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ABSTRACT. - We are studying the existence of multiple critical points
for functionals whose potential operators preserve an order structure. By
using Morse type arguments we prove that the existence of local minima
of a functional ~ which are ordered in a special way « forces » ~ to have
many additional critical points. We also show how these abstract results
apply to a concrete situation.
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RESmvtE. - Nous etudions l’existence de points critiques multiples pour
les problemes variationnels dont les opérateurs potentiels preservent une
structure d’ordre en utilisant des arguments du type Morse. Nous demon-
trons que, pour une fonctionnelle 03A6, l’existence de minima locaux qui soient
ordonnes d’une maniere particuliere « force » ~ a avoir beaucoup d’autres
points critiques. Nous montrons comment ces resultats abstraits s’appli-
quent a une situation concrete.

INTRODUCTION

The aim of this paper is to prove existence of multiple critical points
of functionals 03A6 which are defined on ordered Hilbert spaces. More preci-
sely we study 4l E C2(H, R) whose gradient admits the decomposition

Classification A. M. S. : 34B, 58E.
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Identity-K with K being compact and increasing with respect to the order
structure on H. The first results concerning functionals of this type were
obtained by Hofer in [6]. Here we extend some of his results. Our
Theorem 2.4 says that an order interval C which contains 2n local minima
of 03A6 ordered in a special way must contain at least 3 n critical points.
Another result, Theorem 2.5, has following interpretation.

Let E be the set of all local minima of 03A6 and draw an edge between u,
v E E iff u and v are order related and there is no such that

this way we define an abstract graph. Then
Theorem 2.5 simply states that subgraphs of a certain type correspond
to critical points of ~. The proofs of these results are based on Morse
type arguments adopted to our setting. In section 1, we list some prelimi-
nary results ; in section 2, we prove our main theorems ; in section 3 we
apply our results to the problem: + u(l - u)(u - a(t )) - 0,
u’ (O) - u’ ( 1 ) = 0. We prove that if a(t) -1 /2 has k -1 zeros than the

least number of solutions of this equation is equal to 2k+ 2 + ( - 1)k-1 .
3

Lastly, we mention that in a forthcomming paper using some ideas of [4]
we extend our results to cover problems without variational structure and
applicable to PDE’s.

1. NOTATION AND PRELIMINARIES

In this section we state some basic tools and results in critical point
and Morse theory.

Let H be a Hilbert space with scalar product ( , ) and norm )) ~.
If 03A6 E C 1(U, R) for some open subset U of H, Ø ~ C cu, and a E R,
S c R we set

We say that ~ satisfies (PS)c (Palais-Smale condition on C), if for

every sequence un ~ ~ C such that ~(un ) ~ is bounded and ~’ (un ) -- 0
there is a convergent subsequence Unk - u E C.
With H*(X, Y) we indicate the singular cohomology groups with R-coef-

ficients of the pair of topological spaces (X, Y), If (X, Y) is a pair of
topological spaces we write (X, Y) E Top2 if dim H ‘(X, Y) for all

i E N U 0 j J and define
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The pair (X, Y) E Top2 has a finite cohomology if P(X, Y) c Z + [t]. It
is known that if (Xo,..., Xn) is a (n + 1 )-tuple of topological spaces such
that (Xi , Xi + 1) E Top2, i = o, ... , n, then there is Q(t ) E Z + [ [t] ] such that
,,n=o P(Xi, Xi + 1)(t) = P(Xo, + (1 + t)Q(t) and if (Xi, Xi + i) has finite
cohomology then Q(t) E Z + [t].
We need the following definition.

DEFINITION 1.1. - Let u be an isolated critical point of 03A6 E C 1(U, R). The
Poincare series of u is defined by

where d = ~(u) and Wu is an open neighborhood of u such that

Cr (~, U) r’1 Wu - ~ (u J.
If C is a closed subset of U then the Poincare series of u relative to C

is defined by

where d = 4l(u) and Wu is an open neighborhood of u such that
Cr (~, U) n ( 

If C is a closed subset of U then the Poincare series of u relative to C
is defined by

where d = 4l(u) and Wu is an open neighborhood of u such that

(u J.
Note that if C has nonempty interior and u E Cr C) n int C

then P~, u . Also if u E C is an isolated local minimum then
1.

