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ABSTRACT. - The first Section of this paper is devoted to prove the

following Theorem, which extends previous results of H. Brezis and

F. E. Browder : Let wE w ~ 0 a. e. in S2 and T E W - m’p (S~),
+ h where is a positive Radon measure and h E is such

that h w >_ - ~ ~ ~ I a. e. in fl for some ~ E Ll (~) ; then w belongs to

The second and third Sections deal with applications of this Theorem
to the study of two unilateral problems.

SUNTO . - Nella prima parte di quest’ articolo viene dimostrato il seguente
teorema che costituisce una generalizzazione di risultati ottenuti da H. Brezis
e F. E. Browder : Sia w E 0 q. 0. in 0 e T E W -’~’p (~),
T = ~, + h dove ~, e una misura positiva di Radon e h E e tale che

hw ~ - |03A6| q. o. in Q per un certo 03A6 E L1(03A9); allora w appartiene a

Nella seconda e terza parte tale risultato viene applicato allo studio di
due problemi unilaterali.
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RESUME. - Dans la premiere partie de cet article on demontre le theo-
reme suivant, qui generalise des resultats de H. Brezis et F. E. Browder :
Soient w E Wo ~p(S~), w >: 0 p. p. dans 0 et T E W - m’p ~ (S~), T = p- + h

est une mesure de Radon positive et ou h E est telle que
p. p. dans 0 pour un certain ~ E L1(~); alors w appartient

Dans la deuxieme et la troisieme parties on applique ce theoreme a l’étude
de deux problemes unilateraux.

INTRODUCTION

The first Section of the present paper is devoted to prove and to comment
the following :

THEOREM. - Let S~ be an arbitrary open subset of m E . M and 1  p,
p’  + oo with 1/p + 1 !p’ - 1. Consider w in w a 0 a. e.

in S~ and T in W - m’p ~ (Sl). Assume that T = ~, + h, where ~, is a positive
Radon measure and h a function, and that h(x)w(x) >_ - ( ~(x) (
a. e. x E ~ for some ~ in Ll (S~). Then w belongs to L1 (S~ ; d~,), h w belongs
to Ll (~) and

This result extends previous theorems of H. Brezis and F. E. Browder [6]
who considered the cases where either ~c == 0 or h = 0. The main tool

in order to prove these results is the Hedberg’s approximation (in the
Wo ~p(S~) norm) of a function u E Wo ~p(S~) by a sequence of functions

which belong to n Wo ~p(S~), have compact support in Q and
satisfy 0, I Un I _ u a. e. in Q (see [7], [8] and specially [9],
Theorem 5).
The second and third Sections of this paper deal with applications of

the above Theorem to the study of two unilateral problems.
In Section 2 we consider the strongly nonlinear variational inequality

and prove the existence of a solution. Here A is a pseudo-monotone
operator acting on f lies in W ~ m’p~ (~), K,~ - ~v : v E 
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u >_ ~ a. e. in 0 J with ~ E Wo ~p(S~) f1 L°°(~), and g satisfies the sign
condition sg(x, 0 but no growth restriction with respect to s.
The existence of a solution was already proved in [2]. We revisit and

simplify here this proof using the Theorem above as an essential tool.
Section 3 is devoted to the quasilinear, second order variational inequa-

lity with quadratic growth with respect to the gradient :

for which we prove the existence of a solution. Here Q is a quasilinear
operator, f lies in H -1 (S~), Ko = ( v : v E H o(S~), v a 0 a. e. in S~ ~ J and g
satisfies the sign condition sg(x, s, ~) >_ 0 as well as the quadratic growth
condition with respect to the gradient ) g(x, s, ~) ~ _ b( ~ s ~ )(c(x) + ~ ~ ~ 2).
The existence of a solution for the corresponding equation was proved

in [3] . We use here the same techniques and the Theorem above to prove
the existence of a solution for the variational inequality with obs-

0. Another proof of the same result using completely different
ideas has been recently given in [1] .

NOTATION. - The duality pairing between Wo ~p(S~) and W - m’p ~ (S~) will
be denoted by  , ~ , the space of Radon measures on Q by and the

space of positive Radon measures by + (S~). A sequence is said to

converge quasi everywhere (denoted by q. e.) in 0 if it converges at any
point of 0 except on a subset whose (m, p)-capacity is zero.

