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ABSTRACT. - Uniqueness and existence results for boundary value
problems for the minimal surface equation on exterior domains obtained
by Langévin-Rosenberg and Krust in dimension two are generalized to
arbitrary dimensions. A suitable n-dimensional version of the maximum
principle at infinity is given.
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RESUME. - On présente des résultats d’unicité et d’existence pour
1’equation des surfaces minimales sur un domaine extérieur de !R". On
donne une generalisation du principe de maximum à l’infini, valable quel
que soit n.
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1. INTRODUCTION

Let U c (~n be a domain such that K = [R"BU is compact. In this paper
we consider solutions U E C2 (U) of the minimal surface equation

w , ’ ’

which are regular at infinity in the sense that their graph has a welldefined
asymptotic normal v~ E ~ v E S" : v‘~ + 1 > 0 ~ . Given cp E C° (aU) a function
u E C° (U) is called a solution of the exterior Dirichlet problem if u satisfies
(E) - in particular u E C2 (U) - and u = (p.

In case of a bounded domain U the solvability of the corresponding
boundary value problem for all cp ~C0 (aU) is equivalent to the mean
curvature of au being nonnegative [3]. Since this condition is necessarily
violated for an exterior region, the existence problem is quite difficult.
In [11] Osserman presented smooth functions on the unit circle which do
not admit a bounded solution. Recently Krust [5] showed that the bound-
ary data in Osserman’s examples would not even admit solutions having
a vertical normal at infinity. Krust’s main result says that for n = 2 all

solutions having the same v~ form a foliation. From this he could derive
the nonexistence statement using a symmetry argument. We will prove the
above foliation property in arbitrary dimensions. We shall also give a
simple proof different from [7] of the so-called maximum principle at

infinity. Our argument is similar to the one given in [8] and suitably
generalizes to the n-dimensional case.

Let us finally mention that r = graph cp always bounds a minimal surface
having a planar end by the work of Tomi and Ye [13] and the author [6];
here "minimal surface" refers either to a parametric solution (n = 2) or to
an embedded surface (possibly with singularities if n >_ 7).

2. ASYMPTOTIC EXPANSIONS
AND MAXIMUM PRINCIPLE AT INFINITY

We will use the following notation:

U will always denote an open neighbourhood of infinity in (~". If

V ar U and OV is of class C~, u is a solution of (E) in U and cp is locally
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Lipschitz continuous in U, then

where as usual and N is the exterior unit
normal along oV. Setting w (p) _ (1 + Ip I2)1/2, the ellipticity of (E) can be
stated as follows:

A connected, oriented and embedded minimal surface Mn c will be
called simple at infinity if M has a welldefined normal v~ E Sn at infinity

. and M can be written as a graph over its asymptotic tangent plane outside
some compact set. Assuming v~ = e" + 1 is the vertical direction, it is shown
in [12] that the corresponding graph function has a twice differentiable
expansion

where and g is the Newtonian potential in (~":

For example the graph function of an n-dimensional catenoid is given by

and satisfies (3) with If v~ is fixed, we will refer to h as the
height and a as the growth rate (at infinity). The following result is due to
Langévin and Rosenberg [7] in case n = 2.

THEOREM 1 (MAXIMUM PRINCIPLE AT INFINITY). - Suppose M1 (i =1, 2)
are minimal surfaces which are simple and disjoint at infinity. If the Mi are
at distance zero at infinity, then n >_ 3 and their growth rates are different.
Proof. - We may assume that Mi = graph ui where 

and The assumptions imply hI =h2 and
u2 - ul - 0 uniformly as § - oo; for n = 2 we also had The expan-
sions vield

Setting d= inf { uz ?) - ui (ç) : I ç = R } > 0 we consider for any s E (0, d) the
test function

Vol. 10, n° 4-1993.



448 E. KUWERT

Using cpE in (1) on V = A (R, p) and letting p - oo we obtain

Now subtract these two identifies, apply (2) and let E - 0:

Hence ai __ a2 is impossible. D

COROLLARY 1. - Let ui E C° (IJ) (i =1, 2) be two solutions of (E) having
the same asymptotic normal and ui ~U = u2| aU. Let hi and ai be their
heights and growth rates respectively. Then

(i) 
(ii) If n >_ 3, we also have: h2 ~ u2.

Corollary 1 follows easily by looking at vertical translates of the graph
of Ul. Now let M be simple at infinity such that 1 and suppose
M is of class C~ up to the boundary. Let v be the continuous unit normal
on M determined by v~, and denote by q the
exterior unit normal along aMR in M. For sufficiently large I ~ ~ = R we
have

Applying the divergence theorem on MR to the tangential component of
a constant vector ~e!R"~ 1 and letting R -> oo we obtain the "balancing
formula" (compare [12], [4])

COROLLARY 2. - Let U c I~" be an exterior domain with aU E If
ui~C1 (IJ) (i =1, 2) are solutions of (E) having the same asymptotic normal
and satisfying

then the difference u 1- u2 is a constant.

