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ABSTRACT. — Under general growth assumptions, that include some cases of linear growth,
we prove existence of Lipschitzian solutions to the problem of minimig@ﬁ@(x(s), x'(s))ds
with the boundary conditions(a) = A, x(b) = B.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

MSC: 49N60; 49J65

Keywords: Calculus of variations; Existence and Lipschitzianity of solutions

RESUME. — Dans I'article on démontre I'existence de solutions Lipschitziennes du probléme de
minimiserfab L(x(s),x'(s))ds, x(a) = A, x(b) = B, avec des conditions faibles, de croissance,
gui comprennent des cas de croissance linéaire.
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1. Introduction

The direct method of the calculus of variations is based on the notions of coercitivity
and of weak lower semicontinuity. From the coercitivity of the functional one derives
the property that every sequence that makes the values of the functional bounded, in
particular, every minimizing sequence, contains a weakly converging subsequence, and
the weak lower semicontinuity implies that the minimum is attained on the weak limit of
the minimizing subsequence. For the classical problem of the calculus of variations, the
minimum is seeked among the absolutely continuous functions assuming given values at
the boundary points and the natural norm of this space ik theorm of the derivatives.

For the spacé.!, a necessary and sufficient condition for weak pre-compactness of a
sequence is expressed by the criterion of De la Vallée Poussin [4], whose application
implies that the Lagrangeah(x, &), appearing under the integral sign, has to grow

* Corresponding author.
E-mail addresses: cellina@matapp.unimib.it (A. Cellina), ferriero@matapp.unimib.it (A. Ferriero).



912 A. CELLINA, A. FERRIERO / Ann. |. H. Poincaré — AN 20 (2003) 911-919

faster than linearly with respect to the varialjleA necessary and sufficient condition
seems to leave little hope of being able to apply the method to provide an existence
theorem for absolutely continuous minimizers under assumptions thabtdimply
superlinear growth. The purpose of this paper, however, is to show that in the case
of autonomous problems, where the Lagrangean does not depend explicitely on the
integration variable, a minor variant of the direct method can be applied under more
general growth assumptions. More precisely, we consider protlRmthe problem of
minimizing the integral

b

/L (x(s), x'(s)) ds

a

for x :[a, b] — R" absolutely continuous and satisfyinga) = A, x(b) = B. Under
more general growth conditions, that include the classical superlinear growth but also
some cases of Lagrangeans with linear growth, we show that, from any sequence
{x.}.en, Minimizing for the functional, one can derive another sequéRgk .y, €ach
function x, obtained fromx, by reparametrizing the intervdl, b], that is again
minimizing, and consists of equi-Lipschitzian functions. As a consequence, in the case
the Lagrangearl(x, &) is convex in&, one can prove the existence of a solution to
problem (P), that, in particular, is a Lipschitzian function. A result on the regularity
(Lipschitzianity) of solutions to autonomous minimum problems, under conditions of
superlinear growth, was established in [5] and, under weaker growth conditions, in [2].
The growth assumption we consider is expressed in terms of the polar of the
LagrangearL with respect t& (for the properties fo the polar see, e.g., [6]). The same
condition was already introduced in [3] to prove existence of solutions for a rather special
class of Lagrangeans. The results we present apply to different classes of Lagrangeans,
that can possibly be extended valued and either convex or differentiableAisimple
example of a convex everywhere defined Lagrangean satisfying the assumptions of our
Theorem 1, in particular the growth condition, is the map, having linear growth,

€l —In(lED, &> 1,
1, otherwise.

L(S)={

2. Main results

In what follows L (x, £) :RY x R¥Y — R = R U {400} is an extended valued function,
continuous and bounded below, not identicalpo. L*(x, p) is thepolar of L with
respect to its second variable [1], i.e.

L*()C, P) = Sup(P, $> - L()C, g)
£ecRN

We denote by dore= {(x,£) e RN x RY: L(x, &) € R} its effective domain. Since the
assumptions ol for the case where dom RY x R" are somewhat simpler than the
assumptions needed in the general case, we shall state separately the results for the two
cases. For each cask, as a function of, may be either convex or not; in this second
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case, we shall need the extra assumption of differentiability. afith respect tof.

