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ABSTRACT. — We generalize a theorem by J.-M. Coron (see [Sur la stabilisation des fluides
parfaits incompressibles bidimensionnels, in: Séminaire Equations aux Dérivées Partielles,
Ecole Polytechnique, Centre de Mathématiques, 1998-1999, exposé VII]) and prove the
existence of steady states of the Euler system for inviscid incompressible fluids with an arbitrary
force term, in a plane bounded domain not necessarily simply connected, if one allows the fluid
to pass through a prescribed region of the boundary, which satisfies the necessary condition that

each connected component of the boundary is met by it.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous généralisons un théoreme de J.-M. Coron (voir [Sur la stabilisation
des fluides parfaits incompressibles bidimensionnels, in: Séminaire Equations aux Dérivées
Partielles, Ecole Polytechnique, Centre de Mathématiques, 1998-1999, exposé VII]), en
prouvant I'existence d'états stationnaires pour le systeme d’Euler pour les fluides parfaits
incompressibles avec un terme de force arbitraire. Ce résultat se place dans un domaine borné
du plan non nécessairement simplement connexe, ou le fluide peut entrer a travers une partie
prescrite du bord, qui satisfait la condition nécessaire, qu’elle en rencontre toutes les composantes

connexes.
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1. Introduction

Let Q be a nonempty connected bounded smooth open dom&A.iGonsider: a
nonempty open part of the boundar of 2. Denote byv the unit outward normal on
Q2.

The problem that we study in this paper is the existence of solutions of the stationary
Euler system for ideal (i.e. inviscid and incompressible) fluids, that is,

Y.V y+Vp=f IinQ, Q)

divy=0 ing, 2

wherey : Q — R? is the velocity field ang :  — R is the pressure, for any local force
term f : Q — R2. We consider the following constraint at the boundary:

yv=0 o0naQ\X, 3)

that is, the fluid is allowed to pass through the boundary onlg dand slips on the rest
of the boundary).
We show the following result:

THEOREM 1. — If ¥ meets each connected component©f, then for any f €
C>®(Q; R?), there existy € C*(Q; R?) and p e C*(2; R) such that(1)—(2) and (3)
are satisfied.

Remark 1. — For the closed system (i.e. wh&n= ¢), it is well known that (1)—(3)
has no solution in general. For example, considewith a non trivial circulation on
a given connected component of the boundary. Then the Kelvin law for the stationary
Euler system, which states that:

/[(y.V)y +Vpldr =0,
r

for any Jordan curv€& in the domain along whicl is everywhere tangent, ensures that
there is no solution for that. By the way, this objection also points out that the condition
on X that it must meet each connected component of the boundary is necessary.

Remark?2. — Even if we consider only’ with vanishing circulations around each
connected component of the boundary, there is no solution in general thlesesets
each connected component of the boundary. Consider infleath that curlf > 0 on
a given “uncontrolled” connected componé&htf 92. Let y be a solution of the system.
Then, taking the curl of (1), one gets

(y.V)(curly) =curl f. 4

This involves in particular thag ## 0 on I'. As y must be tangent tb, it has a constant
orientation onl". With curl f > 0, this makes (4) impossible.
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Theorem 1 was established in the particular case of a simply connected domain by
J.M. Coron (see [3]). One of the motivations concerns asymptotic stabilization of the
non-stationary Euler system. Indeed, R.W. Brockett established a necessary condition
for a finite-dimensional control system to be stabilizable, see [2]. The equivalent of this
necessary condition in the infinite-dimensional system considered here is precisely what
is proven in Theorem 1. For more precisions concerning the stabilization of ideal fluids,
see [3] and [4].

For the three-dimensional system, we do not know whether such a result could be
stated. An important step in that direction is given by the work of H.D. Alber (see [1]),
which deals with the existence of non trivial steady-states with vanishing force term,
in a simply connected domain. But this result uses as an assumption the existence of a
reference solution; the existence of such a solution is an open problem in the general
case (up to our knowledge). Also, it would be an interesting question to generalize the
present work to higher dimensions, in particular in the perspective of the stabilization of
three-dimensional ideal fluids, which are known to be exactly controllable (see [6]).

Asin[1] and [3], the idea is to find a solution of the problem close to a fixed reference
solution. Here, this solution is a potential steady-state of the probleny (fo10). One
cannot in general make this solution fit all the requirements of the reference solution
of [1]; in particular, in [1], the reference flows has to satisfy thaty, does not vanish in
Q and that, on the boundary ¢f € = | vo.v < 0}, vg is pointing outside this set. In our
case, wher2 is not simply connected, both conditions can no longer be required (for
degree arguments). However, in the two-dimensional case, we can get rid of the latter
assumption.

One of the major points in the proof of Theorem 1 is hence the statement of the
following proposition, which proves the existence of an appropriate potential reference
solution:

PrRoPOSITION 1. — Consider2 a nonempty bounded connected regular domain in
R?. Letv the unit outward normal 0@2. Consider: an open part ofQ, which meets
each connected compondry, . .., I, of 92. Then there exists a functiehne C®(Q;R)
which satisfies the following conditions:

AO=0 ing, (5)
3,0 =0 0nIN\x, (6)
|[V6(x)| >0 foranyxin, (7)

fory™ () :={x €3 |9,0 >0} andy (0) :={x € 9Q | 3,6 < O},
one hasy*t(@)Ny—(0) =4, (8)
yT(0) andy ~(9) are unions of a finite number

of intervals ofd 2 with disjoint closures, 9

there exisg pointsMa, ..., M, in y~(0) NIy, respectively
sentony* (@) NIy, ...,y " (0) N T, by the flow ofve,
the trajectories not touching2\ [y " (6) Uy ~(9)]. (10)
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The proof of this proposition is postponed until Section 4. We consider it as
established during Section 2, and aim at proving Theorem 1. In Section 3, we also discuss
a generalization of Theorem 1.

2. Proof of Theorem 1
First, we introduce some notations.
2.1. Notations

We shall consider the open bal; in R?, centered in 0, with radiug large enough
so thatQ c Bg. We will also use a regular linear operator which extends functions
in C1(Q; R) to functions inC3(Bg; R) (i.e. C* functions with compact support), and
which sends any’*-regular function to aC*-regular function.

