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ABSTRACT. – We generalize a theorem by J.-M. Coron (see [Sur la stabilisation des fl
parfaits incompressibles bidimensionnels, in: Séminaire Équations aux Dérivées Pa
École Polytechnique, Centre de Mathématiques, 1998–1999, exposé VII]) and pro
existence of steady states of the Euler system for inviscid incompressible fluids with an ar
force term, in a plane bounded domain not necessarily simply connected, if one allows th
to pass through a prescribed region of the boundary, which satisfies the necessary condi
each connected component of the boundary is met by it.

RÉSUMÉ. – Nous généralisons un théorème de J.-M. Coron (voir [Sur la stabilis
des fluides parfaits incompressibles bidimensionnels, in: Séminaire Équations aux D
Partielles, École Polytechnique, Centre de Mathématiques, 1998–1999, exposé VI
prouvant l’existence d’états stationnaires pour le système d’Euler pour les fluides p
incompressibles avec un terme de force arbitraire. Ce résultat se place dans un domain
du plan non nécessairement simplement connexe, où le fluide peut entrer à travers un
prescrite du bord, qui satisfait la condition nécessaire, qu’elle en rencontre toutes les comp
connexes.
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1. Introduction

Let � be a nonempty connected bounded smooth open domain inR
2. Consider� a

nonempty open part of the boundary∂� of �. Denote byν the unit outward normal o
∂�.

The problem that we study in this paper is the existence of solutions of the stat
Euler system for ideal (i.e. inviscid and incompressible) fluids, that is,

(y.∇)y + ∇p = f in �, (1)

divy = 0 in�, (2)

wherey :� → R
2 is the velocity field andp :� → R is the pressure, for any local forc

termf :� → R
2. We consider the following constraint at the boundary:

y.ν = 0 on∂�\�, (3)

that is, the fluid is allowed to pass through the boundary only on� (and slips on the res
of the boundary).

We show the following result:

THEOREM 1. – If � meets each connected component of∂�, then for anyf ∈
C∞(�;R

2), there existy ∈ C∞(�;R
2) and p ∈ C∞(�;R) such that(1)–(2) and (3)

are satisfied.

Remark1. – For the closed system (i.e. when� = ∅), it is well known that (1)–(3)
has no solution in general. For example, considerf with a non trivial circulation on
a given connected component of the boundary. Then the Kelvin law for the stati
Euler system, which states that:∫




[
(y.∇)y + ∇p

]
. 
dτ = 0,

for any Jordan curve
 in the domain along whichy is everywhere tangent, ensures t
there is no solution for thatf . By the way, this objection also points out that the condit
on� that it must meet each connected component of the boundary is necessary.

Remark2. – Even if we consider onlyf with vanishing circulations around ea
connected component of the boundary, there is no solution in general unless� meets
each connected component of the boundary. Consider indeedf such that curlf > 0 on
a given “uncontrolled” connected component
 of ∂�. Lety be a solution of the system
Then, taking the curl of (1), one gets

(y.∇)(curly) = curlf. (4)

This involves in particular thaty �= 0 on 
. As y must be tangent to
, it has a constan
orientation on
. With curlf > 0, this makes (4) impossible.
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Theorem 1 was established in the particular case of a simply connected dom
J.M. Coron (see [3]). One of the motivations concerns asymptotic stabilization o
non-stationary Euler system. Indeed, R.W. Brockett established a necessary co
for a finite-dimensional control system to be stabilizable, see [2]. The equivalent o
necessary condition in the infinite-dimensional system considered here is precise
is proven in Theorem 1. For more precisions concerning the stabilization of ideal
see [3] and [4].

For the three-dimensional system, we do not know whether such a result co
stated. An important step in that direction is given by the work of H.D. Alber (see
which deals with the existence of non trivial steady-states with vanishing force
in a simply connected domain. But this result uses as an assumption the existen
reference solution; the existence of such a solution is an open problem in the g
case (up to our knowledge). Also, it would be an interesting question to generali
present work to higher dimensions, in particular in the perspective of the stabilizat
three-dimensional ideal fluids, which are known to be exactly controllable (see [6]

As in [1] and [3], the idea is to find a solution of the problem close to a fixed refer
solution. Here, this solution is a potential steady-state of the problem (forf = 0). One
cannot in general make this solution fit all the requirements of the reference so
of [1]; in particular, in [1], the reference flowv0 has to satisfy thatv0 does not vanish in
� and that, on the boundary of{x ∈ � | v0.ν < 0}, v0 is pointing outside this set. In ou
case, when� is not simply connected, both conditions can no longer be required
degree arguments). However, in the two-dimensional case, we can get rid of the
assumption.

