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ABSTRACT. - In [1], § 5 we gave a necessary and sufficient condition
for the existence of stationary solutions for the system (1.1) in the pre-
sence of arbitrarily large external forces f (x). Here we prove, see

theorem 2.1, that every stationary solution is necessarily stable. We use
Euler coordinates, since a proof in Lagrange coordinates (see for ins-
tance [2], [3], [4]) should present greater obstacles.
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On demontre que toute solution du systeme d’équations
decrivant le mouvement unidimensionnel d’un fluide compressible et vis-
queux (avec des forces arbitraires et independantes du temps) est necessai-
rement stable.

1. REVIEW ON STATIONARY SOLUTIONS

We denote by II the norm in the Sobolev space Hk(O), by )) )) the
norm in L2(S~), and the norm in E [1, + oo ] , where
Q = ]0, 1 [. Moreover, ~oo = [0, + oo [ x Q. Other notations will be intro-
duced when necessary. Denote by u and p the velocity and the density
of the fluid, and by ~ > 0 the viscosity. Without loss of generality we
assume that the total mass of the fluid is equal to 1, and that the bounded

Classification A. M. S. : 76N10, 35Q35, 35020, 35R25.
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region {} is the interval ]0, 1 [. The boundary is assumed to be impermeable.
The equations of motion are

Here 7r(s), + oo [, is a real function defined by

v 1

The pressure p(.) is assumed to be a real valued continuously differen-
tiable function defined on ]0, + oo [, and such that p’ (s) > 0, v s > 0. For
the convenience of the reader, we state here some results proved in [1], § 5.

Let F be a fixed primitive of f in Q. The statements are independent
of the particular choice of F. It is immediate to verify that a pair (v(x), 
is a stationary solution of the system (1.1) if and only if 17 satisfies the
conditions

and v = 0. The stationary solution (0, will be denoted simply by ~.
It is worth noting that we look for solutions that satisfy the condition

Denote by ]a, b[ the image of the increasing function 7r. In other words,
a = 7r(0), b = 7r( + oo). Since 7r(I) = 0, one has - 0  +00. Let
~ _ ~r -1 be the inverse function of 7r. Clearly, ~(]a, b[) = ]0, + oo [. We
set ~(a) - 0, ~(b) - +00. Finally, we define

mo = ess inf F(x), Mo --_ ess sup F(x).
x~03A9

In [1] we proved, in particular, the following result.

THEOREM 1. l. - There is a stationary solution of problem (1.1) if and
only if
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In this case the stationary solution is unique, moreover

where k is the (unique) solution of the equation

in the interval ]a - mo, b - Mo[.
We also showed the following result in [1], § 5.

COROLLARY 1. 2. - The conditions (l. S) and (1 . 6) 1 [resp. (1. 6)2] hold
for every F E if a = - oo [resp. b = + oo] . In particular, the statio-
nary solution exists for every F E L°°, if ]a, b[ _ ] - oo, + oo [.

In particular ([1], corollary 5.5), the stationary solution exists if

hence if F ~~  (1/2) min ( - a, b ). Note that this minimum is always
strictly positive. Another sufficient condition for the existence of the sta-
tionary solution ([l], Eq. (5.13)) is

Note that the set of external forces f in Loo(O) that satisfy condition (1.10)
is unbounded, even when min ( - a, b ~ J  +00.

Let us now consider the particular case p(s) = Cs’’, where C and y are
positive constants. If y = 1 the corollary 1.2 shows that the stationary
solution exists, for every F E On the contrary, if ~y > 1, the
stationary solution exists if and only if the condition (1.6)1 is satisfied

(since a > - oo, b = + oo). If condition (1. 6)1 is not satisfied, then
vacuum occurs. Note that, for y > 1, vacuum occurs even for a constant
external force f (x) - jf3, provided that (3 ~ is sufficiently large.

Finally, if 03B3  1 one has a = - oo, b  + oo. Hence the stationary solu-
tion exists if and only if the condition (1.6)2 is satisfied. If this condi-
tion is not satisfied infinite density occurs. Nevertheless, such a phenomena
cannot occur if f E Let us prove this last assertion.