Given a vector fieldV € C3(Bg; R?), we will denote byg" the corresponding flow,
that is the function iC1(R x R x Bg; By), defined by the following differential system:

¢V (t1,t1,x) =x forany(t, x) € R x Bg,
3,d" (t2, 11, x) = V(9" (2,11, x))  for any (s, 12, x) € R x R x Bg.

Wheny € ¢" (R, 0, x), we will write ¢" :x — y for the path leading fromx to y
given by the flow ofV.

Given a Jordan curvd, and given two points andb in J, we denote bya, b],
the interval which joinsz and b in the direction given on the curve naturally by the
orientation in the plane. Given a poing € J and given a positive real number we
will denote (when there is no ambiguity) by + ¢ the point inJ situated at distance
from xo, considering the arc length, when following the orientation on the curve, and by
xo — ¢ the point obtained when following the opposite way.

We shall introduce, given a poinf, in a Jordan curve/ in the plane, and given
a positive (small) real number, an extension operat(j'P(,jX0 which associates to any
function functiong in C*([xo — &, x0],; R), & function P}, (g) in C*([xo — &, x0 +
£]7: R) such that

Pf=f inlxo—eé, xol,

SupfP f) N [xo, X0 + €] C [x0, X0 + &),
PfeCxo—ex0+el;R),  ¥feCHxo—e x0l;5R), VkeN,
1P f 1l co(ro—e,xorels:®) < IS Nle0xo—e,xol,:R)»

1P f llct(ixo—e.xorers;R) < KE N fllctxo—e.xoly:R)-

We shall also introduce the operat®r, directed in the other way on the curve.
We will consider a functiort, ,, defined inCg°([xo — €, xo + €],; R) and satisfying:

{ US,XO 2 0,

(11)
f[xofe,onrg]J Us,xo =1
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Finally, we introduce the familyz;);—o._. , of functions inC*>(€2; R) defined for each
i by
AT, =0 ing,
;=0 onaQ\I}, (12)
;=1 onT;.

It is well-known that(Vlr,»),»:L_,_,g is a basis for the first de Rham cohomology space of
the domain® (and thaty"f_, V1t t; = 0), whereV+ := (—d,, 97).

2.2. Remarksconcerning Vo

From this section, we consider a fixed functi&ms in Proposition 1. We first give a
property of it, and then describe some objects related to it.

PROPOSITION 2. — There existsg > 0 such that for allw e C1(Q; R?) satisfying
W — V6|l cogg2) < £o- (13)
(W—-V6H.v=0 o0no, (14)
and for all x in Q, there exists > 0 such that

either¢" (0,1, x) € y~(0),
or " (0,1, x) € 3y ~(¥) with W pointing outsidey ~(6) at this point. (15)

Proof of Propaosition 2

First, we establish (15) in the particular cae= V6. Starting fromx, we let the
time r become large. Then necessarily the point leaves the domain. Indeed, define
O:t— 0" V90,1, x)). As long as the poing™ V9 (0, ¢, x) has not left the domain,
the derivative of® is |[VO(¢™ V9 (0, t, x))|?, and hence is bounded from below by a
positive constant. We conclude by using the compactness of the domain. So one deduces
(15).

Then, forWw close enough t&0 for the C° norm, the flow ofW is close to the one of
V6, as shown by the following Gronwall inequality:

|¢n(W)(O’ £,x) — ¢n(v0)(o’ ‘, x)| < Hﬂ(W) . n(ve)HCO(B_R)etHn(W)HCl(g),
Vx € Bg, Vt e R™. (16)

Now, for r > 0 small, when going back in time a little bit more, the papit¥V? (0, ¢, x)
is sent outside&?. Thus if W is close enough t&4@, the pointp™") (0, ¢, x) must go out
Q too, which, with (14), involves (15).

Concerningve, we will consider the following constants computed from it:

’

m :=min|Vé(x)
xeR
T :=maxinf{t e R | d(¢"V"(t,0,x), Q) > d*},
xeQ

the distance?* being chosen sufficiently small, in order tHatis finite (by the same
argument as in Proposition 2, each pointarwhich follows the flow ofvVé, must leave
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the domain in finite time; then the compactness of the domain allows us to défine
properly).

We then introduce a second extension operataith the same properties as except
that it satisfies

A(f)(x) =0, Vf € CL(Q; R), Vx € Bg such that digtx, Q) > d*/4. a7
2.3. Remarkable pointsin the domain

In this section, we distinguish some “special points” in the domain, depending on the
functioné previously introduced.

Points A;, B;, C; and D;
We class the different points iy ~(6)] U d[y T (8)] in four different categories:
e The" A points”. we will call A the points ind[y ~(6)] such that at these point8p
is pointinginsidey — (6).
e The" B points”. we will call B the points ind[y ~(6)] such that at these point8p
is pointingoutsidey —(0).
e The"C points”: we will call C the points ind[y ™ (8)] such that at these pointg8g
is pointinginsidey *(9).
e The“ D points”: we will call D the points ind[y *(8)] such that at these point8p
is pointingoutsidey * (9).
Then, we are interested in the different trajectories of these special points fhbigle
the flow of VO and—Vé (we stop as soon as the point goes ouR)f
We observe that the trajectories of these remarkable points are described by the
diagram in Fig. 1. In this diagram, the arrows symbolize the movement of the point
under the flow ofVé in Q. That is, a certain point comes from a poinD (or from a
point B) and is then sent to a point it (6) or (maybe) to a new poinP which itself is
sent to a new poind or to a pointC, etc. Points iny ™ (9) U {C} are end points, whereas
points iny ~—(0) U {B} are starting points.

PointsAY, €Y and DY
For any W e C1(Q; R?) sufficiently close tove in C°(2; R?), and with the same
normal trace o2 asVvVe, we introduce, for € Q,

ow (x) :=min{t € [0, +00) | "™ (0,2,x) e y (@) U{(B;, i =1,...}},

yr@) <2 y=(0)

|, b

B—A D
Q2

Q2

c<2

Fig. 1. Description of the trajectories of the poidts B, C and D by the flow ofV6.
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which is well defined thanks to Proposition 2.
Now for a pointA; (respectivelyC; and D;) andW such as above, we introduce the
point AY (respectivelyC! and DY ) as the “point iny ~(6) U { B} where the point4;

(respectivelyC; and D;) is coming from”, i.e. more precisely
AY :=¢"" (0,00 (4), A}), (18)

and the equivalent fo€ " andD .