The following lemma in the case U = C = H is well-known.

LEMMA 1.2. - Let H be a Hilbert space, U open and C ~ U be closed
and convex. Suppose that ~ E C2(U, R) satisfies (PS)c and its gradient 4l ’
has the decomposition I - K with K(C) ç C

a) If Cr C, [a, oo)) = 0 then ~a n C is a deformation retract of C,
b) If Cr (~, C, [a, b]) - ~ then ~a n C is a deformation retract of

c) If Cr (~, C, [a, b)) - ~ then ~a n C is a deformation retract of
4»b n CBCr (~, C, b).

Proof. - The proof is the usual one (see [8], Lemma 3.3). To define
deformation retractions one can use the positive semiflow r~ associated to
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the differential equation u = -,~( ~~ ~’ (u) ~) )~’ (u) where ~i(t) = 1 and

=1/t, t >_ 1. However, in our setting we must make sure that r~(t, ~) E C
for t * 0, ~ E C. But this follows from the assumptions that C is closed
convex, C and the sub-tangential criterion (see [5], Theo-
rem 3 . 2) . D

Using Lemma 1.1 we can proof the following proposition.

PROPOSITION 1. 3 . - Assume that ~ E C 2(U, R), U is open and C c U
is closed and convex. Assume that ~ satisfies (PS)c and that 4l ’ = I - K
with C. Let a  b be regular values of 03A6 on C. Suppose that
the set Cr (~, C, (a, b)) is finite and if u E Cr(I>, C, (a, b)) then 

Top2, (d = 4l(u)). Then

where Q(t ) E Z + [ [t ] ] . In particular, if 03A6 is bounded on C and Cr (03A6, C)
is finite then

Proof - See [3J . We only point out that the arguments of [3] can be
carried out in our setting because of Lemma 1.3. To prove (2) we can
take a  info ~ and b so that Cr (~, C, [b, oo)) = 0. Then using
Lemma 1.1 a), n n C)(t) = n C, ~(t ) - P(C, ~)(t ) =1,
because C is convex. D

Before stating the next result we recall the Morse Lemma from [7].
Assume that H is a Hilbert space, ~ E C2(U, R) I - K

where K is compact. Suppose that uo is an isolated critical point of 03A6 and
H = is the canonical decomposition of H associated

via the spectral resolution. Then there is a homeomorphism D
defined in a neighborhood of uo in H such that D(uo) = uo and there is
V E C2(Ho, R) such that

~(Du)=~(uo)-1/2 ~) u -uo I~2+ 1/2 I~ u+ -uo ~~2+~~u°-uo~ (3)

for all u = u- +uo+u+ E H ~ @ H° @ H + and )) small.
If p and uo are as above we denote the negative and

by mO(uo) the zero Morse index i . e. m - (uo) = dim H - , m °(u°) = dim H °
= dim ker (~ " (u°)) .
In the next proposition we compute the Poincare series of critical points

with certain Morse indices.

PROPOSITION 1.4. - Assume 03A6~ C2(U, R), 4l’ = I - K and K is

compact. Assume that uo E U is an isolated critical point of 03A6 such that

(m - (uo), mO(uo» E (N U 0 ~ ) x { 0, 1 ~ .
a) If m°(uo) - 0 then P~,uo (t) - .
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b) Assume 1. Then we have three cases :

i) If uo is a maximum of ’ then 
1 

.

ii) If ug is a minimum of ’ then 
iii ) If ug is a neither maximum nor minimum of 03A8 then P03A6,u0(t) = 0.

Proof. - We prove b), since the part a) is a classical result. For simpli-
city we set uo = 0 and ~(u°) - 0. Also we write m - - m - (0) and

By (3) we can write

small. 

be such that cl (W) c U and W_, Wo, W+ small balls around 0 in H ,
H °, H +. Since dim H ° =1 we identify W° with (-6, 6) c R. Define G :
[0, 1] x -po n W

Using (4) it is easy to see that G and defines deformation

retractions of ~h° n W onto ~° n (W_ Q+ Wo) and (~°B ( 0 ) ) n W onto
(~°~(~)) n W_O+Wo. Thus

