Analyse non linéaire

On solutions of the exterior Dirichlet problem for the minimal surface equation

by

Ernst KUWERT

Mathematisches Institut, Universität Bonn, Wegelerstrasse 10, D-53115 Bonn, Germany

ABSTRACT. – Uniqueness and existence results for boundary value problems for the minimal surface equation on exterior domains obtained by Langévin-Rosenberg and Krust in dimension two are generalized to arbitrary dimensions. A suitable n-dimensional version of the maximum principle at infinity is given.

Key words : Minimal surface equation, exterior domain problems, maximum principle at infinity.

RÉSUMÉ. – On présente des résultats d'unicité et d'existence pour l'équation des surfaces minimales sur un domaine extérieur de \mathbb{R}^n . On donne une généralisation du principe de maximum à l'infini, valable quel que soit n.

Classification A.M.S.: 49 F 10, 35 J 25, 35 B 50.

Annales de l'Institut Henri Poincaré - Analyse non linéaire - 0294-1449 Vol. 10/93/04/\$4.00/

© 1993 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

E. KUWERT

1. INTRODUCTION

Let $U \subset \mathbb{R}^n$ be a domain such that $K = \mathbb{R}^n \setminus U$ is compact. In this paper we consider solutions $u \in C^2(U)$ of the minimal surface equation

(E)
$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0$$
 in U

which are *regular at infinity* in the sense that their graph has a welldefined asymptotic normal $v_{\infty} \in \{v \in S^n : v^{n+1} > 0\}$. Given $\varphi \in C^0(\partial U)$ a function $u \in C^0(\overline{U})$ is called a *solution of the exterior Dirichlet problem* if u satisfies (E) – in particular $u \in C^2(U)$ – and $u | \partial U = \varphi$.

In case of a *bounded* domain U the solvability of the corresponding boundary value problem for all $\varphi \in C^0(\partial U)$ is equivalent to the mean curvature of ∂U being nonnegative [3]. Since this condition is necessarily violated for an exterior region, the existence problem is quite difficult. In [11] Osserman presented smooth functions on the unit circle which do not admit a bounded solution. Recently Krust [5] showed that the boundary data in Osserman's examples would not even admit solutions having a vertical normal at infinity. Krust's main result says that for n=2 all solutions having the same v_{∞} form a *foliation*. From this he could derive the nonexistence statement using a symmetry argument. We will prove the above foliation property in arbitrary dimensions. We shall also give a simple proof different from [7] of the so-called maximum principle at infinity. Our argument is similar to the one given in [8] and suitably generalizes to the *n*-dimensional case.

Let us finally mention that $\Gamma = \operatorname{graph} \varphi$ always bounds a minimal surface having a planar end by the work of Tomi and Ye [13] and the author [6]; here "minimal surface" refers either to a parametric solution (n=2) or to an embedded surface (possibly with singularities if $n \ge 7$).

2. ASYMPTOTIC EXPANSIONS AND MAXIMUM PRINCIPLE AT INFINITY

We will use the following notation: $\omega_n = \mathscr{H}^n(\mathbb{S}^n)$ $px = \xi \text{ for } x = (\xi, x^{n+1}) \in \mathbb{R}^{n+1}$ $r = r(\xi) = |\xi|, e_r = e_r(\xi) = \frac{\xi}{r} \text{ for } \xi \in \mathbb{R}^n \setminus \{0\}$

 $A(r, R) = \{\xi \in \mathbb{R}^n : r < |\xi| < R\}, A(r) = A(r, \infty)$

U will always denote an open neighbourhood of infinity in \mathbb{R}^n . If $V \subset U$ and ∂V is of class C^1 , *u* is a solution of (E) in U and φ is locally

Lipschitz continuous in U, then

$$\int_{\mathbf{V}} \langle \mathbf{T}(\nabla u), \nabla \varphi \rangle d\mathcal{L}^{n} = \int_{\partial \mathbf{V}} \varphi \langle \mathbf{T}(\nabla u), \mathbf{N} \rangle d\mathcal{H}^{n-1}$$
(1)

where as usual $T(p) = (1 + |p|^2)^{-1/2} p$ for $p \in \mathbb{R}^n$ and N is the exterior unit normal along ∂V . Setting $w(p) = (1 + |p|^2)^{1/2}$, the ellipticity of (E) can be stated as follows:

$$\langle T(p_1) - T(p_2), p_1 - p_2 \rangle \ge (\max_{i=1,2} w(p_i))^{-3} |p_1 - p_2|^2 \quad \forall p_{1,2} \in \mathbb{R}^n$$
 (2)