1. AN ABSTRACT RESULT
OF BREZIS-BROWDER’S TYPE

In this Section we study the following question : let w be an element
of Wo ~p(S~), and let T be an element of W - m’p ~ (S~) such that T = JL + h,
where  lies in M

+ (03A9) and h in find sufficient conditions on the
data in order for w to belong to for hw to belong to LBQ)
and finally to have

Let us point out that even if any expression makes sense, it is not obvious
that the equality holds true.

This question was solved by H. Brezis and F. E. Browder in [5] and [6]
when either == 0 or h = 0. The case where neither  nor h is zero is
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the goal of the present Section ; this case is well suited to the study of
variational inequalities with obstacles (see Sections 2 and 3 below).
To be more precise, the question above with either - 0 or h == 0 was

solved by H. Brezis and F. E. Browder in [5] when m = 1. They then turn
to the general case 2 in [6] using Hedberg’s approximation. Since
at that time ([7]) Hedberg’s approximation seemed to need extra regula-
rity assumptions on S~, results are stated in [6] only in the cases

where 0 = (Theorem 1 for  =0, Theorem 8 for h == 0) or with ao
locally smooth (Theorem 4 for Jl == 0). The regularity assumptions on 0
in Hedberg’s approximation were then removed, first in the case

p > 2 -1/N in (8], finally in the general case 1  p  +00 in [9] (see
also Addenda 1 and 2 of [5]). For completeness we state here these results
in their full generality :

THEOREM 1. l. - ([6]). Let 0 be an arbitrary open subset of If T
belongs to WT (S~) n and w to Wo ~p(S2) with ~(x) (
a. e. x E 0 for some 03A6 in L1(S2), then Tw is an element of and

THEOREM 1.2. - ([6]). Let Q be a bounded smooth open subset of (~~’
when m a 2. If T belongs to W - m’p ~ {S~) n + 

{~) and w to 
then w (or more exactly the quasi continuous representative of w) is an
element of L~(S~; dT) and

Note that there is no regularity assumption 0 in Theorem 1.1 (see
comments above) but that {2 is assumed to be smooth in Theorem 1.2 ;
this assumption is not necessary if m = 1, but is essential in the case
m > 2, since there are counterexamples, i. e. functions u which do not

belong to dT) when S2 is not smooth (see Remark 8 of [6]). This
relies to the fact that there exist functions which can not be written as
differences of nonnegative functions of Wo,P(fl) when m a 2 and Q is not
smooth ; in contrast one still has w = w + - w’ with w +, w’ in 
when m = 1.

Our result is the following :

THEOREM 1.3. - Let 03A9 be an arbitrary open subset of Let w be
an element of such that
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and let T be an element of W - (~) such that T = ~c + h, where ~ lies
in ~ + (~) and h in assume moreover that

Then hw belongs to L1(S~), w (or more exactly the quasi continuous repre-
sentative of w) to Ll(~ ; and one has:

Let us note that in comparison with Theorems 1.1 and 1. 2 the assump-
tion w * 0 a. e. in {} of Theorem 1. 3 appears as an extra condition ; this
is partly compensated and justified by the absence of regularity assump-
tion on Q (see comment after Theorem 1.2). Finally this condition is satis-
fied in the applications of Sections 2 and 3.