One of the major points in the proof of Theorem 1 is hence the statement o
following proposition, which proves the existence of an appropriate potential refe
solution:

PROPOSITION 1. – Consider� a nonempty bounded connected regular domai
R

2. Letν the unit outward normal on∂�. Consider� an open part of∂�, which meets
each connected component
0, . . . , 
g of ∂�. Then there exists a functionθ ∈ C∞(�;R)

which satisfies the following conditions:

�θ = 0 in �, (5)

∂νθ = 0 on∂�\�, (6)∣∣∇θ(x)
∣∣> 0 for anyx in �, (7)

for γ +(θ) := {x ∈ ∂� | ∂νθ > 0} andγ −(θ) := {x ∈ ∂� | ∂νθ < 0},
one has: γ +(θ)∩ γ −(θ) = ∅, (8)

γ +(θ) andγ −(θ) are unions of a finite number

of intervals of∂� with disjoint closures, (9)

there existg pointsM1, . . . ,Mg in γ −(θ)∩
0, respectively

sent onγ +(θ)∩
1, . . . , γ
+(θ)∩
g by the flow of∇θ,

the trajectories not touching∂�\[γ +(θ)∪ γ −(θ)
]
. (10)
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The proof of this proposition is postponed until Section 4. We consider
established during Section 2, and aim at proving Theorem 1. In Section 3, we also d
a generalization of Theorem 1.

2. Proof of Theorem 1

First, we introduce some notations.

2.1. Notations

We shall consider the open ballBR in R
2, centered in 0, with radiusR large enough

so that� ⊂ BR . We will also use a regular linear operatorπ , which extends function
in C1(�;R) to functions inC1

0(BR;R) (i.e. C1 functions with compact support), an
which sends anyCk-regular function to aCk-regular function.

Given a vector fieldV ∈ C1
0(BR;R

2), we will denote byφV the corresponding flow
that is the function inC1(R×R×BR;BR), defined by the following differential system{

φV (t1, t1, x) = x for any(t1, x) ∈ R ×BR,

∂t2φ
V (t2, t1, x) = V (φV (t2, t1, x)) for any(t1, t2, x) ∈ R × R ×BR.

Wheny ∈ φV (R+,0, x), we will write φV :x → y for the path leading fromx to y

given by the flow ofV .
Given a Jordan curveJ , and given two pointsa andb in J , we denote by[a, b]J

the interval which joinsa and b in the direction given on the curve naturally by t
orientation in the plane. Given a pointx0 ∈ J and given a positive real numberε, we
will denote (when there is no ambiguity) byx0 + ε the point inJ situated at distanceε
from x0, considering the arc length, when following the orientation on the curve, an
x0 − ε the point obtained when following the opposite way.

We shall introduce, given a pointx0 in a Jordan curveJ in the plane, and give
a positive (small) real numberε, an extension operatorP+

ε,x0
which associates to an

function functiong in C1([x0 − ε, x0]J ;R), a functionP+
ε,x0

(g) in C1([x0 − ε, x0 +
ε]J ;R) such that

Pf = f in [x0 − ε, x0],
Supp(Pf )∩ [x0, x0 + ε] ⊂ [x0, x0 + ε),

Pf ∈ Ck([x0 − ε, x0 + ε]J ;R), ∀f ∈ Ck([x0 − ε, x0]J ;R), ∀k ∈ N,

‖Pf ‖C0([x0−ε,x0+ε]J ;R) � ‖f ‖C0([x0−ε,x0]J ;R),

‖Pf ‖C1([x0−ε,x0+ε]J ;R) � κ(ε)‖f ‖C1([x0−ε,x0]J ;R).

We shall also introduce the operatorP−
ε,x0

directed in the other way on the curve.
We will consider a functionUε,x0 defined inC∞

0 ([x0 − ε, x0 + ε]J ;R) and satisfying:{
Uε,x0 � 0,∫

Uε,x = 1.
(11)
[x0−ε,x0+ε]J 0
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Finally, we introduce the family(τi)i=0,...,g of functions inC∞(�;R) defined for each
i by 

�τi = 0 in �,

τi = 0 on∂�\
i,

τi = 1 on
i.

(12)

It is well-known that(∇⊥τi)i=1,...,g is a basis for the first de Rham cohomology spac
the domain� (and that

∑g
i=0 ∇⊥τi = 0), where∇⊥ := (−∂2, ∂1).

2.2. Remarks concerning ∇θ

From this section, we consider a fixed functionθ as in Proposition 1. We first give
property of it, and then describe some objects related to it.