A connected, oriented and embedded minimal surface $M^n \subset \mathbb{R}^{n+1}$ will be called *simple at infinity* if M has a welldefined normal $v_{\infty} \in S^n$ at infinity and M can be written as a graph over its asymptotic tangent plane outside some compact set. Assuming $v_{\infty} = e_{n+1}$ is the vertical direction, it is shown in [12] that the corresponding graph function has a *twice differentiable expansion*

$$u(\xi) = h + \alpha g(r) + O(r^{1-n})$$
(3)

where $h \in \mathbb{R}$, $\alpha \in \mathbb{R}$ and g is the Newtonian potential in \mathbb{R}^n :

$$g(r) = \frac{\log r}{\frac{r^{2-n}}{2-n}} \qquad (n \ge 3)$$

For example the graph function of an *n*-dimensional catenoid is given by

$$|x^{n+1}| = c_a(r) = a \int_1^{r/a} (s^{2(n-1)} - 1)^{-1/2} ds \quad (a > 0)$$
 (4)

and satisfies (3) with $\alpha = a^{n-1}$. If ν_{∞} is fixed, we will refer to *h* as the *height* and α as the *growth rate* (at infinity). The following result is due to Langévin and Rosenberg [7] in case n=2.

THEOREM 1 (MAXIMUM PRINCIPLE AT INFINITY). – Suppose M_i (i=1, 2) are minimal surfaces which are simple and disjoint at infinity. If the M_i are at distance zero at infinity, then $n \ge 3$ and their growth rates are different.

Proof. – We may assume that $M_i = \operatorname{graph} u_i$ where $u_i \in \mathbb{C}^0(\overline{A(\mathbb{R})})$, $u_1 < u_2$ and $u_i = h_i + \alpha_i g(r) + O(r^{1-n})$. The assumptions imply $h_1 = h_2$ and $u_2 - u_1 \to 0$ uniformly as $\xi \to \infty$; for n = 2 we also had $\alpha_1 = \alpha_2$. The expansions yield

$$\langle \operatorname{T}(\nabla u_i), e_r \rangle = \alpha_i r^{1-n} + O(r^{-n}).$$

Setting $d = \inf \{ u_2(\xi) - u_1(\xi) : |\xi| = R \} > 0$ we consider for any $\varepsilon \in (0, d)$ the test function

$$\varphi_{\varepsilon} := \begin{array}{ccc} 0 & \text{if} & u_2 - u_1 \ge d \\ \varphi_{\varepsilon} := & u_2 - u_1 - d & \text{if} & \varepsilon < u_2 - u_1 < d \\ \varepsilon - d & \text{if} & 0 < u_2 - u_1 < \varepsilon \end{array}$$

Vol. 10, n° 4-1993.

E. KUWERT

Using φ_{ε} in (1) on V = A (R, ρ) and letting $\rho \rightarrow \infty$ we obtain

$$(d-\varepsilon)\omega_{n-1}\alpha_i = \int_{\{\varepsilon < u_2 - u_1 < d\}} \langle T(\nabla u_i), \nabla u_1 - \nabla u_2 \rangle d\mathscr{L}^n \ (i=1, 2).$$

Now subtract these two identifies, apply (2) and let $\varepsilon \rightarrow 0$:

$$d\omega_{n-1}(\alpha_1 - \alpha_2) \ge \int_{\{u_2 - u_1 < d\}} (\max_{i=1, 2} w (\nabla u_i))^{-3} |\nabla u_1 - \nabla u_2|^2 d\mathcal{L}^n.$$

Hence $\alpha_1 \leq \alpha_2$ is impossible. \Box

COROLLARY 1. – Let $u_i \in C^0(\overline{U})$ (i=1, 2) be two solutions of (E) having the same asymptotic normal and $u_1 | \partial U = u_2 | \partial U$. Let h_i and α_i be their heights and growth rates respectively. Then

- (i) $\alpha_1 \geq \alpha_2 \Leftrightarrow u_1 \geq u_2$.
- (ii) If $n \ge 3$, we also have: $h_1 \ge h_2 \Leftrightarrow u_1 \ge u_2$.