In the proofs of these Theorems the central role is played by Hedberg’s
approximation. This result can be stated as follows (see [7], [8] and spe-
cially [9] Theorem 5 ; an expository proof is given is [6] Theorem 2 and
in [13] for the case 0 = f~N) : Let 0 be an arbitrary open subset of (~N
and 1  p  + oo ; for any w E there exists a sequence 
which satisfies :

Proof of Theorem 1. 3. - Let be the sequence defined by ( 1.1 ).
Consider for n fixed the mollified sequence (wn * with = kNp(kx)

and extracting a subsequence in k

On the other hand since T = ~, + h is an element of W - m’p ~ (S~) n 
Lemma 2 of [6] asserts that T ~ + h ~ (E) = 0 for any subset E
of 0 whose (m, p)-capacity is zero. Then we have
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since ) h ~ (E) = 0 for those sets, and thus :

Therefore for fixed n and a subsequence k - + m

Since for n fixed there exists a compact subset Qn of 0 such that

supp (wn * pk) C Qn for k sufficiently large, and since

we can pass to the limit in (1.2) for k - + oo and n fixed : we use ( 1. 3)
in the left hand side, (1.5), (1.6), h E Lloc(O) and Lebesgue’s dominated
convergence theorem for the right hand side. We obtain

note that, in view of (1.1), (1.4), wn belongs to L°°(0; and hwn to
L1(~).
From (1.1) we know that wn converges to w in Wo ~p(S~) ; by the proof

we used before to obtain (1.5) we have

On the other hand from h w >_ - f ~ ~ I and 0 _ w we have

Finally, recall that for any u in one has

This equivalence and w a 0 a. e. in Q, as well as (1.4) imply

and (1.11), Fatou’s lemma yield that h w belongs to L1 (S~) and w to Ll (S~ ; 
Using ,u-a. e. in 0 (recall ( 1. 4)) and a. e.

in 0, it is now easy to pass to the limit in (1. 7) : we use the convergence
of wn to w in Wo ~p(S~) for the left hand side and Lebesgue’s dominated
convergence theorem in each term of the right hand side : we obtain

which completes the proof of Theorem 1.3.
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REMARK 1.4. - Let us point out that in the case m = 1 we can replace
the two following hypotheses of Theorem 1.3

by the unique (and weaker) hypothesis

and obtain the same Theorem.

Indeed if m = 1 we can write w = w + - w - where w+ and w -
belong to Theorem 1. 3 in the former setting can now be applied
separately to w + and w - , which is sufficient to prove the variant.
Note that the use of the decomposition confined to

the cas m = 1 since for m >_ 2, w + and w - do not belong in general to
Wo ~p(S~).
Note also that in the case m = 1, Hedberg’s approximation can be

replaced in the proof of Theorem 1.3 by some more standard process of
approximation : see e. g. the approximation in [5] or use 
to approximate w +, with CPn E D(Q), CPn a 0 w + in Wo ~p(S~) .

2. AN EXISTENCE RESULT
FOR A STRONGLY NONLINEAR VARIATIONAL INEQUALITY

where the obstacle 1/; is assumed to belong to Wo ~p(S~) n 
Consider also a pseudo monotone operator A from in

W - m’p ~ (S~). Assume that A maps bounded sets into bounded sets and
that A is coercive, i. e. that for some vo E L°°(Q)

Examples of such operators are the celebrated Leray-Lions operators (see
e. g. [10], Chapter 2, or, among others, [2], p. 293).

Consider finally a Caratheodory function g(x, s) defined on 0 x [R which
satisfies :
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THEOREM 2.1. - The variational inequality

has at least one solution. Moreover if the operator A is monotone and g
strictly increasing (or if A is strictly monotone and g non decreasing) the
solution of (2.2) is unique.

This Theorem was already proved in [2] ; the case of the equation asso-
ciated to (2 . 2) was treated in [fi] and [13]. We revisit here the proof
of [2] ; the first part of the proof closely follows the lines of [2] and is
just sketched here ; the other parts use the abstract Theorem 1. 3 above.

Proof of Theorem 2.1.