H*(~ n W, ~h°B (0) n W) = H*(~h° n (W_ O+ O°~ ~0) ) n W_ O+ Wo)

In the case when 0 is a local minimum of W then  0, y ~ 0,

y E ( - 8, 8) and using (4)

This implies that

and this proves 0. Assume now that 0 is a local minimum of if. Then
for any y E ( - 6, 6) and s E [0, 1] and if

for t E [0, 1], x + y E ~° n W_ O+ Wo then Gl([o, 1 ] x n W_ Q+ Wo) ~ ~"
n (W_ Again using (4), one can show that Gi and Gi 
define deformation retractions Q+ Wo 0 ~ nw- Q+ Wo onto
W_ and W_B (0) respectively. Thus
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and ii ) is obvious. Finally assume that 0 is neither a maximum or a
minimum of ~. We can assume that ’11 is increasing on ( - 6, 6). Define

The maps G2 and provides deformation retractions of
(W_ 0 W°) (0 n (W_ onto W_ @ (- b, 0] and

W_ @ ( - b, 0] B ~ 0 ~ . Thus
= H*(W_ Q+ (-b, 0], W_ O+ (-b, = 0

and iii ) is immediate. D
The above proposition has interesting consequences. Let C be a closed

convex subset of U, int C ~ 0 and u E Cr (~, C) n int C. If 1
then u contributes to (2) of Proposition 1. 3 as nondegenerate critical point
or does not contribute at all.
The following concept will be useful later.
By an ordered Banach space we mean a pair (F, P) where F is a Banach

space and P is a closed convex subset of F such that ( - P) n P = 0 j J
and R + x P c P. The set P is called a cone.
Then we can define an ordering on F by

If p, q E F and p s q then the set [p, q] _ ~ x E F ; J is an
order interval. We say that p, q are comparable if p - q E P U - P ;
otherwise they are noncomparable. An operator T : F - F is order pre-
serving if x s y implies Ty and strongly order preserving if x  y
implies Tx  T y.

2. EXISTENCE OF MULTIPLE CRITICAL POINTS

In this section we prove our main results concerning existence of mul-
tiple critical points of ~. For the following we impose the condition.

(~) (H, P) is an ordered Hilbert space the cone P has a nonempty interior,
H is order- convex i. e. if u, v E U and u  v then [u, v ] c: U,

4l E C2(U, R) with a gradient ~’ of the form I - K where K is compact
and strongly order preserving.
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’ 

If u E Cr U) then K’ (u) is strongly order preserving and that for
any u, v E satisfies 

We point out that if 03A6 satisfies and u, v E Cr U) such that u  v

then necessarilly u  v. Moreover, if u E Cr U) then since K’ (u) is

self-adjoint we have K’ (u) ~ ~ > 0 and since K’ (u) is strongly
order preserving then by the Krein-Rutman result (see [1J) ~~ is an

eigenvalue of K’ (u), the corresponding eigenspace is one dimensional and
spanned by some w > 0.
Using that fact we derive :

LEMMA 2.1. - Assume that ~ satisfies and that u E Cr U) with
m _ (u) > 1. Then there u such that )) u - is small and

> 4l(v).

Proof. - Since ~ satisfies and m _ (u) >_ 1 the above remarks imply
that the smallest eigenvalue X (u) is negative and the corresponding
eigenvector w > 0. Then tP’(u + tw) = Xtw + and

Since X > 0 we conclude that ~(v)  ~(u) and v  u with v = u + sw
for small s > 0. D

Let [0, be the standard n-cube in R n. By V we denote the set
of its vertices. A (n - 1) dimensional face of In is the set

I x ... x I x J x I x I ... x I for some k E [ 1, ..., n J and ak
equal to 0 or 1. A (n - 2) dimensional face of I n is a (n - 2) dimen-
sional face of some (n - 1) dimensional face of I, and so on. We make
the simple observation that if Ii, 12 are k dimensional faces of In then
either 11 = 12 or I1 ~ I2 = Ø or I1 ~ 12 = 13 where 13 is a (k - 1) dimen-
sional face. We also remark that each k dimensional face is completely
determined by its vertices and that the number of k dimensional faces of

In is given by n 2 n - k.I is given by 
(nk)

2n-k.

