on Q and suppose that the sequences curlu'? and
curlv'? are compact in H™*(Q). Let K be a closed connected subset of
M?*2 such that rank (X —Y) =2 for any two distinct X, Y eK and suppose
that dist (UY (x), K) - 0 for a.e. xeQ. Then the sequence U is compact
in L?(Q) for every 1 <p< 0.

Proof. — Following L. Tartar [14] we consider a family of Young
measures v, associated to a subsequence of the sequence U we and use
the div-curl lemma (see [14]) to infer that {v,, det ) =det{v,, identity )
for almost every x € Q. Our assumptions clearly imply that v_ is supported
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on a bounded subset of K for a.e. xeQ. From Lemma 2 and Lemma 3
we see that v, is a Dirac mass for almost every x e Q. The proof is finished.

4. RANK-ONE CONNECTIONS IN SETS OF GRADIENTS

The results of Section 3 can be used to generalize some results of [2],
Section 5.

THEOREM 2. — Let u:Q — R? be a Lipschitzian function which coincides
with an affine function A at the boundary of Q and suppose that Du is
continuous in Q. If u is not affine, then there exist x, yeSQ such that
rank (Du (x)—Du(y))=1.

Proof. — Let us first assume that Q is connected and A=0. Let

K={ Du(x), xeQ} and let v be the probability measure on M2*? given

by
1

measQ

v, f)= jf(Du(X))dx
Q

for every continuous function f: M?*2 - R. Under our assumptions the
set K is bounded and connected. The measure v is carried by K. We claim
that (v, det ) =det (v, identity ). For this it is enough to prove that under

our assumptions we have f Du(x)dx=0 and J det Du(x) dx=0. This is
Q Q
well known if u is Lipschitzian and compactly supported in Q. (See, for

example, [11].) The general case can be brought to this case by extending
u by 0 outside Q and integrating over a sufficiently large ball in which Q
is compactly contained. We can now apply Lemma 2 and Lemma 3 and
we see that if Du is not constant, then there must be rank-one connections
in K. The proof in the case when Q is connected and A=0 is finished.
The general case follows easily, since clearly ¥=A on the boundary of
every connected component of Q and since we can replace u by u—A, if
necessary.

Remarks. — 1. For any open set Q — R? it is possible to construct a
Lipschitzian function u:Q — R? vanishing at the boundary of Q and a
bounded countable set S = M?*? such that there are no rank-one connec-
tions in the closure K of S, 0¢K, and DueS a.e. in Q. See [13].

2. For examples showing that Theorem 2 fails in higher dimensions
(except, perhaps, for mappings from Q < R? to R?) see [2].
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5. REGULARITY

THEOREM 3. — Let K be a bounded subset of M**? and suppose that
there is ).>0 such that either det(X—Y)2A|X~Y |? for each X, Y€K or
det X—Y)< —A|X—Y|? for each X, YeK. Let v:Q — R? be a Lipschit-
zian function satisfying Dv(x)eK for almost every xeK. Then there is

p>2 such that v belongs to WP (Q). In particular, the gradient Dv of v is
Hélder continuous.

Proof. — We will consider only the case det(X—Y)=A|X—-Y|%. For
the proof in the case det(X—Y)< —A|X—Y|? it is enough to replace
det by —det in the formulae below. Let aeR? and for A>0 let
vy (X)=(v(x+ha)—v(x))/h. (We can extend v by zero outside Q, for
example.) Let n be a smooth nonnegative function compactly supported
in Q. Let »eR2. For sufficienly small # we have
r
0=} detD(n(v,—b))dx

Q

LY

"~

(—n|Dv,||Dn ||v,—b|+n?det Dv,) dx
Q

1\%

»

(—n|DvhHDn||v,,—b|+7\,n2‘Dvh|2)dx
o

1\%

J

1 A

> _j |Dn [0, —b[?dx + _f n?| Du, [ d.
21 Jo 2Ja

We see that the L?>-norm of Do, on compact subsets of Q is estimated by

the L2-norm of v,. We can now use the well-known Nirenberg’s Lemma

to infer that Dve Wi, 2(Q). It is well-known that if there exists C>0 such

that

anlethngf D[ |, b P dx
Q Q

for every n as above and every beR?, or in another words, if v, satisfies
the Caccioppoli’s inequality, then there exists a p>2 such that the
L?-norm of Duv, on every set {} compactly contained in Q is bounded by
C, || o2 @» Where C, depends only on C, p, & and Q. (For a proof of
this which is based on the technique of reverse Holder inequalities see [6].)
Using Nirenberg’s Lemma again, we see that Dv is bounded in W7 (Q).
The Holder continuity of Dv follows from the Sobolev Imbedding Theo-
rem. The proof is finished.

CoroLLARY. — Let K be a closed connected smooth submanifold of M?*2
such that rank (X —Y) 22 for any two distinct X, Y eK. Suppose moreover
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that K is “elliptic”, or in other words, that for any XeK the tangent space
to K passing through X does not contain rank-one directions. Then every
Lipschitz function v:Q — R? satisfying Dv(x)€K for a.e. xeK is smooth.

Proof. — We notice that the ellipticity condition together with Lemma 1
implies that for each bounded subset K, of K there exists A >0 such that
either

det(X—-Y)2A|X-Y|* forevery X, YeK,
or
detX-Y)<—-A|X-Y|* forevery X, YeK,.

We can use Theorem 2 to infer that Dv is Holder continuous and that v
belongs to the space WZ.2(Q). Since Dv(x)eK in Q, the derivatives

loc

(—36—Dv (x) belong to the tangent space of K at Dv(x) for a.e. xeQ. Since

13

Dv is Holder continuous and K is elliptic, we see that a—v(x) can be
viewed as solutions of a certain linear first order elliptic system with
Holder continuous coefficients. Therefore D? v is Holder continuous. (See,
for example, [11].) Applying the usual procedure of improving regularity
we see that v must be smooth. The proof is finished.

6. EXAMPLES

Classical examples of K’s which are elliptic in the above sense are
Ko={XeM?*?, X is symmetric and Trace X=0}
and
K,={XeM?*?, X is symmetric, positive definite, and det X=1}.

Clearly K, can be viewed as the tangent space to K, at the unit matrix.

The following examples arise in connection with problems concerning
invariant “wells” which appear in the theory of microstructures. (See, for
example, [3], [4], [9], and [10] for motivation). Let A,, ..., A,eM?*?
with det A, >0 for each k=1, ..., m and let

K,=S0(2)-A,U...USO(2)-A,.

It is easy to check that if K, does not contain rank-one connections (i. e.
rank (X—Y)22 for any two distinct X, YeK,), then there exists v>0
such that det(X—Y)=v|X~—Y|? for each X, YeK,,. We see that in this
case Lemma 3 and Theorem 3 can be applied to K,. This shows, for
example, that if K, does not contain rank-one connections, then the
deformations @ :Q — R? satisfying DoeK,, a.e. in Q belong to CL(Q)

loc.
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412 V. SVERAK

for some a>0. Using this it is not difficult to see that if K, does not
contain rank-one connections, then Do eK,, a.e. in Q implies that in fact
Do is locally constant in Q.

We can also consider continuous families of invariant wells. A simple
example is the following: let p:[0, 1] > R and A:[0, 1] > R be smooth
strictly positive functions with p’(1)>0 and A’ (£)>0 for all ¢€[0, 1] and

let K,.= U SO(2)- (7\’ @0 0 ) It is easy to check that K, satisfies the
telo, 1] 0 n@®
assumptions of Theorem 1 and Theorem 3.
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