First part: Approximation and a priori estimates. - We just sketch
the proof ; see [2], Lemma 1 for more details. Define

where Xn(x) is the characteristic function of the set { x: 
Then the approximate problem

has at least one solution (see e. g. [4] or [10]) ; using v = v o as test func-
tion in (2.3) allows one to prove that these solutions are bounded in

Wo ~p(S~) independently of n and that 0 _ gn ( ~ , un )un dx : cst
Moreover extracting a subsequence (still denoted by un ) such that

one obtains that ug( . , u) and g( ~ , u) belong to and that
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Second part: Passing to the limit in (2.3). - Consider ~,n defined by

From (2 . 3) it is clear that JLn belongs to M
+ (03A9). Since A maps bounded

sets of Wo ~p(S~) into bounded sets of ~V - m’p ~ (~), one can always assume
that for the same subsequence

which implies that

where

Consider now w - u - ~, T - ~ + h, h - - g( ~ , u). The assumption
of Theorem 1. 3 are satisfied since T and h w = - g( ~ , u)(u - ~)
belongs to L1(0) (note that § belongs to Wo ~p(S~) n L°°(S~)). Therefore

Using v - ~ as test function in (2.3) yields

which gives, passing to the limit and then using (2.4)

(use (1.4) and ( 1.10) to prove (2 . 6)) .
Since A is a pseudo-monotone operator, (2.5) implies that :

It is now easy to pass to the limit in (2.3) for any fixed v E 
The existence of u solution of (2.2) is proved.
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Third part : Complementary system. - We prove here that for any solu-
tion u of (2.2) we have the equality

Indeed using v = ~ as test function in (2.2) we obtain

On the other hand w = u - ~, u) and h = - g( ~ , u) satisfy
the hypotheses of Theorem 1. 3 ; hence u - ~ belongs to LI (~ ; d,u) and

Since u - ~ >_ 0 e. in 0 (see (2 . 6)) and the right hand side
of this equality is nonnegative,which implies (2.7).
Note that (2.7) is nothing else than the complementary system corres-

ponding to the variational inequality (2.2), i. e.:

Fourth part: Comparison result and uniqueness. - Consider two solu-
tions ui and u2 of the variational inequality (2.2) corresponding to two
different right hand sides fi and f2. We will prove that if g(x, s) is non
decreasing in s then g( - , and g( - , 1 belong to L1(S~) and that

which clearly implies the uniqueness results stated in Theorem 2.1.
Singe g is non decreasing, we have

Denoting by I the measurable set 0 j we deduce
from this inequality and from sg( ~ , 0 that

on the other hand since sg( ~ , 0
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since g( . , ul), g(., u1)u1 and g( . , u2)u2 belong to L 1(03A9) and 03C8 to L°° (03A9).
Define now Au1 - fl + g(., u1), hl = - g(., ul) and w1 = u2 - 03C8.

Theorem 1. 3 applied to 1, hi 1 and w 1 yields

since u2 - ~ >_ 0 e. in 0 and ~cl ~ 0) (see (2.6)).
Combining (2 . 9) with the equality (2. 7) for ~i 1 and /i 1 gives

This inequality and the analogous where is replaced by (u2 , ui)
yield (2.8).

3. AN EXISTENCE RESULT
FOR A QUASILINEAR VARIATIONAL INEQUALITY

In this Section we restrict our attention to the case where m = 1, p - 2
and where Q is a bounded open subset of 

Consider a quasilinear elliptic operator of second order in divergence
form

where a is a N x N matrix whose components are Caratheodory func-
tions s) defined on Q x R which satisfies

for some real numbers a and ~i with 0  a  (3.
Consider also a Caratheodory function g(x, s, ~) defined on 0 x (~ x (F8N

which satisfies :

for some continuous nondecreasing function b : (~ ~ -- (~ t and some
c E c >_ 0.
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Finally consider some right hand side f E H -1 (S~) and the positive
convex cone Ko

has at least one solution.

Theorem 3.1 extends the result of [3] to the case of the variational ine-
quality with obstacle 03C8 = 0. Note that in [3], sign conditions on g are
allowed which are more general than (3.1). Nevertheless we choose here
to consider only (3 .1 ) in order to present a simpler proof.
The first and third steps of the proof of Theorem 3.1 follow along the

lines of [3] ; the second step uses the abstract Theorem 1. 3 above.

Note also that a different proof of Theorem 3.1 based on completely
different ideas has been recently obtained in [1].

Proof of Theorem 3.1.

First step. - Define for E > 0 the approximation

and consider a solution u~ of

Since the nonlinearity g~ is bounded in L~(03A9) such a solution exists for
each E > 0 by a classical result [4].

