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ABSTRACT. - We prove that the only probability measures supported
at connected subsets of 2 x 2 matrices without rank-one connections and

commuting with the determinant are Dirac masses. We also prove some
regularity results for fully nonlinear 2x2 elliptic systems of the first order.
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RESUME. - Soit K un sous-ensemble connexe de matrices deux par
deux sans connexion de rang un et soit v une mesure de probability
concentree sur K qui commute avec le determinant. On demontre que v
est une masse de Dirac. On demontre aussi quelques resultats de regularite
pour des systèmes elliptiques deux par deux du premier ordre.

1. INTRODUCTION

Let Q c R2 be open an bounded. For functions v : SZ --> R2 we consider
nonlinear systems given by D v (x) E K, where K is a submanifold of the

Classification A.M.S. : 35 B.
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set M2 x 2 of all 2x2 matrices. We shall be interested in regularity of
solutions of these systems and also in the following question: if Vj: S2 -~ R2
is a sequence of functions such that and dist(Dvj(.)’ K) -~ 0 in
LP, what can be said about compactness of the sequence Dv~ in LP? Since
for every A, with rank (A - B) =1 we can construct a sequence
of piecewise linear functions whose gradients oscillate between A and B,
a necessary condition to get some positive results is that rank (A - B) ~ 2
for any two distinct matrices A, BeK. Tartar’s conjecture (see [14]) in
our special situation says that this condition should be also sufficient for
the compactness of the sequences above. Here we prove that this holds true
under the additional assumption that K is connected. (Without additional
assumptions the conjecture fails. For a counterexample with K consisting
of four matrices see [7]. Counterexamples in higher dimensions can be
found in [2].) We also give a simple proof of the fact that if K is connected,
rank (A - B) >_ 2 for each A, BeK distinct, and the system Dv (x) E K is
elliptic (i. e. planes tangent to K do not contain rank-one directions), then
the solutions which are Lipschitzian belong to C 1 ~ °‘ for some a > 0. If,
moreover, K is smooth, then the solutions are smooth. A priori estimates
for the C 1 ~ °‘-norm of twice differentiable solutions of the systems consi-
dered here are well-known. (See, for example, [8], Chapter 12.) I am not
aware of any previous regularity results for Lipschitzian solutions, with
the exception of the Monge-Ampère equation, which, of course, can be
considered as a first-order elliptic system. In general, if K is two dimen-
sional and is contained in symmetric matrices, then the equation Dv (x) E K
can be viewed as a fully nonlinear scalar equation of the second order for
the potential of the vector field v. A priori estimates for solutions of such
equations in arbitrary dimensions have been obtained in [5]. See also [8],
Chapter 17.

2. PRELIMINARIES

Throughout this paper Q denotes a nonempty, bounded, open subset
of R2. The Lebesgue spaces LP, the Sobolev spaces and the spaces
Ck° °‘ of Holder continuous functions are defined in the usual way.

Let us briefly recall basic facts concerning Young measures. (We refer
the reader to [1] or [14] for more details.) Let Zj: S2 -~ R" be a sequence of
functions bounded in L°° (SZ). It is possible to prove that there exists a
subsequence z~ of Zj such that for any continuous function f : R" -~ R the
sequence f ~ z~, converges weakly* in L°° (SZ) to some function h f. Moreover,
it is also possible to prove that there is a subset S of Q of measure zero
and a family of probability measures on Rn such that for
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each continuous f : Rn ~ R we have h f (x) dvx (03BB) for almost every

x~03A9. We shall use the notation If almost all of

the measures v~ are Dirac masses, then the sequence z~ is compact in
Lr (Q) for any r  oo and vice versa. The measures vx are called Young
measures.

We shall use the following lemma.

LEMMA 1. - Let K be a connected topological space and let g : K x K ~ R
be a continuous function such that g (x, y) = g ( y, for every x, y E K,
x~y and g(x, x)=o for every x~K. Then either g(x, for every
x, y e K or g (x, every x, y E K.