Corollary 1 follows easily by looking at vertical translates of the graph of u_1 . Now let M be simple at infinity such that $v_{\infty} = e_{n+1}$ and suppose M is of class C¹ up to the boundary. Let v be the continuous unit normal on M determined by v_{∞} , $M_R = \{x \in M : |px| < R\}$ and denote by η the exterior unit normal along ∂M_R in M. For sufficiently large $|\xi| = R$ we have

$$\eta(\xi) = \frac{e_r - \langle e_r, v \rangle v}{\sqrt{1 - \langle e_r, v \rangle^2}} = e_r + \alpha r^{1-n} e_{n+1} + O(r^{-n}),$$

(1 + |\nabla u|^2 - (\delta_r u)^2)^{1/2} = 1 + O(r^{2(1-n)}).

Applying the divergence theorem on M_R to the tangential component of a constant vector $v \in \mathbb{R}^{n+1}$ and letting $R \to \infty$ we obtain the "balancing formula" (compare [12], [4])

$$\alpha v_{\infty} = -\frac{1}{\omega_{n-1}} \int_{\partial M} \eta(x) \, d\mathscr{H}^{n-1}(x). \tag{5}$$

COROLLARY 2. – Let $U \subset \mathbb{R}^n$ be an exterior domain with $\partial U \in C^1$. If $u_i \in C^1(\overline{U})$ (i=1, 2) are solutions of (E) having the same asymptotic normal and satisfying

 $\langle T(\nabla u_1), N \rangle = \langle T(\nabla u_2), N \rangle$ along ∂U ,

then the difference $u_1 - u_2$ is a constant.

Proof. - Writing down (5) in terms of the graph functions, we obtain

$$\alpha_1 = \alpha_2 = -\frac{1}{\omega_{n-1} \langle v_{\infty}, e_{n+1} \rangle} \int_{\partial U} \langle T(\nabla u_i), N \rangle d \mathscr{H}^{n-1}.$$

448

Let $t_0 = \inf\{t: u_2 + t \ge u_1\}$. Then we have either $u_1 - u_2 \equiv t_0$ or $u_2 + t_0 > u_1$ in all of U. But the second case is impossible because of Thm 1 and the maximum principle at the boundary. \Box

3. FOLIATION PROPERTY OF THE SOLUTIONS

The following result is a consequence of the interior maximum principle (see [11]).

LEMMA 1. – If $M \subset \mathbb{R}^{n+1}$ is a compact minimal surface such that

 $(\partial \mathbf{M} \cap (\mathbf{A}(\rho) \times \mathbb{R})) \subset \{x : |px| = \mathbf{R}, |x^{n+1}| \leq h_0\} \text{ for some } \rho \in (0, \mathbb{R}),$

then

$$(\mathbf{M} \cap (\mathbf{A}(\rho) \times \mathbb{R})) \subset \{ x : |x^{n+1}| \leq h_0 + c_{\rho}(\mathbf{R}) - c_{\rho}(r) \}.$$

Remark. – Let $n \ge 3$ and $u \in \mathbb{C}^0(\overline{U})$ be a solution of (E) with $v_{\infty} = e_{n+1}$. Then if $\mathbf{B} \subset \mathbb{R}^n$ is a closed ball of radius $\rho > 0$ containing $\partial \mathbf{U}$, we conclude from the above lemma that

$$|u(\xi)-u(\infty)| \leq c_{\rho}(\infty)-c_{\rho}(r)$$
 in U\int B.

Setting $A = \partial B \cap \partial U$, we have in particular $osc(u) \leq 2\rho c_1(\infty)$. For exam-

ple there is no solution of the exterior Dirichlet problem having a vertical normal at infinity if $\varphi \in C^0(S^{n-1})$ is given with $\operatorname{osc}(\varphi) > 2c_1(\infty)$.

Now let $U \subset \mathbb{R}^n$ be an exterior region, $K = \mathbb{R}^n \setminus U$, and suppose that $u^{\pm} \in \mathbb{C}^0(\overline{U})$ are two solutions of (E) satisfying $u^- < u^+$ in U and $u^{\pm} | \partial U = \varphi$.

LEMMA 2. - Let $K \subseteq B_{\mathbb{R}}(0) = \mathbb{B} \subset \mathbb{R}^n$ and suppose $\psi \in \mathbb{C}^2(\partial \mathbb{B})$ satisfies $u^- < \psi < u^+$ on $\partial \mathbb{B}$. Setting $U_{\mathbb{R}} = U \cap \mathbb{B}$, there is a unique solution $u \in \mathbb{C}^0(\overline{U}_{\mathbb{R}})$ of (E) satisfying $u | \partial U = \varphi, u | \partial \mathbb{B} = \psi$. Moreover $u^- < u < u^+$ in $U_{\mathbb{R}}$.