We introduce an ordering on V by

Now let E := u E U ; v is a local minimum With E we associate
an abstract graph (E, r) where r ~ ~ x E is defined by

r := ( (u, v) E E x E; u « v and there 

The elements of E are vertices and a pair (u, v) E r is the edge of (E, r)
with end points u and v. If 03A30~03A3 then 0393|03A30 means ((u, v) E r ; u, 
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DEFINITION 2 . 2. - such that if u, v E and

We call (En, a n-cube if there is an isomorphism f: En - V
which satisfies

A pair is a k-subcube of if 
where V~ is a set of vertices of some k dimensional face of I n.
From now we will identify the graphs (S, r), (En, rEn) with their sets

of vertices E, En with the understanding that edges are defined as above.
Note that if En is a n-cube then E" contains the smallest and the greatest
element p and q, namely p = f -1 (o, ... , 0) and q = f -1 ( 1, ... , 1 ) . With
the n-cube En we associate an order interval C = [p, q] where p, q are
as above. Similarly if Ek is a k-subcube of En we can associate with 03A3k
an order interval Ci = [pl , ql] where PI and qI are the smallest and the
greatest elements of Ex. Note that Ci c C.

Moreover.

LEMMA 2 . 3. - Assume that En is a n-cube and are diffe-
rent (n - 1)-subcubes of E n and C = [ p, q], Ci = (i = 1, 2),
corresponding order-intervals via f. Then either Ci n C~ = 0 or there is
exactly one (n - n E2-I and if C3 = [p3 , q3]
is the corresponding order interval then Ci n C2 .
More precisely there are four possibilities :

i) p =pl =p2 =p3 , qi and q2 are noncomparable and q3 E int {C1 nC2).
ii) q = qi = q2 = q3 , pi and p2 are noncomparable and p3 E int (C nC2).
iii ) 
iv) pl -p3 ~ ~’2 = ~3 ~ ~’1 = ~.

Proof. - Let = 1, 2 be the corresponding via f set of
vertices of a (n - I)-dimensional face Ii of I n. Since ~ 1 -1 ~ E2-I then

If Vi n V2 = ~ then obviously Ci n C2 = 0. If Vi n V2 ~ ~ then
11 n I2 = I3 . Denote by V3 the set of vertices of 13. Then and
if C3 is the corresponding order interval to v3 then Ci n C2 . The
rest of the lemma follows easily by inspecting vertices of I1, I2 , 13. Q

REMARK. - The part iÜ) and iv) simply says that Ci n 0, but
elements of En which are in Ci n C2 are contained in C3 .
For the rest of the paper we call an isolated critical point trivial

if its Poincare polynomial is equal to 0 ; otherwise a critical point is non-
trivial. Now we can state our result.

THEOREM 2 . 4. - Suppose that ~ satisfies (~) and that En is an-cube.
Suppose that C = [p, q] is an order interval corresponding to En and
that ~ is bounded from below on C. Assume that Cr (~, C) is finite and
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if u E Cr (~, C) then 1. Then there exists an odd number of
nontrivial critical points in C and that number is at least equal to 3 n. Let
CO = 1 Ci, where the Cl are order intervals corresponding to all
(n - 1)-subcubes of En. Then the set C° contains an odd number of non-
trivial critical points which are not minima of ~.

Proof. - In order to prove that we will apply Proposition 1.3 to
order intervals [r, s], r, sEE. Then 1 and
if u E Cr (~, [r, s]) n int [r, s] then ~,.,sJ, u - Note also that since

mO(u) s 1 then [r~ s], u is a monomial and the coefficient in front of tl
of the left side of (I) or (2) of Proposition 1.3 is the number of critical
points in [r, s] with Poincare polynomials t‘. We prove the theorem by
induction.