For each of the three categoridgs C and D, we distinguish two types of points. We
denoteA® (respectivelyC®, D°) the set of thed; points (respectively;, D;) for which
AY? (respectivelyCY?, DY?) belongs toy ~(9). The others, for whictt Y’ (respectively
CcY?, DY?)is a B point, will be denoted byA? (respectivelyC?, D).

Points M}’
We will consider in the same way, the “pointsyiri (9) where the pointd/; are going
to”, i.e.
M} =™ ™ (o4, (M;), 0, My),
wherea, (M;) := min{z € (0, +00) | "™ (¢,0, M;) € y*(9)}.

The existence of the poinﬁiw for W close tov4 is clear thanks to (10) and (16) — see
the remark below.

Points b;
To any B;, we associate a point in By obtained as

b ="V (0,1, B;,) forat >0,

3 . —
Zd* < dist(b;, Q) < d*.

Two constants
Then we consider the following finite set &€2:

M:={M 1" (D)}

For the rest of this paper, the positive real number(depending only onve —
consequently on the domain aij will be defined by

e1:=min[{dist(x, y),x,y € M,x # y}
U {dist(x, M), x € 3Q\(y @) Uy *(0))}
U {dist(x, y), x e y=(0), yeyT(©O)}].
Also, we fix e, such that for anyw e C1(Q; R?) with the same normal trace 8%
on 32 and for which|W — V6| cog, < €2, the previous pointa\, C, DY andM;’

are well defined. We also require, using (16), that the trajectagries, 0, M;) do not
meetdQ\ =.
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Strips

We fix a ball around;, sayB(b;, r*), with r* < d*/8. Under the flow ofr (V6), this
ball describes a strip around the partsddi\[y* () U y ~(0)] thatb; “visits”, viz. the
trajectoriesB — A or C, and possiblyA <+ D and D — C. Let us callz a positive
minimizer of the thickness (according to the normal of the trajectory) of all these strips
for eachb;.

Now we fixan interval DY’ —e1/2, DY’ +£1/2],- 4. Under the flow ofr (V6), it de-
scribes also a strip around the part$ 6 visited by DY? (this strip contains in particular
D;). Note that, becaus&® < 0 on y~(9), the intervall DY’ — &1/2, DY? + £1/2],-)
(which does not toucldy —(0)) is non characteritic fol6. We reducer > 0 in order
that it is also inferior to the thickness of these strips.

A remark

We remark that the functio’ — A" (respectivelyc, DY andM") is continuous
for the C° topology, if W is close enough t&6. (This would not have been necessarily
true if one had considered, instead of (18),

&™) (0, sw(A), A;), with sy (x) :=min{t € [0, +00) | " (0,1,x) e y=(0)}.)

Indeed, by the same argument as for the proof of Proposition 2, if one considers
o™V (0,1, A;) for t € (ove(A;), ove(A;) + €), we get a point inBx\Q. For W close
enough toVe, the corresponding poirt™ "™ (0, ¢, A;) also lies outside&2, which gives
the continuity ofoy ().

2.4. Defining theoperators F and G

In this section, we introduce two continuous operatérandG. The solution of the
problem will be found as a fixed point of the latter.

Domain of F
The operatoir will be defined for(f, W) in

C%(Q;R?) x T, into CX(Q; R),
for ¢ sufficiently small, wherd, is defined in the following way

T, ={WeCHQ;R?) | Wr=09,00n3%, dvW =0inQ,
and||W — V0| c1g.pe) <} (19)

In order for the operator to be well defined, we redagén order that anyw < 7,
with & < g5, satisfies the five following conditions:

W) >m/2 inQ, (20)
foranyx € Q, 3r€[0,271, s.t. ¢"W(1,0,x) ¢ Q, (21)
8 —1,°|| <e1/10,  ||DY — DY?|| < £1/10, (22)
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W andVe are pointing in the same direction
at the points oby ~(0) Udy T (0), (23)

when following the flow ofW, the ballB(b;, r*) describes a strip
around the trajectory df; in the flow of V@, of thickness at least/2,
and the equivalent for the strips correspondind{d'. (24)

(We remark that in fact (23) is a consequence of the validity of (20) forlény 7,.
Conditions (21), (22) and (24) can be obtained thanks to (16).)
From now, reducing if neededor 1, we consider that = ¢,/4.

Expression of F
We fix f. To any W in 7, we are going to associate in a first time a real-valued
function a);, in C1(y=(9); R). In that order, we construct the two families of functions
A; andB;, defined respectively at the neighborhooddefand B; in y—(0).

We consider the functiom“BV}’ defined in a nonempty open setB by

W _ R

{TB,- =0 onB(bi,r ), | (25)
(@(W).V)Tg =7 (curl f) in Bg.

This function is well (regularly) defined — note that the first equation is satisfied in
B(b;, r*), thanks to (17) — at least on the strip that we mentioned in (24). In particular,
it is defined in a neighborhood d&; in y—(#) of lengthz /2. We call5; the restriction
of Ty on this interval ofd2. The same wayr'y" is defined in a neighborhood d; in
y—(0) of lengthz /2, for eachA; € AZ. We denote the corresponding restrictidn
It remains to defined; for A; € A°. For this, we consider the functicﬁ‘g‘i’ defined in
a nonempty open set iBg by
T,E,.V =0 on[D}" —¢1/2,D}’ +¢1/2],-@), (26)
(w(W). V)T =curl f in Bg.

All the same, thanks to the transversalityWfat the beginning of the strip and to (24),
Tg‘i’ is well (regularly) defined in a strip containing a neighborhoodigpin v~ () of
lengthz /2, for eachA; € A°. We again denote the corresponding restrictign

Then, we introduca);, by the following formula (we consider in this expression that
the direction ind2 at pointsA; or B; pointing insidey ~ () is the positive one; replace
“4+" by “ —"if needed):

Prejp.eaBi) N [B;, B; + 3¢1/8lye,
O =3 Pl sespnalA) 1N TAL A; +361/8lag, @
0 anywhere elsein y ~—(0).
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Thanks to (19) and (20), we may now defibg € C°(Q; R) to be the unique function
satisfying the following relations:

(~W.V)d)w =curlf inQ, (28)
ow =" ony=(6).
We now define the function?, in C3(y~(6); R) as
8
ol = Z WiUeyyam; ONy~(0), (29)
i=1
where the coefficientg; are computed with the help of the following relation
pi [@0)Ueam = [ fdx = [@0)w. (30)
I'; T I

Let us remark that, thanks to (10) and (11), relation (30) uniquely determings the
forany W in 7,, with ¢ < ¢5.