This assumption is not needed in the convex case, since, in this case, the existence of a
subdifferential is enough for the proof. Hence, we will provide four different statements

of what is basically the same result; the proof will be one proof for the four different
theorems. We first present the results for the simpler case where=ddthx R".

THEOREM 1 (Convex case). -Assume that:
(1) dom=R" x R and L(x, -) isconvex, Vx € R";
(2) for every selection p(x, -) € 9: L(x, -) we have

L*(x, p(x,&)) = +o0

as |&] tends to +oo, uniformly in x.
Then: given any minimizing sequence {x,},cn for the functional in (P), there exists a
constant A and a sequence of reparametrizations s,, of theinterval [a, ] onto itself, such
that {X,,},>n, = {x, 08, }n>s, iS@gain a minimizing sequence and each x, is Lipschitzian
with Lipschitz constant A.

The convex Lagrangeah(¢) described in Section 1 is such that

L*(p(&)) =In(€]) — 1 — +oo0.

THEOREM 2 (Differentiable case). -Assume that:

(1) dom=R" x RY andVx e RV, L(x,-) isdifferentiable;

(2) L*(x, VeL(x,&)) — 400 as|&| tends to +oo, uniformly in x.
Then the conclusion of Theorem 1 holds.

The following are the analogous results in the more complex case wherefdom
RY xRV Inthis case it is not necessarily true that the functionaPinis not identically
+00.

THEOREM 3 (Convex case). -Assume that:

(1) L(x,-) isaconvex extended valued map and (x, 0) € domwhenever there exists
& such that (x, £) € dom;

(2) for every selection p(x, -) € 9: L(x, -) we have

L*(x, p(x,&)) = +o0

as |&] tends to +oo, with (x, &) € dom, uniformly in x;
(3) for every M > 0, 3§ > 0 such that L(x, &) > M, for every (x, &) € dom with
d((x,&),0dom) < §;
(4) thefunctional in (P) isnot identically +oc.
Then the conclusion of Theorem 1 holds.

THEOREM 4 (Differentiable case). -Assume that:

(1) L(x, ) isdifferentiable and domn ({x} x R") isstar shaped with respect to (x, 0)
whenever there exists £ such that (x, &) € dom;

(2) L*(x, VeL(x,&)) — 400 as || tends to +oo, with (x, &) € dom, uniformly in x;
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(3) for every M > 0, 38 > 0 such that L(x, &) > M, for every (x, &) € dom with
d((x,€),ddom) < §;
(4) thefunctional in (P) is not identically +oc.
Then the conclusion of Theorem 1 holds.

We shall need the following proposition on the existence of a lower bound for the
LagrangearL under the conditions stated in any of the theorems above.

PROPOSITION 5. —Let L satisfy assumptions (1) and (2) of any of the Theorems 1, 2,
3or 4. Thenthereexist « > 0and 8 € R suchthat L(x, &) > «|&| + B, V(x, &) € dom

Proof. — Set? = inf{L(x, &)}; assumption(2) implies that there exists> 0 such that
—L*(x, p(x,&)) < £ —1, for every(x, £) e dom with |£€| > r, wherep(x, -) is either
V:L(x,-) or any selection from the subdifferential éf(x,-). We claim that we can
choosex =1/(2r) andp=¢—1

Fix (x,&) e dom. When|&| < r, we haveL(x,&) > ¢ > |&§|/(2r) + £ — 1, and the
claim is true in this case.

Consider the casg| > r. Sety (s) = s/(2r) + £ — 1; assumption1l) implies that
the convex functionl(s) = L(x,s&/|&|) is well defined fors € [r, |£]], hence the
selectionp,(s) = (£/|&], p(x, sE/IE])) € 0L(s) is increasing and we have,(s) >
pc(r); moreover, from the inequality

(o) = o)) <ot

we obtainp,(r) > 1/r > 1/(2r) = ¢/'(s). From Lr) > ¥ (r), we obtainL(s) > ¥ (s),
for everys € [r, |€]]; settings = |&], the claim is proved.

Now, assume the validity afl), (2) of the differentiable cases. Again, let- O be
such that for everyx, £) e dom with [£] > r we have—L*(x, Ve L(x,£)) < £ — 1. As
before, it follows that the claim is true far, &) € dom, |&] < r. FiX &, |&] > r. By
assumption(l), £(s) is defined fors € [r, |£]], and we infer

L(x,s%) — <s%, V5L<x,s%>> <£-1,

so that
& s
_ — Sy 2 _1
L(s) = ¥(s) L(“|s|> e
3 3 S . /
<<SE, VEL(X’SE)>+Z_S[£ (s) =¥’ (s)].