Let E1 1 be I-cube and C = [p, q] the corresponding order interval.
Then p, q are the only local minima in C. Let ai, i E N U ( 0 ~ J be the
number of critical points in C whose Poincare polynomials are tI.
Then ao = 2 and by (2) of Proposition 1. 3

for some Q(t) - biti E Z + [t].
After substituting t = 1 we get

which implies that the total number ~ °°_ 1 ai of nontrivial critical points
contained in C° - C B ~ p, q ~ J is odd, and at least equal to 1. Hence
C = [p, q] contains at least 3 nontrivial critical points and the number of
nontrivial critical points in C is odd.
Assume that the result holds for any k-cube with k s n - 1. Let 03A3n

be an-cube, C = [p, q] the corresponding order interval and let

Ci,..., C2n be order intervals corresponding to (n - 1)-subcubes of En.
By the induction assumption each of C1 contains an odd number of non-
trivial critical points in C° and none of them is a local minimum of ~.
Denote the sets of nontrivial critical points in C° by Si, i = 1,..., 2n.
First we claim that Si fl ~~ - ~, i ~ j. If Ci n Cy = 0 then this is
obvious. Hence assume that CI ~Cj ~ 0. For simplicity we take i =1, j = 2
and we write C2 = [p2, q2]. By the Lemma 2. 3 there is an
order interval [p3 , q3] such that C1~C2. By the same lemma
there are essentially two cases either pi =p3 , q3  ql , q2 and ql , q2 are
noncomparable or pi p3 =p2  q3 = q2. In the later case Cl n C2 = C12
and then S n ~2 = ~ since S n C12 = C12 = 0. In the contrary case assume
that there is u E ~1 n Consider D:= [u, ql] n [u, Then D is closed
convex, D has nonempty interior and D. Then by Proposition 1 in [6]

Vol. 7, n° 4-1990.



K. WYSOCKI

there is u1 ~ D such that 03A6’(u1) = 0 and Since K is

strongly order preserving qi q2 . If m - (u) ? 1 then by Lemma 2 .1
we can find v > u, u E D such that > 03A6(03C5). Thus u1 ~ u
and ul E int D and ul is a local minimum of But then ul E C12 which
is impossible since u is not in C12.

If m - (u) - 0 (hence 1, because otherwise u is a local

minimum) then since u is a nontrivial critical point we have two cases,
either u is a local minimum of ’ or u is a local maximum of ’ (see the
Morse Lemma (3) for definition of ~). In the first case u is again a local
minimum of In the second since is spanned by a positive eigen-
vector (by the Krein-Rutman result) > 03A6(03C5) for some 0 E D. As
before ul is a local minimum of 03A6 and this is impossible. Thus

§1 n ~2 - 0.
With al, i E N U ( 0 ~ denoting the number of nontrivial critical points

in C whose Poincare polynomial is ti. By (2) of Proposition 1.3 we have
ao = 2 n and

Taking t = 1 we set that

As a consequence C contains an odd number of nontrivial critical points.
Furthermore, if Li, L2 are different order interval in C corresponding

to two k-subcubes of En, k s n - 1, then the sets §1, ~2 of nontrivial
critical points of 03A6 contained in L?, Lg, respectively, satisfy 1~ 2=Ø
and then the total number of nontrivial critical points in U2n lCi is equal
to b := where Eo = k-subcube of E n and b~o is the number
of nontrivial critical points in L°, L is an order interval associated
with Eo. But by the induction assumption bEo is odd for any subcube

Eo c En and since for a given k E 0, ... , n - 1 ~ J the number of all

k-subcubes of E n is 2"~ ) we get that b is even. Since b is even and the
number of all nontrivial critical points in C is odd, C° must contain an odd
number of nontrivial critical points.

Finally, since each order interval corresponding to k-subcube of En (for
k = 0,..., n) contains at least one nontrivial critical point in L° there are

at least ~k= ° n k 2n ~ k - 3 n critical points in C. 0

For the next theorem let E = {u E U ; u is local minimum of 03A6 } and
let r c E x E be the set of edges defined as before.
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By r~k we denote the cardinality of the set

THEOREM 2. 5. - Assume that 03A6 satisfies (03A6), Cr (03A6, U) is finite and 03A6
is bounded below on any [u, v], u, v E E. Suppose that if u E Cr (~, U)
then mO(u) s 1. Let the cardinality I E I of E be equal to I and let k be
the largest integer so that 2k s I. Then the number of nontrivial critical

points of 4> is at least ..