As previously, we introduce a functi@y, € C*(Q; R) as the solution of the following
system:

NVoy = inQ
(_W )w:/ 0 InQ, (31)
ow =wj, ony=(9).
We finally give the definition of" by
F(f,W):= Oy ‘= dw +ow in Q. (32)
Of course, one deduces from (28) and (31) thgtsatisfies
(WV)ow =curl £ inQ. (33)

Regularity of F(f, W)
Let us check that the image @ is actually included irCt, and, more generally, let
us study the regularity of (f, W) depending on the one gf and of W.
The “@w-part” of F(f, W) is clearly C"-regular whenf is C"*1-regular and when
W is C™-regular. This is a consequence of the fact that we chose the supférinod
region ofy —(#) transverse to any € 7,, with ¢ < 5.
Now we concentrate on the regularity @f,. Let us distinguish three cases:
e in the “D}-strip”, we have this regularity, becausg, coincides there wittr}}/
which is regular thanks to the transversality of the interval at the beginning,
e inthe “p;-strip”, we get all the same thalty is C"-regular whenf is C"*+1-regular
and whenW is C™-regular, for we can all the same find a suitable transversal
interval in B(b;, r*),
o for the other points ilf2, we get again the same regularity, because they come from
points iny~(#) at a distance of at leagt/2 from 3y~ () and stay away from
ayt(@)Udy(0).
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Finally, we get the following regularity result
feC"™(uRY) and WeC"(BRYNT, = F(LW)eC™(Q). (34)
Note that, in particular, the operatéractually send€?(Q; R?) x 7, in C1(Q; R).

Defining the operator G
To anyw € C*(Q2; R), one can continuously associate the unique vector figld
C1(Q; R?) as the solution of the following system
divy,=0 inQ,
curly, =w ing, (35)
VoV =0,0 0Nnog,

and

/yw.v%,. —0, foralliin{L ... gl (36)
Q

(In fact, y,, is more regular thag't, e.g.y, € C*%(Q) for anya € (0, 1).)
We now define

G (@, /) F(f. yo) (37)
for win
X:={weC R stlolag <es}, (38)

and f in C2(Q2; R?), with 3 small enough, computed from, so thatg is well defined,
i.e. for instancey,, € 7, ».

2.5. Back totheproof of Theorem 1

The main idea is to prove that, at least férsmall in theC? norm, the operato§

satisfies the assumptions of the Leray—Schauder fixed point Theorem. Then it is to prove
that this fixed point solves the problem. Finally, we get rid of the assumption of smallness

on f.
Stepl. We remark that, fixed,

X is a convex compact subset of the Banach sgake).

This is a clear consequence of Ascoli’s theorem.
Step2. We show that if we restrict ourselves to smallor the C? norm, then one gets

gx)cax. (39)
It follows from the construction that, op—(6), one gets

Hg(w’ f)Hcl(V) < C||f”c2(§)v (40)
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whereV is a neighborhood of the point$3” in y~(6). This is also valid close to the
points DY in y~(0), since a straightforward computation shows that at these points,
one hasVa.v = curl f/9,(6). Moreover, forow € X, the norm||y, |1 g, is bounded

(by (1 + &2)[IVO|lc1g.r2)- Then the flowg (¢, 0, ) is bounded in thec1(Q) norm,
uniformly in ¢ € [-2T, 2T].

Then the estimate (40) (with a perhaps greater constant) propagates $hside
remember (21) — and at the neighborhood of thé points, exactly as for (34). Hence,
one gets (39), at least fgt small.

Step3. We show that, fixed’,

G is continuous.

When considering the construction, one can see that it is sufficient to prove the
continuity of the functionsW +— T,”(-) and W + T}/(-). This continuity is again a
consequence of (16).

Step4. We hence find, by the Leray—Schauder theorem, a fixed point, sBg (-, f)

(for f small enough). Let us show thatis a solution of the system.

From (30) and the relation

/[(yw.V)yw].VLri = /(yw.v)a) foralliin{1,...,g},

Q T

one gets
/[(y;.V)y;].VLr,»=/f.Vlr,», foralliin{l,...,g}. (41)
Q Q

Together with (33), (35)—(36) and (37), this leads to (1), (2) and (3). ON€RQ; R?)-
regularity ofz is a consequence of (34).

Conclusion. We have shown that the problem has a solution Wfigr g. g2 is small
enough. The general case naturally follows from the previous one: it suffices to consider
the homogeneity of the equation. So Theorem 1 is established.

3. A generalization of Theorem 1
3.1. Setting of the result

The solutiony of (1)—(3) is of course highly non-unique. Even, one could ask for
supplementary properties of the solution.

The natural question is the possibility to prescribe the entering vorticity. Indeed, for
the non-stationary system, the choice of the normal velocity and of the entering vorticity
(and of the initial range) uniquely determines the system (see e.g. [8]). In our method,
it is essential that the normal velocity is fixed as the same as the one of the reference
solution. But we can wonder if the entering vorticity could be demanded.

Theorem 1 can be generalized the following way:

THEOREM 2. — Consider an open regiofi in y —(6) such that
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¢ 7 does not touchy ~(9),

¢ 7 does not contain the point¥;.
Then for anyk € C3°(Z; R) and for any(11, ..., A,) € R, there exists a solution of
(1)—(3)which moreover satisfies

curly=«x onZ, (42)

/y.VLti:)»,-, Vie{l,... g} (43)
Q

.....

Remark3. — In fact, many points could play the same rolels So one should read
the second assumption in Theorem 2 as “there are padifat;n y —(6)\Z that could
replace the points/; in Proposition 1”.

3.2. Sketch of the proof of Theorem 2

Let us briefly establish Theorem 2.
In the definition (32) ofF', we add the following functiom* defined by:

(W), =0 inQ,
wy =k ONnZ, (44)
=0 elsewhere oy —(0).