Proo~ f : - Writing down (5) in terms of the graph functions, we obtain
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Let to = + t >__ Then we have either ui - u2 = to or u2 + to > u 1
in all of U. But the second case is impossible because of Thm l, and the
maximum principle at the boundary. D

3. FOLIATION PROPERTY OF THE SOLUTIONS

The following result is a consequence of the interior maximum principle
(see [11]).

LEMMA 1. - compact minimal surface such that

then

Remark. - Let n >_ 3 and be a solution of (E) with 
Then if B c !R" is a closed ball of radius p > 0 containing aU, we conclude
from the above lemma that

Setting we have in particular For exam-
A

ple there is no solution of the exterior Dirichlet problem having a vertical
normal at infinity if cp E C° (S"-1) is given with osc ((p) > 2 ci (oo).
Now let U c !R" be an exterior region, K = and suppose that

are two solutions of (E) satisfying u -  u + in U and

LEMMA 2. - Let K BR (0) = B c Rn and suppose 03C8~ C2 (aB) satisfies
u-03C8u+ on oB. Setting UR = U n B, there is a unique solution u~C0 (UR)
of (E) satisfying Moreover u -  u  u + in UR.

Proof. - We refer to Haar’s solution of the nonparametric Plateau
problem [2] which is described in the book of Giusti [1]. Let us first
consider the case that U has Lipschitz continuous boundary and

Then for any sufficiently large k>l, we
can take minimizing the area functional in the class

((IJR) : Lip (u) _ k, u = (p, u ~ = ~ ~ . The weak maximum prin-
ciple [1], 12.5, yields in UR. Now because of [1], 12 . 7, we
know that

Since u - _ uk _ u + , for any 11 E au and any § E UR we have
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On the other hand, it is easy to construct barriers in a neighbourhood of
oB (see [I], pp. 142-144). Hence for sufficiently large k, which
means that uk is a weak solution of (E) in UR; in fact because of the
regularity theory ([1], 12 .11 ) uk is smooth. To treat the general case, we
choose a regular value Letting

we can apply the argument above to obtain a solution vE E C° of (E)
which coincides with u + on oVE"’B, and with B)/ on oB. Since U- 
in VE, the a priori estimates in [ 1 ] imply that vE --~ u locally uniformly in
C2 (UR) as E - 0. Clearly u must attain the boundary values on aU. But
on oB the same barriers apply to all the v~ and hence ue C° is a
solution of our problem. Uniqueness follows easily from the interior
maximum principle. 0
The following result is due to Krust [5] in the two dimensional case. In

order to obtain the approximating solutions, he solved the parametric
Plateau problem for a minimal annulus and referred to an embeddedness
result of Meeks and Yau [9] together with the well-known argument of
Kneser-Rado to show the graph property.

THEOREM 2. - Let U c tR" be an exterior region and cp E C° (aU). The
set of solutions of the exterior Dirichlet problem with boundary data cp
having the same asymptotic normal forms a (possibly empty) foliation.
Proof - Let us first consider the case n >__ 3 . Suppose are

two solutions with asymptotic normal v~. Because of corollary 1, we may
assume that h + > h - and u + > u - in U. Given any h E (h - , h + ), we let

For any sufficiently large R there is a minimal graph uR E C° such
that MR |~U = cp and graph I oBR (0)) = rR; moreover u -  uR  u + in UR.
As in lemma 2, we can let R - oo to obtain a solution of the
exterior Dirichlet problem with boundary data cp satisfying 
in U. Let 1t be the orthogonal projection onto H and let B c H be an
n-dimensional ball of radius p > 0 containing 03C0(graph 03C6). Applying
lemma 1 to graph uR and then letting R - oo we infer that

for any x E graph u satisfying 03C0x~B. In particular graph u is at a height h
at infinity. Now the gradient of u is bounded ([1], 13 . 6) and in fact
converges to a limit (see [10], thm 6). This means that u is regular at
infinity in the sense of the introduction and has asymptotic normal v~.
Thus we have shown that for any h E (h -, h +) there is a solution uh with
asymptotic height equal to h and moreover for h  h’. Now let
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x = (~, be given such that u - (~)  x" + 1  u + (~). Then we let
We see that 

is impossible because otherwise we would have uh 1 (~)  u~ (~)  uh2 (~) for
any h2). This proves the theorem if n >_ 3.
The case n = 2 was treated in [5]; the main difference in this case is that

one has to replace the parameter h by the growth rate a. Taking as r~
the intersection of the cylinder {x: with a half catenoid of the
desired growth rate centered around the axis !R v~ one proceeds essentially
in the same way as above. D
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