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ABSTRACT. — Uniqueness and existence results for boundary value
problems for the minimal surface equation on exterior domains obtained
by Langévin-Rosenberg and Krust in dimension two are generalized to
arbitrary dimensions. A suitable n-dimensional version of the maximum
principle at infinity is given.
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ReEsuME. — On présente des résultats d’unicité et d’existence pour
’équation des surfaces minimales sur un domaine extérieur de R". On
donne une généralisation du principe de maximum 4 P’infini, valable quel
que soit n.

Classification A.M.S. : 49F 10, 35J 25, 35B 50.

Annales de I'Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 10/93/04/$4.00/

© 1993 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



446 E. KUWERT
1. INTRODUCTION

Let U = R” be a domain such that K=R"™\ U is compact. In this paper
we consider solutions ue C? (U) of the minimal surface equation

(E) div(—zu——>=0 in U

\/ 1+[Vul?
which are regular at infinity in the sense that their graph has a welldefined
asymptotic normal v, e{veS":v"*!>0}. Given ¢eC°(9U) a function
ueC®(0) is called a solution of the exterior Dirichlet problem if u satisfies
(E)—in particular ue C*(U)—and u|dU=¢.

In case of a bounded domain U the solvability of the corresponding
boundary value problem for all @eC®(9U) is equivalent to the mean
curvature of dU being nonnegative [3]. Since this condition is necessarily
violated for an exterior region, the existence problem is quite difficult.
In [11] Osserman presented smooth functions on the unit circle which do
not admit a bounded solution. Recently Krust [5] showed that the bound-
ary data in Osserman’s examples would not even admit solutions having
a vertical normal at infinity. Krust’s main result says that for n=2 all
solutions having the same v, form a foliation. From this he could derive
the nonexistence statement using a symmetry argument. We will prove the
above foliation property in arbitrary dimensions. We shall also give a
simple proof different from [7] of the so-called maximum principle at
infinity. Our argument is similar to the one given in [8] and suitably
generalizes to the n-dimensional case.

Let us finally mention that I' = graph ¢ always bounds a minimal surface
having a planar end by the work of Tomi and Ye [13] and the author [6];
here “minimal surface” refers either to a parametric solution (n=2) or to
an embedded surface (possibly with singularities if n=7).

2. ASYMPTOTIC EXPANSIONS
AND MAXIMUM PRINCIPLE AT INFINITY

We will use the following notation:
®,=H"(S")

px=E for x=(, x"*)eR"*!
r=r@®=|t) 6=, Q)= = for EeRN\(0)

A(r, R)={EeR":r<|E|<R}, A(N=A(r, )
U will always denote an open neighbourhood of infinity in R". If
V « U and 9V is of class C', u is a solution of (E) in U and ¢ is locally
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Lipschitz continuous in U, then

J (T (Vu), V<P>d=55’”=f o{T(Vu), Nydx""* @
v ov
where as usual T (p)=(1+|p|*)~*?p for peR" and N is the exterior unit
normal along 0V. Setting w(p)=(1+|p|*)'/?, the ellipticity of (E) can be
stated as follows:

(T(p)—T(pr), p1—p, ) Z(max w(p))~? |P1 —P2 '2 Vpy,.eR" (2)

i=1,2
A connected, oriented and embedded minimal surface M" = R**! will be
called simple at infinity if M has a welldefined normal v_eS" at infinity
- and M can be written as a graph over its asymptotic tangent plane outside
some compact set. Assuming v, =e,, , is the vertical direction, it is shown
in [12] that the corresponding graph function has a twice differentiable
expansion
u@=h+ogr)+0 ('™ 3

where heR, aeR and g is the Newtonian potential in R":

logr (n=2)
g(n= i—_n (n=3)
2—n

For example the graph function of an n-dimensional catenoid is given by
rla
|x"“|=c,,(r)=af (P V-1)"2ds  (a>0) €Y
1

and satisfies (3) with a=4""1. If v is fixed, we will refer to 4 as the
height and o as the growth rate (at infinity). The following result is due to
Langévin and Rosenberg [7] in case n=2.

THEOREM 1 (MAXIMUM PRINCIPLE AT INFINITY). — Suppose M;(i=1, 2)
are minimal surfaces which are simple and disjoint at infinity. If the M, are
at distance zero at infinity, then n>3 and their growth rates are different.