We may have to reduce; = z/4 in order that the supports of the functions
P te/2.604(A) and of Py .5 . 4(B;) do not meetZ. We have also, in the definition
of (29), to choose; small enough so that Supp, /4 4, does not meet, and to replace
(30) by

i [ @)Uy, = r/ fodv— [@0)law + ol (45)

r; T

Finally, in the definition ofy,,, we replace (36) by

/yw.v%izxi, Vie{l, ..., g} (46)
Q

We can then define the opera@rall the same way. Then the only delicate point in
order to prove tha§ has a fixed point is (39). To obtain this, we in a first step restrict
ourselves to the case whereand (1,);=1,... , are small enough. Then estimatiggthe
same way allows us to affirm (39) if they are all small. Then we get a fixed poigt of
This is again a solution of our problem, for the same reasons. (Relation (46) does not
influence (41).)

Now, as for Theorem 1, we obtain the general case by homogenejtys @ solution
for [ef, ek, (eX;)], theny/e is a solution for f, «, (1;)].
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3.3. Uniquenessand continuity of solutionswith respect to “exterior conditions’

Now we wonder if two stationary solutions obtained by the previous process are close
when the entering vorticity, the exterior force and thg'‘are close. We obtain

THEOREM 3. — For any positive constant1 and for Z as above, there exists an
amplification of Vo (say AV#p), such that the operatoy’,, which associates to any
[k, f, (M)i=1... o] € CE(T; R) x C*(2; R?) x RS satisfying

lcllcrzy < M,
||f||c2(§) M, (47)
M| <M, Vi=1l..., g,

a solutiony satisfying(1)—(3)and (42)—(43)constructed as abover this VO exists and
is unique.

Moreover, there exist€(M,Z) > 0 such that for[«y, f1, (AH)] and [k, fz(kl?)]
satisfying(47) one has

[Vr(ers f1. (A7) = Ymliez, for (A2)) || ey

8
SCM, D) | Ik = k2llr2g @y + 11— Folloagy + Y M =42, (48)
i=1
Remark4. — For the existence, we required ié to be sufficiently “amplified” too.
Let us also underline that solutions of the 2-D stationary Euler system with prescribed
normal velocity and entering vorticity are not in general unique (see e.g. [7]). The
comparable geometry of the two stationary solutions (particularly the “domination” of
the Vo part in them) is essential here.

Remark5. — This result gives in particular a 2-D equivalent of the work of H.D. Alber,
but with other entering conditions (these depend on the dimension) and with a fixed and
constructed reference solution.

3.4. Proof of Theorem 3

The existence was already proven. To establish unigueness, it is sufficient to prove
directly (48). The proof mainly follows [1]. Again using the homogeneity of the
equation, we get that it is equivalent to % and to show that the operator of Section 3.2
satisfies the required conditiofsr M small enough. We have for thigd an e, such
that the solutions are found i, 2. In particular, elements df;, > do not have vanishing
points in Q, and their characteristics inside have a uniformly bounded length (say
bounded byL).

We will need the following lemma ([1, Corollary A.2])

LEMMA 1 (Alber). — ConsiderW € 7,/ and a functiory € C%(Q). For x € y~(6),
denote by (x) the arc length of the characteristic & starting fromx. Consider finally
the parameterizatiov of Q: (s, ¢) e Rt x y=(0) — ¢"/VI(s,0, ¢) for s <1(¢). Then
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one gets
1)

B 18,60
[awax= | /q(V<s,;))7|W(V(S’§))|dsdc.
Q y=@®) 0

The proof is elementary (use the transform law and the incompressibility), and the
original one in 3-D is also valid here.

Let us denote by and $? two solutions of the steady Euler equation obtained by
the previous process for the sam@ and for respective conditiong, f1, (A})] and
[ic2, f2, (*?)], small enough in order to apply Theorem 2.

In the sequel, we will denote hy various constants depending @n X, Z andd, but
not ony' (but nevertheles$’ is found in7,, so that e.g|l 3" |1, < 21VOl 1 q)-

Thanks to (35) and (46), we get

8
||)A)1 i )A}ZHHl(Q) < Cl<|| CUI’lj}l _ curlj;ZHLz(Q) + Z |)Lll — A.ﬂ) . (49)
i=1
So it is sufficient to estimate the latter notrourl §* — curl $2|| ;2. We write:
|| Curl)?l - Curlj’ZHL?(sz) = HFK?,A} (5’1) - FKfzz,Al? (5’2) ||L2(Q)
< ||F,;21,A}()A’ ) — F,}/;%)LIZ()A}l)||L2(Q)
+I1E2: (Y = F2,25) ]2

where kaf ,;, 1S the operator of Section 3.2 corresponding to the fixed valu€éfto
the force f, to the entering conditior and to condition (43) foi;. We now analyse
separately the two terms of the right hand side of (50).

1st term From the definition ofF (-, 1), we get that

IAZ = AP -0y < c2ll o= Fall sy

||Blf2 - Bl‘fl||L2(y—(9)) g CZ”fl - f2||C1(§)

Together with (45), we deduce
(s 2 (s
||Fkll,x3(y1) - szz,x,? 26y

< esfller — kall 2 -@y) + 11— follcrey) - (50)
Now, we write

)A’l-V(FKJ;l,,\_l()A’l) - F}(f;ﬂ (5%)) = (eurl f1 — curl f).

Now we consider the parameterizatitncorresponding t¢. To simplify notations, we
omit theV. We get

d R n
a‘FK];J:)L}(yl)(S’ é-) - F’(J;Z!)le(yl)(s’ §)| < |Cur| fl - Curl f2|(s’ é‘)
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We deduce

(06,0 = B (01 6.0 < [Fa(9)(0.0) = F2,2(5%)(0.0)]
L&)

+ / |curl f1 —curl f5|(s", ¢) ds’.
0

Now we multiply by[3,6(¢)|/|31(V (s, ¢))| and integrate oves, ¢) € Rt x y ~(9) with
s <1(¢). Using Lemma 1, the boundedness of the characteristi¢$ afd the fact that
18,0(2)]/13*(V (s, £))| is bounded fols, ¢) e R* x y~(6) with s <I(¢), we obtain

”F’fl‘l’kfl () — kazk? ) ||L2(Q) < ealllicr — k2l 20y + 11— follcrep -
2nd term In this case, we have
F22(3Y) = F,2(5%)  ony (@)\|JSuppUsyau.