PROPOSITION 1.3. - Let p(s) = 0  y  1, and let f E 
Then, the stationary solution exists.

Proof. - Set, for convenience, C =1. One has ~(s) _ ~y(s’’ -1-1 )l(~y -1 ) .
Hence a = - oo, b = ~y/(1- y). Since a = - ~, conditions (1.5) and (1. 6)1 1
are satisfied. Let us show that (1.6)2 holds if F is Lipschitz continuous.
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The function $ is given by $(~) = [l - (i - Y~/y]-’~’-~. It readlyfollows that the condition (1.6)2 becames, in the present case, ,

Let xo E [0, 1] ] be such that F(xo) = Mo, and let j8 > 0 be such that
F(xo) - j8 dx E [0, 1]. Hence,

Since (x - xo) -1/(1- y) is not integrable near xo, the right hand side
of (1.12) is equal to +00. Hence, the left hand side satisfies (1.11).
The relationship between the regularity of f and that of the stationary

solution is very easy to establish. The particular case that follows will be
useful in the next section.

PROPOSITION 1. 4. - Let p E C2(]O, + oo[), and assume that a stationary
solution of the problem (1.1), (1 . 4) exists (or equivalently, assume that
the conditions (1. 5), (1. 6) are satisfied). Then, r~ belongs to H 2(S~) if and
only if f belongs to H 1(S~).

Proof. - In fact, f E H 1(0) if and only if F E H2(O). Equation (1 . 7)
shows that the condition is sufficient. The condition is also necessary, since
F(x) = ~(~(x)) - c.

I want to quote here the recent paper [4], where the authors show that
if a Lipschitz function f(x) does not verify the assumptions of theorem 1. 1
(i. e., if there is no stationary solution) then there are no solutions (u, p)
of the evolution problem which satisfy on Q~ a estimate k1~03C1(t, x) _ k2 , with
some positive constants k2 .

2. STABILITY OF THE STATIONARY SOLUTION

In the following we denote by c generic positive constants that depend at
most on p" p( . ), and r~. Actually, the dependence of these constants on r~ is
only through the quantities m, M, ~ , and )) Sometimes, we use
symbols like c, .... For convenience, we will use the

abreviated notation 1 g = 1: g(x)dx, for generic real functions on 03A9.
J 0

In this section we prove the stability of every stationary solution ( 1).
(~) In higher dimensions stability is known only for small stationary solutions. See [5].
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THEOREM 2 .1. - Assume that p E C 2(] 0, + oo [) satisfies the condition
p’ (s) > 0, Vs > 0. Let f E H 1(S2), and let (0, r~(x)) be a stationary solu-
tion of problem (1.1) in the class H 2~5~) ( 2) . Let (uo, po) E H o(~) x H 1 (~),
and assume that po satisfies the conditions (1.3), (1 . 4). Under the above
assumptions, there is a positive constant b such that if the initial data
(uo, po) satisfies the condition

the evolution problem (1.1), with initial data (u(0), p(0)) - (uo, po), has
a (unique) global solution (u(t), p(t)); this solution satisfies the uniform
estimate

Moreover,

for all t E [0, [. Here, b, c1, c2 , c3 , c4 denote positive constants which
depend only on ~,, on the particular function p( ), and on the stationary
solution 

Proof of theorem 2. l. - The proof of a local existence theorem for
the solution of the problem ( 1.1 ) follows well known arguments. Hence
we will concentrate our attention on the proof of the a priori estimates
(2.2), (2.3) (3). Denote by R(t, x) the perturbation of the stationary solu-
tion, i. e. set p(t, x) = + R(t, x). Let m and M be positive constants
such that

We assume in the following that R(t, x) satisfies the condition

and we show that (if 6 is sufficiently small) we must have R(t, x)  m.