Proof. - By the previous theorem we know that if En is an-cube,
n >_ 1 then there is a nontrivial critical point which is not a local minimum
contained in C°, where C = [p, q] is the corresponding order interval.
Hence it is enough to show that if En, E~ are different n- and k-cubes
and Co, Ci k) are order intervals associated to En, Ek then the
above solutions uo, ui are different.
Assume that and let Ci = [Pi’ ql ] , i = 0,1. Then u = uo = Ul E 

If qo and ql are noncomparable then by considering D = [u, q°] n [u, ql]
we can find ul E D so that and ~’ (vl) = O. Since u is a non-
trivial critical point and is not a local minimum then L~ 1 is a local
minimum of 03A6 and u  vl  qo. But then vi E En and since u E C?, u is
noncomparable to any element This implies a contra-
diction.

Similarly, po, pi cannot be comparable. Hence we can assume that
qo. Then p0 ~ u  qo. But then again by the definition

of En, ql E En. This implies u E C? which again is a contradiction.
Thus Ul and the proof is completed. D

3. APPLICATION

In this section we illustrate the previous result. We apply Proposition 2. 5
to the problem recently studied by Angenent, Mallet-Paret and Peletier
in [2]. They consider an equation

in which f (t, u) = u(I- u)(u - a(t )) . Here a is a C 1-function [o,1 ] - (0, 1 )
satisfying

For definitness we assume a(0) > 1/2. We briefly describe their results
referring the reader to the original paper for interesting details.
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The main result of [2] states that if Z = { t; a(t) = 1/2 J (by ii) Z is
finite) and Zo E Z is the sequence 0 1  ...  t k  1 then there is
an Eo > 0 such that for 0  E s Eo there is a stable solution of (5-6) and
a’ (tl )u’ (tl )  0 for each i, and u is monotone in a small neighborhood
of each ti and away from ti either u(t) or 1 - u(t) is small. Furthermore
all stable solutions are obtained in this way.
Here the stability of the solution u means that the principal eigen-

value ~ of the linearized problem

is nonpositive.
The proof of the existence of stable solutions is based on the method of

super- and subsolutions. For a given Zo ~ Z they construct a subsolution u
and a supersolution u for the problem (5-6) so that 1:{(t)  u(t ), t E [0, 1 ] . Then
there is a stable solution u E [u, m (see [1]).

Moreover, for small E > 0 an order interval [u, MJ contains exactly one
stable solution u and the principal eigenvalue ~ of (7) at u is strictly less
than zero. Also note that the problem (5-6) has two obvious solutions u = 0
and u == 1 and all solutions have their values in [0, 1].
We will be interested in the following question ; assume that a is as above

and Z ~ - k. Let E be sufficiently small so that their theorem holds. We
ask what is the least number of solutions of (5-6). For the sake of simpli-
city we assume that e = 1. Let

We equip H with the inner product

Let P = u E H ; u(t ) >_ 0, t E [0, 1]) j.
It is easy to show that (H, P) is an ordered Hilbert space and that P

has nonempty interior.
We define

The number X is chosen so that f~, (t, ~ ) is increasing and

~) > 0 for t E [0, 1 ] , ~ E [0, 1]. Let
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The critical points of 03A6 are the C2-solutions of (1). It is an easy exer-

cise to show that K, K’ (u) are compact, that dim ker K I (u) s 1 and that ~

is bounded below on [uo, ul] and satisfies where uo - 0,
ul - l.

The maximum principle implies that K and K I (u) are strongly order
preserving and if u  ii are supersolution and subsolution of (5-6) then
K([u, [u, M]. We remark that the stability of a solution u of (5-6)
means that (~ " (u)h, 0 for any h E H. Furthermore, if u is a

stable solution of (5-6) then the negativity of the principal eigenvalue 
(see (7)) implies

Hence, if u is a stable solution of (5-6) then (~ " (u)h, h)~, >_ p ( ~ h 
h E H and that means u is a strict local minimum of ~. On the other hand,
if u is a local minimum of 03A6 then (03A6" (u)h, h)03BB ~ 0 and u must be a
stable solution. Thus all stable solutions found in [2] are all local minima
of ~.