Using v = 0 as test function in (3.4) gives

On the other hand define H -1 (~) by
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from (3.4) we deduce that ~ is a positive Radon measure. Using (3.2)
we have

which in view of (3 . 5) implies that gE ( ~ , Ue, grad is bounded in 

This in turn implies that the positive measures which are bounded in

L1(S~) + H -1(~l), are bounded in the sense of measures : indeed, for any
compact subset K of Q the use of a test function with ~K >_ 0
in S~, ~pK - 1 on Kyields. :

which is the desired result.

Thus there exists u E 0 a. e. in 0, such that for a subse-

quence (still denoted by ue) we have

Note that QuE - f tends weakly to Qu - f in H -1(~) since Q is quasili-
near. The compactness result of [12] (Theorem 1 and Remark 3) implies
that for any q  2

it is easy to see that LuE converges strongly to Qu - f in for any

q  2 ; Meyers’ regularity result [ 11 ] now implies that

This result combined to (3 . 5), to the sign condition (3.1) and to Fatou’s
lemma gives
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Since from (3.2)

1 g( . , u, grad u) I  b(1)(c( ~ ) + I grad u ( 2) + ug( ~ , u, grad u) a. e. in S~

we deduce from (3 . 9) that g(. , u, grad u) belongs to L1(0).
Finally using v = 2ue as well as v = 0 as test function in (3.4) we

obtain

Since the functional

is lower semi-continuous for the weak topology of we deduce from

(3.9) and the last equality that

Second step. - Define ~, E H - ~ + by

The main difficulty is now to prove (see third step) that

Note that (3 .11 ) is not a consequence of (3. 6) at this time ; indeed we
do not know that gE ( ~ , Ue, grad tends to g( ~ , u, grad u) that in the
sense of distributions, even if we already know that the convergence takes
place almost everywhere and that g( ~ , u, grad u) belongs to L1(0).

Before of proving (3.11) let us observe that Theorem 3.1 is easily
deduced from (3.11) using the abstract result of Theorem 1.3. Indeed,
if (3 .11) holds true, the hypotheses of Theorem 1. 3 are satisfied by w = u,
h = - g( ~ , u, grad u) and ~c ; therefore u belongs to L 1(0; and

since u ? 0 ~c-a. e. (use (1.4) and (1.10) to prove this assertion). Now
(3.10) and this inequality imply
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On the other hand using again (3 .11 ) and Theorem 1. 3 we have that any
v E Ko n L°°(0) belongs to LB0; and satisfies

which proves that u is a solution of the variational inequality (3.3).

Third step. - It remains to prove (3 .11 ) ; the proof follows along the
lines of [3], to which we refer for more details and comments. Consider

the function

it is easy to see that vn is bounded in n L°°(S~) for n fixed and that

Using the test function v = M’ 
E + vn E Ko in (3 . 4) we obtain

in which we now pass to the limit for E tendiny to 0 and n fixed.
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In view of (3.12) the term

can be splitted in 3 terms corresponding to the 3 differents terms ofgrad .It is easy to pass to the limit in the first one, as well as in theterm  f, vn ~ . The third term is estimated by

and thus bounded by

where C* does not depend neither on n, e nor on §. Finally the second

term is added to the integral r v§ g~(.,u~, grad u~)dx and this sum iswritten as ~Q

In view of (3.2) we have

and due to the cut-off function H we obtain

Application of Fatou’s lemma thus yields for fixed n :
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Collecting these results together we have proved that passing to the limit
in (3.13) gives :

for any cp E n L°° (S~), ~ a 0 and any n 
Take now

where cp E ~(S~), cp ~ 0, B and H are defined as before and where p(n)
is the number defined by

since B is one to one and at least linearly increasing at infinity, we have
p(n) - +00 as n - +00.

Note that § can be used as a test function in (3.14) since § belongs
to n L°°(0) with § a 0. Moreover

it is easy to pass to the limit in (3 .14) ; this gives

for any cp E ~ 0, which is exactly the desired result (3.11).
The proof of Theorem 3.1 is now complete.
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