PROPOSITION 2. – There existsε0 > 0 such that for allW ∈ C1(�;R
2) satisfying

‖W − ∇θ‖C0(�;R2) < ε0, (13)

(W − ∇θ).ν = 0 on∂�, (14)

and for allx in �, there existst > 0 such that

eitherφW(0, t, x) ∈ γ −(θ),
or φW(0, t, x) ∈ ∂γ −(θ) with W pointing outsideγ −(θ) at this point. (15)

Proof of Proposition 2
First, we establish (15) in the particular caseW = ∇θ . Starting fromx, we let the

time t become large. Then necessarily the point leaves the domain. Indeed,
( : t �→ θ(φπ(∇θ)(0, t, x)). As long as the pointφπ(∇θ)(0, t, x) has not left the domain
the derivative of( is |∇θ(φπ(∇θ)(0, t, x))|2, and hence is bounded from below by
positive constant. We conclude by using the compactness of the domain. So one d
(15).

Then, forW close enough to∇θ for theC0 norm, the flow ofW is close to the one o
∇θ , as shown by the following Gronwall inequality:∣∣φπ(W)(0, t, x) − φπ(∇θ)(0, t, x)

∣∣� ∥∥π(W)− π(∇θ)
∥∥
C0(BR)

e
t‖π(∇θ)‖

C1(BR) ,

∀x ∈ BR, ∀t ∈ R
+. (16)

Now, for t > 0 small, when going back in time a little bit more, the pointφπ(∇θ)(0, t, x)
is sent outside�. Thus ifW is close enough to∇θ , the pointφπ(W)(0, t, x) must go out
� too, which, with (14), involves (15).

Concerning∇θ , we will consider the following constants computed from it:

m := min
x∈�
∣∣∇θ(x)

∣∣,
T := max

x∈�
inf
{
t ∈ R

+ | d(φπ(∇θ)(t,0, x),�
)
� d+
}
,

the distanced+ being chosen sufficiently small, in order thatT is finite (by the same
argument as in Proposition 2, each point in� which follows the flow of∇θ , must leave
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properly).
We then introduce a second extension operatorπ̃ with the same properties asπ , except

that it satisfies

π̃ (f )(x) = 0, ∀f ∈ C1(�;R), ∀x ∈ BR such that dist(x,�)� d+/4. (17)

2.3. Remarkable points in the domain

In this section, we distinguish some “special points” in the domain, depending o
functionθ previously introduced.

Points Ai , Bi , Ci and Di

We class the different points in∂[γ −(θ)] ∪ ∂[γ +(θ)] in four different categories:
• The“A points”: we will callA the points in∂[γ −(θ)] such that at these points,∇θ

is pointinginsideγ −(θ).
• The“B points”: we will callB the points in∂[γ −(θ)] such that at these points,∇θ

is pointingoutsideγ −(θ).
• The“C points”: we will callC the points in∂[γ +(θ)] such that at these points,∇θ

is pointinginsideγ +(θ).
• The“D points”: we will callD the points in∂[γ +(θ)] such that at these points,∇θ

is pointingoutsideγ +(θ).
Then, we are interested in the different trajectories of these special points inside� by

the flow of∇θ and−∇θ (we stop as soon as the point goes out of�).
We observe that the trajectories of these remarkable points are described

diagram in Fig. 1. In this diagram, the arrows symbolize the movement of the
under the flow of∇θ in �. That is, a certain pointA comes from a pointD (or from a
pointB) and is then sent to a point inγ +(θ) or (maybe) to a new pointD which itself is
sent to a new pointA or to a pointC, etc. Points inγ +(θ)∪ {C} are end points, wherea
points inγ −(θ)∪ {B} are starting points.

Points AW
i , CW

i and DW
i

For anyW ∈ C1(�;R
2) sufficiently close to∇θ in C0(�;R

2), and with the sam
normal trace on∂� as∇θ , we introduce, forx ∈ �,

σW(x) := min
{
t ∈ [0,+∞) | φπ(W)(0, t, x) ∈ γ −(θ)∪ {Bi, i = 1, . . .}},

γ +(θ) �
γ −(θ)

�

B
∂�

A

�

�

D
∂�

∂�
C

∂�
B

Fig. 1. Description of the trajectories of the pointsA, B, C andD by the flow of∇θ .
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Now for a pointAi (respectivelyCi andDi) andW such as above, we introduce t

pointAW
i (respectivelyCW

i andDW
i ) as the “point inγ −(θ) ∪ {B} where the pointAi

(respectivelyCi andDi) is coming from”, i.e. more precisely

AW
i := φπ(W)

(
0, σW(Ai),Ai

)
, (18)

and the equivalent forCW
i andDW

i .
For each of the three categoriesA, C andD, we distinguish two types of points. W

denoteA◦ (respectivelyC◦, D◦) the set of theAi points (respectivelyCi , Di) for which
A∇θ

i (respectivelyC∇θ
i , D∇θ

i ) belongs toγ −(θ ). The others, for whichA∇θ
i (respectively

C∇θ
i , D∇θ

i ) is aB point, will be denoted byAB (respectivelyCB , DB).