Proof. — We may assume that M;=graphu; where u;eC°(A (R)),
uy<u, and w;=h;+0;g(r)+ O (r' ~"). The assumptions imply k, =h, and
u, —uy — 0 uniformly as § — co; for n=2 we also had a, =a,. The expan-
sions yield

(TVu), e,>=o,r' "+0@Fr™™.
Setting d=inf { u, (§) —u, (£):|£|=R } >0 we consider for any €€ (0, d) the
test function
0 if u,~u,=2d
P:= u,—u;—d if e<wu,—u,<d
e—d if O<u,—u,<¢
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448 E. KUWERT
Using ¢, in (1) on V=A(R, p) and letting p — co we obtain

(d—e)mn_lai=f (T(Vu)Vu,—Vu, de" (i=1, 2).

{e<uz—uy<d}

Now subtract these two identifies, apply (2) and let £ — 0:

dmn_l(al—az)gf (max w(Vu))~ | Vu, —Vu,|*de".

{uz-uy<d) i=1,2

Hence o, <a, is impossible. O

CoroLLARY 1. — Let ;e C°(U)(i=1, 2) be two solutions of (E) having
the same asymptotic normal and u,|0U=u,|dU. Let h, and o, be their
heights and growth rates respectively. Then

() o 20, < u; 2u,.

(i) If n=3, we also have: hy = h,<>u, 2 u,.

Corollary 1 follows easily by looking at vertical translates of the graph
of u;. Now let M be simple at infinity such that v_=e,,, and suppose
M is of class C' up to the boundary. Let v be the continuous unit normal
on M determined by v,, Mg={xeM:|px|<R} and denote by n the
exterior unit normal along dMg in M. For sufficiently large |£|=R we
have

e,—(e, V)V

nE= _<_>_
/ 1- < €, vV >

A+|VuP=@,uwH)2=1+0 @1,

=e,+ar' e, +O@r™"),

Applying the divergence theorem on My to the tangential coinponent of
a constant vector veR"*! and letting R — o0 we obtain the “balancing
formula” (compare [12], [4])

AV, = — ! J n(x)d#"" 1 (x). ®)
mn—l M
CorROLLARY 2. — Let U c R" be an exterior domain with dUeC*. If

u;eC1(U)(i=1, 2) are solutions of (E) having the same asymptotic normal
and satisfying

(T(Vu), NY=(T(Vu,), N) along U,
then the difference u, —u, is a constant.
Proof. — Writing down (5) in terms of the graph functions, we obtain
i

oAy =a,=— {T(Vu), Nydss""1
On— 1 { Vo> €11 Jou
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Let to=inf{¢:u,+t2u, }. Then we have either u; —u, =1, or u, +ty>u,
in all of U. But the second case is impossible because of Thm 1 and the
maximum principle at the boundary. O

3. FOLIATION PROPERTY OF THE SOLUTIONS

The following result is a consequence of the interior maximum principle
(see [11]).

LemMa 1. — If M < R"*! is a compact minimal surface such that

O@MNAP)xR) = {x:|px|=R, |x"**|Zhy} for some pe(0, R),
then
MNAP)*R) c {x:|x"*|Shetc,(R)—c, () }.

Remark. — Let n23 and ue C°(0) be a solution of (E) with v_=e,, ;.
Then if B = R" is a closed ball of radius p >0 containing dU, we conclude
from the above lemma that

|u(€)—u(wo)|<c,(0)—c,(r) in U\intB.
Setting A=0B (N dU, we have in particular osc(u)<2pc, (o). For exam-
A

ple there is no solution of the exterior Dirichlet problem having a vertical
normal at infinity if @€ C®(S"™?!) is given with osc (@) >2c, ().

Now let U < R" be an exterior region, K=R"™\ U, and suppose that
u*eC®(U) are two solutions of (E) satisfying u~ <u* in U and
u*|dU=o.

LeMMA 2. — Let K « By (0)=B < R" and suppose € C*(0B) satisfies
u~ <y <u” on dB. Setting Ug=U N\ B, there is a unique solution ue C° (Uy)
of (E) satisfying u|0U= @, u|0B=\. Moreover u~ <u<u* in Uy.