Proof. – We refer to Haar's solution of the nonparametric Plateau problem [2] which is described in the book of Giusti [1]. Let us first consider the case that U has Lipschitz continuous boundary and $\max\{\operatorname{Lip}(u^{\pm}, U_{\mathbb{R}})\}=l<\infty$. Then for any sufficiently large k>l, we can take $u^{k}\in C^{0}((\bar{U}_{\mathbb{R}}))$ minimizing the area functional in the class $\{u\in C^{0}((\bar{U}_{\mathbb{R}}): \operatorname{Lip}(u) \leq k, u | \partial U = \varphi, u | \partial B = \psi\}$. The weak maximum principle [1], 12.5, yields $u^{-} \leq u^{k} \leq u^{+}$ in $U_{\mathbb{R}}$. Now because of [1], 12.7, we know that

$$\operatorname{Lip}(u^{k}) = \sup \left\{ \frac{|u^{k}(\xi) - u^{k}(\eta)|}{|\xi - \eta|} : \xi \in U_{\mathbf{R}}, \ \eta \in \partial U_{\mathbf{R}} \right\}.$$

Since $u^{-} \leq u^{k} \leq u^{+}$, for any $\eta \in \partial U$ and any $\xi \in U_{R}$ we have

$$\left| u^{k}(\xi) - u^{k}(\eta) \right| \leq l \left| \xi - \eta \right|.$$

Vol. 10, n° 4-1993.

E. KUWERT

On the other hand, it is easy to construct barriers in a neighbourhood of ∂B (see [1], pp. 142-144). Hence $\operatorname{Lip}(u^k) < k$ for sufficiently large k, which means that u^k is a weak solution of (E) in U_R ; in fact because of the regularity theory ([1], 12.11) u^k is smooth. To treat the general case, we choose a regular value $\varepsilon > 0$ of $u^+ - u^-$. Letting

$$\mathbf{V}_{\varepsilon} = \{ \xi \in \mathbf{U}_{\mathbf{R}} : u^{+}(\xi) - u^{-}(\xi) > \varepsilon \}, \quad \phi_{\varepsilon} = u^{+} \quad \text{on } \partial \mathbf{V}_{\varepsilon} \setminus \partial \mathbf{B},$$

we can apply the argument above to obtain a solution $v_{\varepsilon} \in C^{0}(\bar{V}_{\varepsilon})$ of (E) which coincides with u^{+} on $\partial V_{\varepsilon} \setminus B$, and with ψ on ∂B . Since $u^{-} < v_{\varepsilon} < u^{+}$ in V_{ε} , the *a priori* estimates in [1] imply that $v_{\varepsilon} \to u$ locally uniformly in $C^{2}(U_{R})$ as $\varepsilon \to 0$. Clearly *u* must attain the boundary values on ∂U . But on ∂B the same barriers apply to all the v_{ε} and hence $u \in C^{0}((\bar{U}_{R})$ is a solution of our problem. Uniqueness follows easily from the interior maximum principle. \Box

The following result is due to Krust [5] in the two dimensional case. In order to obtain the approximating solutions, he solved the parametric Plateau problem for a minimal annulus and referred to an embeddedness result of Meeks and Yau [9] together with the well-known argument of Kneser-Radó to show the graph property.

THEOREM 2. – Let $U \subset \mathbb{R}^n$ be an exterior region and $\varphi \in C^0(\partial U)$. The set of solutions of the exterior Dirichlet problem with boundary data φ having the same asymptotic normal forms a (possibly empty) foliation.

Proof. – Let us first consider the case $n \ge 3$. Suppose $u^{\pm} \in C^{0}(\overline{U})$ are two solutions with asymptotic normal v_{∞} . Because of corollary 1, we may assume that $h^{+} > h^{-}$ and $u^{+} > u^{-}$ in U. Given any $h \in (h^{-}, h^{+})$, we let

$$\mathbf{H} = \{ x \in \mathbb{R}^{n+1} : \langle x, \mathbf{v}_{\infty} \rangle = h \}, \\ \Gamma_{\mathbf{R}} = \{ x \in \mathbf{H} : |px| = \mathbf{R} \}.$$