Assume that the sets € (r, |€]]: L(s) — ¥ (s) < 0} is non-empty, and lety be its
infimum. By continuity, £(sq) — ¥ (so) = 0, so thatsg > r. From the Mean Value
Theorem we infer the existence gfe (r, sg) such thatl'(s1) — ¥'(s1) < 0, that in turn
implies L(s1) — ¥ (s1) < 0, a contradiction to the definition of. HenceL(s) > ¥ (s),
Vs € (r, |€]], in particular fors = |£]. O
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LEMMA 6.— Let f:RY — R be convex, and such that dom contains the origin.
Then, for every & in the domain of f, the function f(&/(1+ -))(1+ -) from [0, +00) to
R is convex. Moreover, there exists a selection p(-) € 9f(-) such that

(1 )a+9 - r@ < s (1

T+s )) Vs € [0, +00).

Proof. — See the proof in [1]. O

3. Proof of Theorems 14

Proof. — Setm be the infimum of the values of

b

/L (x(s), x"(s)) ds

a

for x as in problem(P). Proposition 5 and the assumptions of Theorems 1-4 imply that
m is finite. Let{x, },en be a minimizing sequence for problgi). By Proposition 5 we
obtain that there existd > 0 such that|x, ||; < H so that, for every:, for everys in
[a, b], we havex, (s) € B[O, A + H].
Next point (a) reaches a conclusion with an argument that differs in the cases where
L is or is not extended valued, so the argument is presented separately in the two cases.
(a) (Case dore= RY x R") For everyn, consider the subset §f, »] defined by

TH = {s ela,bl: |x.(s)| <4H/3(b —a)};

one verifies that the Lebesgue measure of any such set is larger or equal &0/4.
Fix 6 > 0. Since(x,(s), (14 8)x,(s)) € B[O, A+ H] x B[0,4(1+6)H/3(b — a)],
and L is continuous, we infer that: there exigise R such that, for every: ¢ N and
seTH,
L (50 (5), (L4 8))(9) s — L (5, (5), %,(9)) <
X, (s), x, (s 115 X, (s), x,(s)) < u.

(a) (Case dorgt RN x R") Consider a real positiveZ. Assumption(3) implies that
there existss(M) > 0 such thatL(x, &) > M, V(x, &) € dom withd((x, &), 9 dom) <
28(M).

Consider the subsets fpf, b]

JIM = {5 ela,bl: d((x,(s), x,(s)), ddom) > 25(M)};

we have the inequality
b

/L(x,l (s), x,(s)) ds = / L (x,(s), x,(s)) ds + / L(x,(s), x,(s)) ds

§(M)

I
TS g 4 [a, bI\ JPM|M = (b — a)M + |JP™M |t — M),

a S(M)

[a,b\J,
>
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so that

o b—a)M —
n——+00 M -7

Since limy_ yoo[(b —a)M —m]/(M — £) = b — a, we can choosé/ > 0 such that
(b —a)M —m]/(M —¢) > (b—a)3/4
Sets = §(M). We have obtained that there existse N such that: > n; implies
72| = (b —a)3/4.

We have also obtained that the séts, (s), (1 + 8)x/(s)): s € J’} are contained in
dom. Finally, consider the sets

If ={sela,bl |x,(s)|<4H/(b —a)};

the measure of eactf’ is at leastb — a)3/4 so that, defining’¥ = 1" N J?, we obtain
ITH| =I1F NI} > (b—a)/4,Vn = ny.

Since (x,(s), (L + 8)x,,(s)) belongs toB[0, A + H] x B[0, 41+ 8)H/(b — a)] N
{(x,&) edom: d((x, &), ddom) > §}, a compact subset of dom adidis continuous on
dom, we infer that: there exisis € R such that, for every € N ands € Tn”,

1
L(x,(s), (1 + S)X’;(S))m — L(x,(5), x,(8)) < .

(b) Consider a real positiveand setS) = {s € [a, b]: |x,,(s)| > v}. From|x, |1 < H,
we easily obtain that both the measureSpfand

8;:/[M_1}ds
v
S

converge to 0 as — +o0, uniformly with respect ta € N.