(That is, the® parts coincide oy —(0).)

This needs not to be true on Suigp, 4y, because coefficients; computed in each
case are not necessarily equal.

We want to estimate the difference and, thanks to the definitiaR, df is sufficient
to check the difference of the integrals (3v6)w, or equivalently [ . ., (dv0)®,
computed in both cases.

Consider the operataF defined exactly ag, but with u; = 0 instead of (45). We

denotew; := fﬁ ,2(3") and we have

=T  ony~®), 1)
y’.Vw,» =curlf, InQ.
Then
/wj(8v9)=/wj§1-".Vr,' +/'L',' Curlfz,
I Q Q
foralli=1,...,gandj =1, 2. So we easily obtain
} /(wl —w2)d,0| < es[llwr — wall L2 + lwall L2 |31 — )A’ZHLz(Q)] (52)

W

(Remembes’ in bounded inC*(2) by 2| V0||¢1g.)
Now we estimate|w; — woll 2o, by Lemma 1. We get as previously

d N R N
—lwals, ) —wals, 0] < |5t = $%).Veurl $?((s, ¢).
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With w; = w, ony ~—(0), this leads all the same way to:

w1 — wall 2 < CGH ()A’l - ﬁz).chrl)A)zHLz(Q).

Hence we deduce
ltin — izl < e7[|| (3T = 32).V curl)?2||Lz(Q) + lwall 2|3 — )A}ZHLZ(Q)]‘

Note moreover thatjwal,2q) < | curI§2||Lz(Q). Now we can go back to the “full”
operatorF; we have now

||F,£2,,\I,2()A’l) - FKfzz,,\iZ()A’z)||L2(y—(0)) < C8[H(5’l - 92)'chr|§)2HL2(Q)

+ H CurIyZHLZ(Q)H)A’l - 5]2||L2(Q)} :
We have the following equation

yl.v(FKfz‘fkiz (5%) — FKJ;A? (52)) = —(5* — 92)-VF5;3,.2<92)’
and using as previously Lemma 1, we get
HFKf;AtZ (5’1) o inz,xl?(f’z) HLZ(Q)
< C9[H ()A’l - 5’2)~ch"|5’2"#(9) + ” Cur|§12||L2(Q)szl - 5’2||L2(Q)]
Conclusion. So finally we get:
[eurl§* —curl 37| 2.,
< colllkr — k2llz2-@y + 11— fallcrg
+ H()A’l - 5’2)ch”5’2”#(9) + H CurI)A’ZHLZ(Q)H)A’l - )A)ZHLZ(Q)]'
Now we use Sobolev and Hdolder inequalities in order to find
[[eurl * — curl 32,2 g,
< cnafllcr = k2l 2 -y + 111 = fall e

+ H ()A’l - 5’2) HLZ(SZ)HVCUI‘I)A}ZHLN(Q) + H Curly2||L2(sz)H5’l - 5}2||L2(Q)}'
Using (49), we get

g
I curl §* — CUI‘I&ZHLZ(Q) Sczflikr —k2llLzg-@) + 11— fallcr + Z ‘)\,l - )\:2|
i=1

+ K| eurl 3t — curl §2|| 2 [| curl §
So we get (48) if we can restrigt! enough in order that

2” wleo(Q):

1
2K
This is obtained as for Section 2.5, step 2. We observe agaigthat 0, -) is bounded

in the C1(Q) norm, uniformly int € [—2T, 2T]. So again, the smallness of cgifl for
the C* norm iny — () propagates insid®. Hence forM small enough, we get (53).

[ eurl 2| 100 g < (53)
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Remark 6. — The previous proof also shows that two solutignandy, of (1)—(2) for
the same force’, and moreover satisfying cur] = curly, ony —(0), y1.v = y,.v = 9,0
on 3R, [oy1.V'y = [oy2.V*t, and for which £, curlyy, - and [, y1.V*7 are
small with respect td,0, are equal. (This formulation does not involve the operator
of Section 2.)

4. Proof of Proposition 1

Before proving precisely Proposition 1, we establish some preliminary results that
will be useful during the proof.

4.1. Approximation results

We will use the two following propositions:

PrRoOPOSITION 3. — Consider2 a nonempty regular bounded connected open set in
C, and let us be givel a nonempty open part of its boundad§2. We considew e
C*®OQ\X; C). Then for any > 0, for anyk € N, there existsp € H(Q2) N C>®(Q; C)
satisfying

lp — U||ck(as2\2;© <Eé€. (54)

For the proof of Proposition 3, we refer to [5].
This proposition leads to the following corollary:

COROLLARY 1.— Under the same assumptions as for Propositi®inone can
moreover require frony, besideg54), that either its real part or its imaginary one,
exactly coincides with the one ofon aQ\ Z.

Proof of Corollary 1

Let us show this result in the case where the real parts are to be equal, andXvhere
meets only one connected component of the boundary; s he general case trivially
follows.)

We consider an operat@ ;o\ x)— 5o : CC(02\2; R) — C*(3Q2; R), which satisfies,
forall fin C*(0Q\XZ; R),

Oparx)—ae(f)=f 0noQ\X,
106a\s)-(Hlcipe < Coll fllcioas), Yiel{0,...,k+1}, (55)
dist(x, 9Q\X) <d, Vx e SupdOpa\s)—aa(HINZE,

with d to be small enough, and for a suitable constapt

Givene small enough and givehe N*, we consider, by Proposition 3, a holomorphic
function f, C*-regular up to the boundary and satisfying (54) in the sgzicé.

We then introduce the functiog; € C*(Q; R) as the solution of the following
Dirichlet problem:

{ AYy=0 ing,
V1= 0pa\x)—io(RE(f —v)) 0ndQ.
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Our problem at this point, is that there does not necessarily exist a real harmonic func-
tion ¥» defined in®2, such that the complex-valued functign + iy is holomorphic in
Q. Indeed, the Cauchy—Riemann equations would imply in that case that such a function

should satisfy
/3v1#1= /8,1,02:0,
r r

for any connected componentof 2. Conversely, when this latter condition is satisfied,
it is then sufficient (in addition to the harmonicity @f;) to define the holomorphic
functionyry + iyr».