We denote the set of all local minima of 03A6 by E. Let ti  ...  tk-l 1
be the zeros of a(t) - 1/2 and to = 0, tk - 1. With each point u E E we
associate a k-tuplet of numbers a(u) = -(«1, ... , ak) in the following way :

Moreover from the fact that a’(ti)u’(ti)  0 for u E E, i = I , ... , k it
follows that a(u) = («1, ... , ak) satisfies : ai = 1 for i odd implies
«1 + 1 = 1 and ai = 0 for i even implies «I + 1 = o.
A sequence of k numbers («1, ... , ak), ai E 0, 1 ~ with the above pro-

perty will be called admissible of the length k.
Let C~ = be the set of all admissible sequences of the length k.

We introduce an ordering on the set C~ by

The examination of the construction in ~2] of subsolution u and super-
solution M shows that if a(u) _ a(u) then u ~ v and ïi s v. We also have

that a : E - C~ is order preserving.
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LEMMA 3.1. - If u, v E E then u  v a a(u)  a(v) and if there is
i E { 1, ... , k ~ J such that

then the order interval [u, u] does not contain any element of E different
than u orv.

Proof. - It is obvious that u  v implies a(v). The construc-
tion of subsolution and supersolution u, M shows that a(u) = a(v) gives
u = v (by the uniqueness proved in [2]). If u  v then we must have u ~ u
and a(u)  a(v) because otherwise u. Assume that a(u)  a(v) but u
and v are noncomparable. Since a(v) implies have ~  u
and u  v. Consider D := [u, u] n [u, v]. We have D and 03A6 is
bounded below on D. Thus there is a critical point w of 03A6 such that

Hence w is a classical solution of (5-6) and 
But [u, u] contains exactly one minimum of namely u and this gives
a contradiction. Thus a(u)  a(v) implies u  v. The last part is the simple
consequence of the previous. D

As in the section 2 we associate with S an abstract graph (C~, r’ ) where
the set of edges r’ is defined as

Lemma 3.1 says that the graphs (a, r’ ) and (E, r), where r is defined
as in section 2, are isomorphic.
According to Theorem 2. 5 the total number of nontrivial critical points

of 03A6 is at least equal

Hence we have to find that number.

THEOREM 3.2. - Let t1  ...  tk_ i be the set of all solution of
a(t) = 1/2. Then the least number of solutions of (5-6) is

In order to prove that result let be the number of all I-cubes in
the graph (G, r’ ) where (~ - C~(k) is the set of all admissible sequences
of length k. We set 0 if k s 0 and 0 if k ~ I > 1

(because i f~{k) ~ I  2k and the points of cannot form I-cubes if
k>_ I > 1).
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First we prove :

LEMMA 3.3. - The numbers N/(k) satisfy the following recurrent for-
mulas :

Proof. - For I = 0 and k = 1 there are two admissible sequences
namely (0) and (1). If k = 2 the only admissible sequences are (0, 0), (0, 1 )
and (1, 1). Thus No(I) = 2 and No(2) = 3. Taking I = 1 and k = 1 we

see that there is exactly one 1-cube, namely an edge ((0), ( 1 )), and if I = 1
and k = 2 there are two edges ((0, 0), (0, 1)) and ((0, 1), (1, 1)). Hence

1 and Ni(2) = 2.
Now let I >_ 0, 2 and let be the set of all I-cubes in C~(k).
We can write

where (Bo, CB is the set of all I-cubes in C~(k) whose sets of vertices have
the last entry equal to 0 and 1, respectively, and a I-cube W is an element
of CB2 if it contains vertices with last entry equal to 0 and also vertices
with last entry equal to l.
The sets Go, (Bi, and CB2 are disjoint and thus

Let I = 0. Then CB2 = 0 and Bi are the sets of admissible sequences
with last entry equal to i, i = 0, 1. If k is odd and («1, ... , ak) E CBo then
ak = 0, can be equal to 0 or 1, and (« 1, ... , E (~(k -1 ) . Then

If i then and

(«1, ... , a(k - 2). Hence ~ ~ 1 ~ I = No(k - 2). This shows that
No(k) = No(k - 1) + No(k - 2) if k is odd. The case k is even similar.
Now let I >_ 1 and k is odd. The other case is the same. Assume that W E (Bo

and if W ’ - ~ (« 1, ... , (« 1, ... , E W then W ’ is a I-cube in
C~(k - 1). Thus I I = N/(k - 1).