Consider first the convex case; lpt(x, ) € d:L(x,-) be the selection provided
by Lemma 6. By assumption2) of this case, ther exists a mapl :N — R,
lim,_, ;o M(v) = +00, such that

L*(x, p(x,8)) > M(v)
for every(x, £) e domn [RY x (B[O, v])¢]; in particular
L*(x,(x), p(x4(s), x,(5))) = M(v)

for everyn € N ands € S). Analogously, under assumptia®) of the differentiable
case, there existsamap:N — R, lim,_,, .o M(v) = +00, such that

L*(x,VL(x,&)) = M(v)
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for every(x, £) e domn [RY x (B[O, v])¢]; in particular
L*(x,(x), VL(x,(5),x,(s))) = M)

for everyn e Nands € §),.
Hence, both in the convex and in the differentiable case, we have obtained that there
exists an integeb such that at once we have> 4H/(b — a), M(V) > (1 + §)u and
e’ < (b—a)/l41+)],VneN.
(c) For everyn > ny, there existsS! | a subset off ¥, having measurél + §)s”.
Define the absolutely continuous functionss) =a + [ ¢/ () dr by setting

a

14 [l 9], ses?,
1 (s) = 1_F15’ sexh
1, otherwise;

eachy, is an invertible map fronja, b] onto itself.
(d) From the definition of, we have that

b b
/L(x,,(s), x”(s))t,;(s) ds—/L(xn(s),x;(s))ds

1,(s)
:/L(xn(s),iliiigl)@ds—/L(xn(s),x;(s))ds
sy Sy
/ l /
—i—/L()c,,(s),(l—i-(S)xn(s))l_i_(S ds — /L(xn(s),xn(s)) ds.
sH sH

We wish to estimate the above integrals. Sié C 7./, we easily obtain

/ 1 / v
/ [L (xa(s), (14 S)X”(S))l——{—ﬁ — L(x,(s), xn(S))] ds < (14 3)e, .

=

To conclude the estimate we have to consider separately the convex and the differentiable
case.
(e) (Convex case) The choice pfimplies that

OO ,
L(Xn(S),V|x;l(s)|) > L(x,l(s),xn(S))

< _[@ - 1:| L* <x,1(s), P<xn(5), v x’/l(S) )>

|x;, ()1

for everys € S7.
(e) (Differentiable case) The Mean Value Theorem implies that there exi&ts <
[0, [x) (s)|/v — 1] such that
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ll(xn(s>,vliiﬁj;|)'Xéés)'-— L (x,(5). x.(5))

BRI X,(5) X, (5)
—[F [ (o0 205 ) Taw)

x,(s)
_L(““*1+aAm)]

RO 0
- [ D @L(““*%LG””1+%60)

for everys € 7.
(f) Since both|vx, (s)/]x, (s)|| = v and|x, (s)|/(1+ a,(s)) = v, by the definition of
M (V) we obtain

S[L (x,,(s), 5 Iingl)@ ds —SZL(x,l(s), () ds < —e"M (D),

hence our estimate becomes: n; implies that

b b
/L (x,l(s), );:z((s))>t,’l(s) ds — /L(x,,(s), x,(s)) ds < e’ [—M @)+ (1+8)u] <O0.
n s a

(9) The conclusion of (f) proves the theorem; in fact, definipg= x, o s,,, wheres,
is the inverse of the function,, we obtain, by the change of variable formula [7], that
{Xn}n=n, = (X4 0 84 }n>p, 1S @ MiNimizing sequence, since

b b
dx, ,
/L()E,l(t),)fr’l(t))dt=/L<)E,1 (ta(5)), E(z‘,,(s)))tn(s)ds

b b
l{l( ) / /
= /L<x,1(s), )t;(j) >tn(s) ds < /L(x,l(s),xn(s)) ds.

Moreover, we claim thag, are Lipschitzian functions, with the same Lipschitz constant
A = (1+1/8)v. In fact, consider the equality, (z,(s)) = x,,(s)/t,(s) and fixs where
t; (s) exists; we obtain

d =v, s € S,f,
G| <arypr, sest
<, otherwise;

hence, at almost every points), the norm of the derivative of, is bounded by\. This
completes the proof. O
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