For any sufficiently large R there is a minimal graph $u_{R} \in C^{0}((\overline{U}_{R})$ such that $u_{R} | \partial U = \varphi$ and graph $(u_{R} | \partial B_{R}(0)) = \Gamma_{R}$; moreover $u^{-} < u_{R} < u^{+}$ in U_{R} . As in lemma 2, we can let $R \to \infty$ to obtain a solution $u \in C^{0}(\overline{U})$ of the exterior Dirichlet problem with boundary data φ satisfying $u^{-} \leq u \leq u^{+}$ in U. Let π be the orthogonal projection onto H and let $B \subset H$ be an *n*-dimensional ball of radius $\rho > 0$ containing π (graph φ). Applying lemma 1 to graph u_{R} and then letting $R \to \infty$ we infer that

$$|\langle x, v_{\infty} \rangle - h| \leq c_{\rho}(\infty) - c_{\rho}(|\pi x|)$$

for any $x \in \text{graph } u$ satisfying $\pi x \notin \overline{B}$. In particular graph u is at a height h at infinity. Now the gradient of u is bounded ([1], 13.6) and in fact converges to a limit (see [10], thm 6). This means that u is regular at infinity in the sense of the introduction and has asymptotic normal v_{∞} . Thus we have shown that for any $h \in (h^-, h^+)$ there is a solution u_h with asymptotic height equal to h and moreover $u_h < u_{h'}$ for h < h'. Now let

450

 $x = (\xi, x^{n+1}) \in U \times \mathbb{R}$ be given such that $u^-(\xi) < x^{n+1} < u^+(\xi)$. Then we let $h_1 = \sup \{h : u_h(\xi) < x^{n+1}\}, h_2 = \inf \{h : u_h(\xi) > x^{n+1}\}$. We see that $h_1 < h_2$ is impossible because otherwise we would have $u_{h_1}(\xi) < u_h(\xi) < u_{h_2}(\xi)$ for any $h \in (h_1, h_2)$. This proves the theorem if $n \ge 3$.

The case n=2 was treated in [5]; the main difference in this case is that one has to replace the parameter h by the growth rate α . Taking as $\Gamma_{\mathbf{R}}$ the intersection of the cylinder $\{x: |px|=\mathbf{R}\}$ with a half catenoid of the desired growth rate centered around the axis $\mathbb{R}v_{\infty}$ one proceeds essentially in the same way as above. \Box

REFERENCES

- E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Boston, Basel, Stuttgart, 1984.
- [2] A. HAAR, Über das Plateausche Problem, Math. Ann., Vol. 97, 1927, pp. 124-258.
- [3] H. JENKINS and J. SERRIN, The Dirichlet Problem for the Minimal Surface Equation in Higher Dimension, J. Reine Ang. Math., Vol. 229, 1968, pp. 170-187.
- [4] N. KOREVAAR, R. KUSNER and B. SOLOMON, The Structure of Complete Embedded Surfaces with Constant Mean Curvature, J. Differential Geometry, Vol. 30, 1989, pp. 465-503.
- [5] R. KRUST, Remarques sur le problème extérieur de Plateau, Duke Math. J., Vol. 59, 1989, pp. 161-173.
- [6] E. KUWERT, Embedded Solutions for Exterior Minimal Surface Problems, Manuscripta math., Vol. 70, 1990, pp. 51-65.
- [7] R. LANGÉVIN and H. ROSENBERG, A Maximum Principle at Infinity for Minimal Surfaces and Applications, Duke Math. J., Vol. 57, 1988, pp. 819-828.
- [8] W. H. MEEKS and H. ROSENBERG, The Maximum Principle at Infinity for Minimal Surfaces in Flat Three Manifolds, Ambrest preprint, 1988.
- [9] W. H. MEEKS and S. T. YAU, The Existence of Embedded Minimal Surfaces and the Problem of Uniqueness, Math. Z., Vol. 179, 1982, pp. 151-168.
- [10] J. MOSER, On Harnack's Theorem for Elliptic Differential Equations, Comm. Pure Appl. Math., Vol. 14, 1961, pp. 577-591.
- [11] R. OSSERMAN, A Survey of Minimal Surfaces, Dover publ. 2nd ed., New York, 1986.
- [12] R. SCHOEN, Uniqueness, Symmetry and Embeddedness of Minimal Surfaces, J. Differential Geometry, Vol. 18, 1983, pp. 791-809.
- [13] F. TOMI and R. YE, The Exterior Plateau Problem, Math. Z., Vol. 205, 1990, pp. 223-245.

(Manuscript received September 17, 1991.)