Proof. - We notice that if g changes sign on K x K, then there exists
y E K such that g { ~ , y) changes sign on K. Indeed, supposing this is
not the case, we consider the sets K + _ ~ y E K, g ( ~ , y) >_ 0 on K ~ and

onK}. These sets are clearly closed and

K + n K - = QS . Since K is connected, we cannot have K + U K - = K.
Therefore the lemma will be proved if we show that under our assumptions
the function g ( . , y) does not change sign for any y E K. Suppose this is
not true and let yo E K be such that g ( ~ , yo) changes sign. Let

and We claim that

K+ and K_ are connected. To see this, suppose that K + = U U V,
where U, V are nonempty disjoint closed subsets of K + . We can suppose
y0~ V. We now consider the sets LJ = K _ U U and V = V. These are closed
sets covering K, i. e. U U V = K. We have

Since g does not vanish outside the diagonal, the last set is empty. Since K
is connected and C is nonempty, the set V = V must be empty. This shows
that K+ is connected. The proof for K_ is the same. Let x + 
and x _ The function g (x + , . ) is positive at yo and does not
vanish on the connected set K_ containing yo. Therefore it is positive on
K_ and in particular g (x+, x _) > o. On the other hand, the function

g (x _ , ~ ) is negative at yo and does not vanish on the connected set K+
containing yo and therefore g (x _ , x + ) = g (x +, x _ )  0, a contradiction.
The proof is finished.

Vol. 10, n° 4-1993.
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3. COMPACTNESS

LEMMA 2. - Let K be a connected subset of M2 " 2 and suppose that
rank (X - Y) >-_ 2 for every two distinct matrices X, Y E K. Then either
det (X - Y) >_ 0 for all X, Y E K or det (X - Y) _ 0 for all X, Y E K.

Proof. - This is an obvious consequence of Lemma l.

LEMMA 3. - Let K be a bounded Borel measurable subset of M2 " 2 such
that rank (X - Y) >_ 2 for any two distinct X, Y~K and suppose
that det (X - Y) does not change sign on K X K. Let v be a probability
measure on M2 " 2 carried by K (i. e. v (M2 " = 0) and satisfying
~ v, det ~ = det ~ v, identity). Then v is a Dirac mass, i. e. some

AEK.

Proof. - Let A = ( v, identity ) be the centre of mass of v. Let b be the

symmetric bilinear form on determined by det X = 1 b ( X X). We
2

can write

Since det (X - Y) does not change sign and vanishes only at the diagonal
of K x K, we see that the measure v Q v is supported at the diagonal of
K x K and therefore it must be a Dirac mass. The proof is finished.

THEOREM 1. - Let U(j)=(u(j)1 u(j)2) be a uniformly bounded sequence
vl 

.f .Y q 
~ 

c

of matrix-valued functions on SZ and suppose that the sequences curl and
curl are compact in H -1 (S2). Let K be a closed connected subset of
M2 " 2 such that rank (X - Y) >_ 2 for any two distinct X, Y E K and suppose
that dist (x), K) ~ 0 for a. e. x E o. Then the sequence is compact
in LP (SZ) for every 1 -p  oo .

Proof. - Following L. Tartar [14] we consider a family of Young
measures vx associated to a subsequence of the sequence we and use
the div-curl lemma (see [ 14]) to infer that 03BDx, det ) = identity )
for almost every x E o. Our assumptions clearly imply that vx is supported
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on a bounded subset of K for a. e. x E SZ. From Lemma 2 and Lemma 3
we see that vx is a Dirac mass for almost every The proof is finished.

4. RANK-ONE CONNECTIONS IN SETS OF GRADIENTS

The results of Section 3 can be used to generalize some results of [2],
Section 5.

THEOREM 2. - Let u : R2 be a Lipschitzian function which coincides
with an affine function A at the boundary of S~ and suppose that Du is

continuous in Q. If u is not affine, then there exist x, y~03A9 such that
rank (Du (x) - Du ( y)) = 1.

Proof. - Let us first assume that Q is connected and A = 0. Let

K = { Du (x), x E SZ } and let v be the probability measure on given
by

for every continuous function f : M2 x 2 - R. Under our assumptions the
set K is bounded and connected. The measure v is carried by K. We claim
that ( v, det) = det ( v, identity ). For this it is enough to prove that under

our assumptions we have and det This is

well known if u is Lipschitzian and compactly supported in Q. (See, for
example, [11].) The general case can be brought to this case by extending
u by 0 outside Q and integrating over a sufficiently large ball in which Q
is compactly contained. We can now apply Lemma 2 and Lemma 3 and
we see that if Du is not constant, then there must be rank-one connections
in K. The proof in the case when Q is connected and A = 0 is finished.
The general case follows easily, since clearly u = A on the boundary of
every connected component of 0 and since we can replace u by u - A, if
necessary.

Remarks. - 1. For any open set Q c R2 it is possible to construct a
Lipschitzian function u : S2 ~ R2 vanishing at the boundary of Q and a
bounded countable set S c M2 x 2 such that there are no rank-one connec-
tions in the closure K of S, and Du E S a. e. in Q. See [13].