Points M
W

i

We will consider in the same way, the “points inγ +(θ) where the pointsMi are going
to”, i.e.

M
W

i := φπ(W)
(
σ ′
W(Mi),0,Mi

)
,

whereσ ′
W(Mi) := min

{
t ∈ (0,+∞) | φπ(W)(t,0,Mi) ∈ γ +(θ)

}
.

The existence of the pointsM
W

i for W close to∇θ is clear thanks to (10) and (16) – s
the remark below.

Points bi

To anyBi , we associate a pointbi in BR obtained as

bi = φπ(∇θ)(0, t,Bi) for a t > 0,
3

4
d+ � dist(bi,�)� d+.

Two constants
Then we consider the following finite set of∂�:

M := {M,M
∇θ
, (D◦)∇θ

}
.

For the rest of this paper, the positive real numberε1 (depending only on∇θ –
consequently on the domain and�) will be defined by

ε1 := min
[{

dist(x, y), x, y ∈ M, x �= y
}

∪{dist(x,M), x ∈ ∂�\(γ −(θ)∪ γ +(θ)
)}

∪{dist(x, y), x ∈ γ −(θ), y ∈ γ +(θ)
}]
.

Also, we fix ε2 such that for anyW ∈ C1(�;R
2) with the same normal trace as∇θ

on ∂� and for which‖W − ∇θ‖C0(�) < ε2, the previous pointsAW
i , CW

i , DW
i andM

W

i

are well defined. We also require, using (16), that the trajectoriesφW(t,0,Mi) do not
meet∂�\�.
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We fix a ball aroundbi , sayB(bi, r+), with r+ < d+/8. Under the flow ofπ(∇θ), this

ball describes a strip around the parts of∂�\[γ +(θ) ∪ γ −(θ)] thatbi “visits”, viz. the
trajectoriesB → A or C, and possiblyA ↔ D andD → C. Let us callτ a positive
minimizer of the thickness (according to the normal of the trajectory) of all these
for eachbi .

Now we fix an interval[D∇θ
i −ε1/2,D

∇θ
i +ε1/2]γ−(θ). Under the flow ofπ(∇θ), it de-

scribes also a strip around the parts of∂� visited byD∇θ
i (this strip contains in particula

Di). Note that, because∂νθ < 0 on γ−(θ), the interval[D∇θ
i − ε1/2,D

∇θ
i + ε1/2]γ−(θ)

(which does not touch∂γ −(θ)) is non characteritic for∇θ . We reduceτ > 0 in order
that it is also inferior to the thickness of these strips.

A remark
We remark that the functionW �→ AW

i (respectivelyCW
i , DW

i andM
W

i ) is continuous
for theC0 topology, ifW is close enough to∇θ . (This would not have been necessa
true if one had considered, instead of (18),

φπ(W)
(
0, sW (Ai),Ai

)
, with sW (x) := min

{
t ∈ [0,+∞) | φπ(W)(0, t, x) ∈ γ −(θ)

}
.)

Indeed, by the same argument as for the proof of Proposition 2, if one con
φπ(∇θ)(0, t,Ai) for t ∈ (σ∇θ (Ai), σ∇θ (Ai) + ε), we get a point inBR\�. ForW close
enough to∇θ , the corresponding pointφπ(W)(0, t,Ai) also lies outside�, which gives
the continuity ofσW(·).
2.4. Defining the operators F and G

In this section, we introduce two continuous operatorsF andG. The solution of the
problem will be found as a fixed point of the latter.