This shows, in particular, that (2.2) is satisfied.
Let us make some remarks on the function x)). For convenience,

we denote here, by R, either a real number R E [ - 2m, 2m] or a function
R(t, x). Since 7r E C~(]0, + oeD, it follows that

(~) By the results of section 1, the stationary solution 11 exists if and only if f satisfies
the conditions (1.5), (1.6). Moreover, the proposition 1.4 shows that 11 E H2(S2).

(~) These estimates, together with the local existence theorem, show that the solution is
global.
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Similarly, the function R) == ~r’ (r~(x) + R) - ~r’ (~(x)) satisfies on
S~ x [- 2m, 2m] the estimate I R) ~ _ cR. We set

Since ~(r~(x))X - f (x), the perturbation (u, R) satisfies the equations

the boundary condition ( 1.1 )3 , and the constraint

The equation (2.7)1 will also be used in the equivalent forms

By multiplying both sides of the equation (2.9) by and integrating
on Q, one gets

Since 2m  r~ + R _ M + 2m, it follows that

On the other hand, by multiplying (2 . 7)2 by ~r’ (r~)R, and integrating
on Q, one gets
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By adding (2.12) and (2.13) one obtains

Clearly,

Equation (2.7)2 shows that yt - - (~ + R)u. In particular, uty =
+ (7y + R)u 2. Hence, by multiplying the equation (2.9)i 1 by y and inte-
grating on 0, we easily obtain

where the constant 8 >_ 1 will be chosen later.

Multiplying the equation (2.10) by - integrating on 0, and
taking

for ut the expression obtained from equation (2.10), it readily follows that

where Cauchy-Schwartz inequality was used in order to drop the term
containing )) from the right hand side of the inequality.
On the other hand, by differentiating with respect to x both sides of
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equation (2.7)2, then multiplying by integrating on S~, and taking
into account of the fact that

By adding the equation (2.16) and (2.17), and by using Cauchy-Schwartz
inequality, it readily follows that

In proving (2.18), the term )) ~~, occurring on the right hand
side of equation (2.17), was estimated as follows. Since Ux has mean value
zero on Q, one has ~Rx~2 |ux|~ ~ 2 ~Rx~2 ~ ux~1/2~ uxx~1/2. By using
Young’s inequality one shows that )] ~~_c ~~ Rx ~~8~3 ~~ uX 
+ co ~~ UXX ~~2. The term was droped from the right hand side
of equation (2.17), by chosing a sufficiently small value for the positive
constant co. Finally the term ~~ RX~~8~3 ~~ uX ~~2~3 is bounded by

+ ~ Rx ~3 + ~ Rx 
Now, we multiply the equation (2.10) by Rx, we take into account of

the fact that utRx = (uRx)t + + and we integrate on Sl.
This leeds to the estimate

where 8 is as above. Finally, we multiply the equation (2.14) by 64, the
equation (2 .15) by (J2, the equation (2 .19) by (J - 2, and add these equa-
tions and also the equation (2.18). Denoting by Co a positive constant that
depends only on p( ~ ), ~ (x), and on 0, one gets
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In deducing (2.20) we use the fact that ~~ u ~~ _ ~~ uX and that B > 1.

By definition

Since the functions l1(t, x) and 7r ’ (~(t, x)) are bounded away from zero
and from infinity by positive constants of type c, it easily follows that

provided that 8 >_ c, for a suitable constant c. On the other hand, the
last four terms on the right hand side of the equation (2.20) are bounded
by the second term on the left hand side of equation (2.20), provided
that 0 * Ci, for a suitable By choosing 8 = max c, cl ), it follows
that

In particular, (~ ‘(t ))t + 0, 0, if c~(~ ‘(o ) + ~(o)) __ cs/2.
Hence, there exists a suitable constant c9 such exp

[ - cst], if ~2(0)  c9 . By using (2.23), it follows that there are cons-
tants c11 such that

Finally, we set (see (2 .1 )) 03B4=min {cl 1, Note that uo = u(o),
p(o) - r~ = R(o). Since b  the equation (2 . 26) shows that 
~ ~ Rx ( 2  m 2, Consequently, | R(t )|~ ~ m, for all t ~ 0. The
proof of theorem 2.1 is complete.
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