2. For examples showing that Theorem 2 fails in higher dimensions
(except, perhaps, for mappings from Q c R2 to R3) see [2].

Vol. 10, n° 4-1993.



410 V. SVERAK

5. REGULARITY

THEOREM 3. - Let K be a bounded subset of M2 " 2 and suppose that
there is ~, > 0 such that either det (X - Y) >_ ~, ( X - Y I2 for each X, Y E K or
det (X - Y) _ - ~, I X - Y 2 for each X, Y E K. Let v : Q - R2 be a Lipschit-
zian function satisfying Dv (x) E K for almost every x E K. Then there is

p > 2 such that v belongs to (Q). In particular, the gradient Dv of v is
Holder continuous.

Proof - We will consider only the case det (X - Y) >_ X - Y 2 . For
the proof in the case det (X - Y)  - X - Y ~2 it is enough to replace
det by - det in the formulae below. Let aER2 and for h>O let

vh(x)=(v(x+ha)-v(x))/h. (We can extend v by zero outside Q, for
example.) Let ~ be a smooth nonnegative function compactly supported
in Q. Let b E R2. For sufficienly small h we have

r

We see that the L2-norm of Dvh on compact subsets of Q is estimated by
the L2-norm of v~. We can now use the well-known Nirenberg’s Lemma
to infer that It is well-known that if there exists C > 0 such
that

r r

for every 11 as above and every b E R2, or in another words, if vh satisfies
the Caccioppoli’s inequality, then there exists a p > 2 such that the
LP-norm of Dvh on every set SZ compactly contained in Q is bounded by

where C 1 depends only on C, p, Q and Q. (For a proof of
this which is based on the technique of reverse Holder inequalities see [6].)
Using Nirenberg’s Lemma again, we see that Dv is bounded in W1, ploc (03A9).
The Holder continuity of Dv follows from the Sobolev Imbedding Theo-
rem. The proof is finished.

COROLLARY. - Let K be a closed connected smooth submanifold of M2 2
such that rank (X - Y) >_ 2 for any two distinct X, YeK. Suppose moreover
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that K is "elliptic ", or in other words, that for any X E K the tangent space
to K passing through X does not contain rank-one directions. Then every
Lipschitz function v : SZ -> R2 satisfying Dv (x) E K for a. e. x E K is smooth.

Proof. - We notice that the ellipticity condition together with Lemma 1
implies that for each bounded subset K1 of K there exists ~, > 0 such that
either

or

We can use Theorem 2 to infer that Dv is Holder continuous and that v

belongs to the space Wfdc2 (Q). Since Dv (x) E K in Q, the derivatives

 Dv (x) belong to the tangent space of K at Dv (x) for a.e. x E Q. Since
ax; 

() g g p ()

Dv is Holder continuous and K is elliptic, we see that v(x) can bep ~ 
ax; 

( )

viewed as solutions of a certain linear first order elliptic system with
Holder continuous coefficients. Therefore D2 v is Holder continuous. (See,
for example, [11].) Applying the usual procedure of improving regularity
we see that v must be smooth. The proof is finished.

6. EXAMPLES

Classical examples of K’s which are elliptic in the above sense are
X is symmetric and Trace X = 0 ~

and

E M 2 " 2, X is symmetric, positive definite, and det X =1 ~ .
Clearly Ko can be viewed as the tangent space to K 1 at the unit matrix.
The following examples arise in connection with problems concerning

invariant "wells" which appear in the theory of microstructures. (See, for
example, [3], [4], [9], and [10] for motivation). Let ..., Am E M2 x 2
with det Ak>O for each k =1, ..., m and let

It is easy to check that if Kw does not contain rank-one connections (i. e.
rank (X - Y) >_- 2 for any two distinct X, then there exists v > 0
such that for each X, Y E Kw. We see that in this
case Lemma 3 and Theorem 3 can be applied to KW. This shows, for
example, that if Kw does not contain rank-one connections, then the
deformations satisfying Dcp E Kw a.e. in Q belong to (S2)
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for some ex> o. Using this it is not difficult to see that if Kw does not
contain rank-one connections, then Dcp E Kw a.e. in Q implies that in fact
Dcp is locally constant in Q.
We can also consider continuous families of invariant wells. A simple

example is the following: let J.l: [0, 1] - R and ~, : [0, 1] --~ R be smooth
strictly positive functions with and ~,’ (t) > 0 for all t E [0, 1] and

let K, = U SO 2 ~’ (t) 0 ). It is easy to check that K, satisfies the
t E (o, 1 ) 1 

( ) B 0 y ~ t e

assumptions of Theorem 1 and Theorem 3.
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