These Cauchy—Riemann conditions will be satisfied, if notyhy by a “modified
version” of 1, sayyr, + Y1, where(y1)5o Will be supported in

Y= T\SupaOpa\x)—ae (RE(f —v))].

Let us denote by'y, ..., I', the other different connected componentsi®f. One
gets, foralli e {1, ..., g},

/ 8, (1 + ) = / 1+ ¥)d, T, (56)
r; aQ

where(t;);—0.1.... ¢ is the family of functions inC>(Q; R) given again by (12).

The integral in the right side of (56), computed only on the part of the boundary
SupdOpax)—aa(Re(f —v))]is completely determined by the original definitiorof.
We wish to equilibrate this integral computed on the suppo@®@é. »)— so (Re(f — v))
by the one computed on the restas, that is, /5 ¥19,7; dx. It remains to prove that this
is possible simultaneously for alle {1, ..., g}. (The flux along the, component will
automatically follow.) For this, it suffices to observe that the family@fr; ;) =1,
for any intervall nonempty and open iRy, is a free family. Indeed, all the functions in
this family vanish orTg. If there existed a non-trivial linear dependence relation between
the functions(d,7;);) j=1...¢, then by harmonicity of the functions, the corresponding
linear combination of the; would vanish on the whol€. But this is impossible: for
instance, consider traces of this combination on the dth@omponents.

Then, it follows from this linear independence that one can fiwlistinct points in/,
sayX4,..., X,, such that the vectors:

ale(Xj)
: forje{l,..., g},
avfg(Xj)

are linearly independent. (This is easily done by induction.)
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Then it follows that one can find a regular functigrf with support inx\Supp
[Opa\s)—se(Re(f —v))] and such that

/‘piav'{j = - / lﬂlavl’j.
)

SuprOpayz)—an(Re(f—v)))

For example, one can take fgy a linear combination of “bell functions” around tixg
(that is, functions which are very concentrated around the pain)s

Once found such &7, we can consider the holomorphic functiggn (C*°-regular up
to the boundary), associatedq + v, i.e. with the following shape:

G2 =Y+ Y1 +ivs.

Then f — ¢, will fit the requirements of Corollary 1, if one can establish that

”¢2”Ck(§;((:) < C8. (57)

But (57) is a consequence of (54): it follows from this inequality, from (55) and from
Schauder estimates thdt is of ordere for the C*%(Q2)-norm, for anyx € (0, 1). It
follows thaty; is also of ordek, since the coefficients of the so-called “bell-functions”
are linearly computed from the following integrals:

/wl.avr,» fori e{l,...,¢g},
a2

the coefficients of the combinations being independent of
This ends the proof of Corollary 1.

4.2. Another preliminary result

We will also need the following lemma

LEMMA 2. - Consider/ a compact connected subset, with nonempty interior, of a
regular not insertecting curve in the plane. Lete C3°(I; R). Then for any € (0, 1),
for anye > 0, there existsf € C*(I; R) which satisfies the following properties

Suppf c 1, (58)
/f=a (59)

1

the set of all zeros of — f is the union of a finite number
of intervals which have nonempty interiors (60)

I Fllcoamy < K (e (61)
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Proof of Lemma 2
Given this f, one can construct a “plateau function” in C*°(I; R) satisfying the
following requirements:

0<A<1 onl,

A =1 on Suppf,

SUppA C Io,

I\(SuppA) has exactly 2 connected components

We introduce also a functio# € C*°(R; R) satisfying:

0<Z<1 onR,
Z=0 on[-1/2,1/2], (62)
Z=1 on(—oo, —1]U[1, +00).
Let ¢ > 0 (small). By Sard’s theorem, one can chodse (0, ¢) such thati is
not a critical value off. We then consider the functiof := f — AA. The zeros of

this function on Supg are simple and (hence) isolated. Let us denote these zeros by
x1,...,xy, by ordering them increasingly ah Then we define the function:

> ) TLA= o (63)

ieJ

FRx)=Fx]] z<
iel

where we fixed
T:={1,...,N\{i €{2,..., N — 1} such thalx; ;1 — x;_1| < 2¢},
J:={ie{l,...,N}suchthaix; ;1 — x;| <2¢},

and wherey; is the characteristic function of the interva) and where we transported
Z on I by the arc length.

Itis easy to see that the functida constructed this way i€°°(I)-regular. Essentially,
we will define f := F, — f. We now want to show that

|F — Fallcery < K(f)et ™. (64)

First, we remark that

|F— F2||c°(1) K(f)e.

Indeed, F; differs from F only for points situated at distance at medrom a zero of
F. It follows immediately, together with (62), th&F — F2lco;y < (L+ || f'llcor))e-
We have yet to study the ratio

|F(x) = Fo(x) — F(y) + F2(y)

R(x,y) = Xy

For x and y such thatjx — y| > ¢, it follows from the previous point thaR (x, y) <
K (f)e*. Now for x andy such thaix — y| < ¢, one gets:
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e either F and F» have identical values at pointsandy, thenR(x, y) =0,

e Or both pointsx andy are at distance at most Zrom a zero ofF. We then have

three possible cases:

— eitherx and y are both in an interval of the typkx;, x;.1] with i € 7, in
which caseF, vanishes for bothc and y. Therefore in this cas®(x, y) <
||f/||c°(1)8lfa,

— or neitherx nory are in an interval of the typk;, x; ;1] withi € 7; then in (63),
the two products in the right side are reduced to at most one Z&mm- x; /5),
then we easily obtaiR (x, y) < K(f)el™,

— orx is notin an interval of the typgx;, x; 1] with i € 7, but on the contrary
is in one of them (if needed, inverseand y). But since the functiorZ which
coincides withZ at the left of 0 and with O at the right of zero is all the same of
classC>, one getsk (x, y) < K(f)el™ as in the previous point.

In all cases, we therefore get (64). .

In order to get (59), we add a function with support irat the exterior of Supp. We
obtain this way the functiorf. This modification also has a cost of ordefor the norm
ce).

Finally, we obtain the condition (61) (renormalizeto get it precisely). Conditions
(58) and (60) follow from the construction. This ends the proof of Lemma 2.