Similarly if W E 631 then any (aI’..., ak) E W must satisfy ak-l i = ak = I
and (« 1, ... , «k _ 2) E C~(k - 2), and W ’ _ ~ (GY 1 , ... , «k _ 2) (GY 1 , ... , GYk ) E W J
is a I-cube in a(k- 2). Thus I = N/(k- 2). Hence we have to prove that
I CB2 = Nr-1 (k - 2). Note that it is enough to show that if W E CB2 then
W = («, 1, 1), (a, 1, 0) ; a E W j where W’ is the set of vertices of some
(I - I )-cube in C~(k - 2). We prove the above claim by induction.

Let 1=1 and W E CB2 be a 1-cube. Then obviously W = («,1,1 ), («,1, o) },
for some a E C~(k - 2).
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Assume that our claim holds for any r-cube E CB2 for r :s l -1. Let
W E CB2 be a I-cube in C~(k). First we show that W does not contain ver-
tices of the form (a’, 0, 0) with a’ E C~(k - 2). Assume it does. Fix
a = (a’, 0, 0) E W and let Wi be a (I - 1)-subcube of W which contains
a = (a’, 0, 0). Then Wl does not contain a vertex of the form ( ~3, 1, I),
because if ( ~3, 1, 1) E Wi then also ( ~, 1, 0) E Wi and by the induction
assumption Wi = {(03B3, 1, 1), (y, 1, 0), where Wl’ is a (I - 2)-
cube in (k - 2). Hence all vertices of WI have last entry 0. But
a = (a’, 0, 0) belongs to I, (I - 1)-subcubes of W, and consequently all
of these (I - I)-subcubes have all vertices with last entry 0. The number
of vertices of (I - I)-subcubes of W which contain a = (a’, 0, 0) is equal
to 2/ - 1. On the other hand, since W E CB2 there is a vertex in W whose
last entry is 1 and again applying our induction assumption we can find
another vertex in W with last entry 1. But then the number of elements
of W is greater than 2/ which gives a contradiction. Hence the
vertices of W have the form (a, 1, 0), ( ~3, 1, 1). Therefore the I-cube W
necessarily contains a (I - I)-subcube Wi such that

where Wl’ is a (I - 2)-cube of a(k - 2).
Let Y = ( («, 1, 1 ) ; (a, 1, 1) E W j. We will show that Y is a (I - 1)-

cube in (k). Fix (a, 1, I) E Wi . Then (a, 1, 1) can be connected by an
edge to I vertices of W ; to (a, 1, 0), to ( ~3, 1, I) with ~3 ~ Wi’ and to
(I - 2) vertices which are of the form (y, 1, I), Wl’. Let BB~ be a
(I - I)-cube which contains vertices (y, 1, 1), l’ E W1’ and (03B2, 1, 1). Note
that by the induction assumption W2 does not contain any vertex of the
form (a, 1, 0).

In a similar way, if Yl = (a, 1, 0) ;
(a , 1, 0) E W we can find a (l -1 )-cube W3 with vertices of the form (y, 1, 0),
y E C~(k - 2) such that and 21-1= ~ iN§ ) Yl ~ - But then since
I W = 21 and Y we must have Y = W2 and Yl This implies
that Y and Yl are (I - I)-cubes in a(k) and that

where Y’ and Yl are (I - I)-cubes in C~(k - 2). Now we have to show
that Y’ = Yi’. Since W is a I-cube there are l21-1 1 edges in W ;
(I - 1 )21- 2 of them between elements (a, 1, 1), (,~, 1, 1), a, {3 E Y’,
(/ - I)2/-z between (a, 1, 0), ( ~i, 1, 0), a, Yl’, and the rest 21-1
between (a, 1, 1), ( (3, 1, 0), a E Y’ , ~i E Yl’. But the last is possible if
a = (3. Hence Y’ = Y/ and our claim is proved. D

Now we can prove Theorem 2. 5.

Proof. - Using the same notation as in the lemma we see that the last
number of solutions of (5-6) is N(k) = First we claim that
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Hence the proof is completed. D

The following table shows comparison between the number of stable
solutions No(k) and the least number, N(k), of all solutions of (5-6) for
some values of k.

k No(k) N(k)

1 2 3
2 3 5
5 13 43

10 144 1 365

20 17 711 1 398 101

25 196 418 44 739 243
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