Proof. — We refer to Haar’s solution of the nonparametric Plateau
problem [2] which is described in the book of Giusti [1]. Let us first
consider the case that U has Lipschitz continuous boundary and
max { Lip (u*, Ug) }=I<o0. Then for any sufficiently large k>I, we
can take #*€C°((Ug) minimizing the area functional in the class
{ueC®((Up):Lip(w)<k, u|0U=¢, u|0B=1 }. The weak maximum prin-
ciple [1], 12.5, yields ¥~ <u*<u* in Ug. Now because of [1], 12.7, we

know that

| ) —#* ()]
le=n|
Since u~ <u*<u*, for any nedU and any &e Uy we have

| @~ m)[=l|E—n|.

Lip(u")=sup{ :£eUg, nedUy }
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On the other hand, it is easy to construct barriers in a neighbourhood of
0B (see [1], pp. 142-144). Hence Lip (1) <k for sufficiently large k, which
means that #* is a weak solution of (E) in Ug; in fact because of the
regularity theory ([1], 12.11) #* is smooth. To treat the general case, we
choose a regular value €>0 of u* —u™. Letting

V.={&eUg:u" (§)~u ()>e}, @,=u* on OV,\UB,

we can apply the argument above to obtain a solution v, C°(V,) of (E)
which coincides with #* on 9V, \B, and with ¥ on dB. Since 4~ <v,<u”*
in V,, the a priori estimates in [1] imply that v, — u locally uniformly in
C?(Uyg) as € » 0. Clearly » must attain the boundary values on 6U. But
on JB the same barriers apply to all the v, and hence ue C°((Uy) is a
solution of our problem. Uniqueness follows easily from the interior
maximum principle. [

The following result is due to Krust [5] in the two dimensional case. In
order to obtain the approximating solutions, he solved the parametric
Plateau problem for a minimal annulus and referred to an embeddedness
result of Meeks and Yau [9] together with the well-known argument of
Kneser-Rado to show the graph property.

THEOREM 2. — Let U < R" be an exterior region and ¢ € C°(0U). The
set of solutions of the exterior Dirichlet problem with boundary data ¢
having the same asymptotic normal forms a (possibly empty) foliation.

Proof. — Let us first consider the case n=3. Suppose u*eC®(U) are
two solutions with asymptotic normal v. Because of corollary 1, we may
assume that 2" >h~ and u* >u" in U. Given any he(h™, h*), we let

H={xeR"*"':(x, v, )=h},
Fe={xeH:|px|=R}.

For any sufficiently large R there is a minimal graph u e C°((Uy) such
that ug |0U=¢ and graph (ug | 8By (0)) =T'y; moreover u~ <ug<u* in Ug.
As in lemma 2, we can let R — oo to obtain a solution ue C°(U) of the
exterior Dirichlet problem with boundary data ¢ satisfying ¥~ <u<u™
in U. Let n be the orthogonal projection onto H and let B< H be an
n-dimensional ball of radius p>0 containing = (graph¢). Applying
lemma 1 to graph u; and then letting R — co we infer that

[{x, Vo, Y= h|Zc,(00)—c,(|nx])

for any x e graph u satisfying ©x ¢ B. In particular graph u is at a height &
at infinity. Now the gradient of u is bounded ([1], 13.6) and in fact
converges to a limit (see [10], thm 6). This means that u is regular at
infinity in the sense of the introduction and has asymptotic normal v,,.
Thus we have shown that for any he(h™, h™) there is a solution u, with
asymptotic height equal to 4 and moreover u,<u, for h<h'. Now let
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x=(&, x"*1)e U xR be given such that u~ (§)<x"** <u* (€). Then we let
hy=sup{h:u,(E)<x"*'}, hy=inf{h:u, (§)>x"*1}. We see that h, <h,
is impossible because otherwise we would have u,, (§) <u, (£) <u, (§) for
any he(hy, h,). This proves the theorem if n=3.

The case n=2 was treated in [5]; the main difference in this case is that
one has to replace the parameter 4 by the growth rate a. Taking as I'y
the intersection of the cylinder {x:|px|=R} with a half catenoid of the
desired growth rate centered around the axis Rv, one proceeds essentially
in the same way as above. [
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