4.3. Back to the proof of Proposition 1

Let us denote by, I'y, ..., I, the different connected componentsast, I'y being
the exterior one. We recall thatis the unit outward normal vector @12, and we denote
by t the unit tangent along$2 chosen in order thatr, v) is a direct basis of the plane.
Finally, we noted the following function:

RZ
d: -G
(x,y) —x —iy.

We reduce the component Bfin I'g in a strictly smaller open sé&t’, still regular, and

which still intersectd’. (We keep this way a kind of “margin”.) On the other connected

components 02 (fori € {1,...,¢}),weletX'NT;:=X NT; exceptifx NT; =T7,
in which case we choose’ ccC X, in order to obtain generally

TA\Z #£0, Vie(o,... g (65)

Let us now define a vector field on dQ2\(X’ N I'p), regular (in theC* class).
Fori € {1,..., g}, one chooses; € C®(T;; R?) which satisfies the seven following
conditions:

v,=T1T ONh F,’\E/, (66)

yi):={xeXNl;|vy.v>0andy, (v;):={x € Z'NT; |v;.v <0}
are nonempty, connected and have disjoint closures (67)
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lvil>1 only, (68)
degyi, Fl’, O) = O, (69)
/ v; .dx =0, (70)
T
/ lv;i.v|dx > g, (71)
V,‘i(vi)
/ vivdx < 1. (72)
¥t i)

It is easy to construct such vector fieldsand we remark that these vector fields always
satisfy the property:

v; is “pointing outside™;" ondy,"
and “pointing inside™;,” ondy,”, fori e {1,...,g}.

We will denote byx! the part of the boundary included ¥Y N T'; and situated between
ytandy,” fori e{1,..., g} (uniquely defined thanks to (65)). Remark that

vt <0 onXxi. (73)

For what concerns thE; component, we defing, only onT'o\ X’ by condition (66).
Finally, we set

_{U,’ onTl}, Vie{l,...,g}, (74)

vg onlg\X'.
Thanks to (68) and (69), one may defiwe:= log @ (v) on a2\ (X' N ).
We then use Corollary 1 o, with ¢ € (0,1) andk = 0, and withX’ N I'y as the

“window” in the boundary. We furthermore require that the imaginary parts should
exactly coincide. We therefore get a functipne H(22) N C*(Q; C) such that

¢ — Wllcopa(znre):c) < & (75)
Im(¢:) =Im(W) onaQ\(Z' N ). (76)

The problem is that we are no longer sure that the circulations
/ o lexpip,) .dr, fori=1.....g. (77)
W

are exactly null (but we nevertheless know that these integrals are ofQrig¢us say
they are all of modulus inferior t& ¢). These conditions are of course necessary in order
for the vector fieldb—! exp(¢,) to be a gradient.
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To fix this problem, we defing functions wy, ..., w, in C®@AQ\(E" N To); C)
satisfying the following conditions € {1, ..., g}):

Im(w;) =0 0onaQ\(Z' NTy),
Re(w;) =0 0ondQ\[(Z' NTo) U],
Re(w;) <0 onXi,

Jsi IRe(w)|=1.

(78)

We define, given a positive real numbef, approximations in theC® norm on
9\ (X' NTg) of the functionsw; by Corollary 1, requiring again that the imaginary
parts should exactly coincide. L8t be theg functions obtained by this process.

The idea here is to consider, insteadofa function defined by the following formula:

TALA2,.

G B = e+ (WS A AW 2 W), (79)
the; being real numbers, and thentofind ..., A,, small, in order that the circulations
(77) computed forziE - instead ofp, are null forz =1,...,g. We denote/, := exp(¢:)
and ws o = exp(qbg «) (we omit thea; in the writing of¢g - and ws )

Butfori; allin[-1,1], fori e {1,..., g}, one gets, using (68), (73) and (78):

/qu(ws).d}—/cb (Vo) dx > ((1—e)i; — Ce') fora; €[0,1],  (80)

W W

/ O (W) .dx — / O L(y,) .dx < — ((1— 8)% - Ce’) for A; € [—1,0], (81)

W W

the constantC being independent of , whatever the values of the otherse [—1, 1].
Indeed, we cut these integral in two: Op\ X/, the “error” between the two integrals is
of ordere’; on X7, the “growth” of the circulation is at least @fl — ¢)A;, with still an
error of ordere’.

From now, we take < 1/2 and ¢ := ;5. Then we consider the application:

_ R& — RS,
{ A,y ..., )‘g) = (fF,- cb_l(lzs,s’) 'd_jx)izl

We endowR# with the norm||(xy, ..., xo) |l := max(|xil, ..., |x,]). If we restrict the
application to the sphere (in fact, the cube) with center 0 and radiis 4 1)¢, say
S(0,4(K + 1)¢e) (denote byB(0, 4(K + 1)¢) the corresponding ball), then from (80) and
(81), we deduce that 0 is not reached. So we can define:

. { S(0,4(K +1)e) > S(0,4(K + D)e),

i M)
= (M, -, hg) > MK + De i
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This application is continuous and has a non-null degree — in fact}leg- 1 — (for
instance, by (80) and (81), no point is sent to its antipodal point). Hence,

3) € B(0,4(K + 1)) such that H(x) =0.

That is, one finds a solution of the system, with scalarsf ordere.

Therefore, we get a functiogt’, holomorphic in<2, C*-regular up to the boundary,
such that the integralﬁn_ &1y’ .dx,arenullfori € {1, ..., g} (and hence are null also
for i = 0). When considering>~(v/’), one therefore obtains the gradient of a harmonic
function, say;, which satisfies (6) and (7). We have left to slightly modify this function
in order to get (8)—(9) (which are satisfied everywhere except perhapg)on

This is where we use Lemma 2, with=T N X, f := 9,6, and with a givere” to
be fixed (f is actually compactly supported, thanks to the margin we kept hrive
hence find a certain functiofi, and define for this function the following solution of the
Neumann problem, using (59),

AB,=0 ingQ,

36, =Ff onlHNX,
0,6,b=0 onaQ\['hNX,
Jo62=0.

We know thatVé;(x)| > u > 0in Q. Fore” small enough, using Schauder estimates,
we get

IVOal(x) < /2 InS

Consequently, for such af, the functiond, — 6, satisfies the required properties (5)
to (9). Finally, (10) is a consequence of the incompressibility 6f of the fact thatve
is close tov, and of (71)—(72).
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