Domain of F

The operatorF will be defined for(f,W) in

C2(�;R
2)× Tε into C1(�;R),

for ε sufficiently small, whereTε is defined in the following way

Tε := {W ∈ C1(�;R
2) | W.ν = ∂νθ on ∂�, divW = 0 in �,

and‖W − ∇θ‖C1(�;R2) < ε
}
. (19)

In order for the operator to be well defined, we reduceε2 in order that anyW ∈ Tε
with ε < ε2, satisfies the five following conditions:∣∣W(x)

∣∣�m/2 in�, (20)

for anyx ∈ �, ∃t ∈ [0,2T ], s.t. φπ(W)(t,0, x) /∈ �, (21)∥∥MW

i − M
∇θ

i

∥∥< ε1/10,
∥∥DW

i −D∇θ
i

∥∥< ε1/10, (22)
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at the points of∂γ −(θ)∪ ∂γ +(θ), (23)

when following the flow ofW, the ballB(bi, r
+) describes a strip

around the trajectory ofbi in the flow of∇θ, of thickness at leastτ/2,

and the equivalent for the strips corresponding toD∇θ
i . (24)

(We remark that in fact (23) is a consequence of the validity of (20) for anyW ∈ Tε.
Conditions (21), (22) and (24) can be obtained thanks to (16).)

From now, reducing if neededτ or ε1, we consider thatτ = ε1/4.

Expression of F

We fix f . To anyW in Tε, we are going to associate in a first time a real-val
functionω4

W in C1(γ −(θ);R). In that order, we construct the two families of functio
Ai andBi , defined respectively at the neighborhood ofAi andBi in γ −(θ).

We consider the functionT W
Bi

defined in a nonempty open set inBR by

{
T W
Bi

= 0 onB(bi, r+),

(π(W).∇)T W
Bi

= π̃ (curlf ) in BR.
(25)

This function is well (regularly) defined – note that the first equation is satisfie
B(bi, r

+), thanks to (17) – at least on the strip that we mentioned in (24). In partic
it is defined in a neighborhood ofBi in γ −(θ) of lengthτ/2. We callBi the restriction
of T W

Bi
on this interval of∂�. The same way,T W

Bi
is defined in a neighborhood ofAi in

γ −(θ) of lengthτ/2, for eachAi ∈ AB . We denote the corresponding restrictionAi .
It remains to defineAi for Ai ∈ A◦. For this, we consider the functionT W

Di
defined in

a nonempty open set inBR by

{
T W
Di

= 0 on[D∇θ
i − ε1/2,D∇θ

i + ε1/2]γ−(θ),

(π(W).∇)T W
Di

= curlf in BR.
(26)

All the same, thanks to the transversality ofW at the beginning of the strip and to (24
T W
Di

is well (regularly) defined in a strip containing a neighborhood ofAi in γ −(θ) of
lengthτ/2, for eachAi ∈ A◦. We again denote the corresponding restrictionAi .

Then, we introduceω4
W by the following formula (we consider in this expression t

the direction in∂� at pointsAi or Bi pointing insideγ −(θ) is the positive one; replac
“+” by “ −” if needed):

ω
4
W =

P+
Bi+τ/2,ε1/4(Bi) in [Bi,Bi + 3ε1/8]∂�,

P+
Ai+τ/2,ε1/4(Ai) in [Ai,Ai + 3ε1/8]∂�,

−
(27)
0 anywhere else in γ (θ).
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Thanks to (19) and (20), we may now defineω̃W ∈ C0(�;R) to be the unique functio
satisfying the following relations:{

(W.∇)ω̃W = curlf in �,

ω̃W = ω4 onγ −(θ).
(28)

We now define the functionω#
W in C1

0(γ
−(θ);R) as

ω#
W =

g∑
i=1

µiUε1/4,Mi
onγ −(θ), (29)

where the coefficientsµi are computed with the help of the following relation

µi

∫

i

(∂νθ)Uε1/4,Mi
=
∫

i

f . 
dx −
∫

i

(∂νθ)ω̃W . (30)

Let us remark that, thanks to (10) and (11), relation (30) uniquely determines tµi

for anyW in Tε, with ε < ε2.
As previously, we introduce a functionωW ∈ C1(�;R) as the solution of the following

system: {
(W.∇)ωW = 0 in�,

ωW = ω#
W onγ −(θ).

(31)

We finally give the definition ofF by

F(f,W) := ω̌W := ω̃W + ωW in �. (32)

Of course, one deduces from (28) and (31) thatω̌W satisfies

(W.∇)ω̌W = curlf in �. (33)

Regularity of F(f,W)
Let us check that the image ofF is actually included inC1, and, more generally, le

us study the regularity ofF(f,W) depending on the one off and ofW .
The “ωW -part” of F(f,W) is clearlyCm-regular whenf is Cm+1-regular and when

W is Cm-regular. This is a consequence of the fact that we chose the support ofU in a
region ofγ −(θ) transverse to anyW ∈ Tε, with ε < ε2.

Now we concentrate on the regularity ofω̃W . Let us distinguish three cases:
• in the “DW

i -strip”, we have this regularity, becauseω̃W coincides there withT W
Di

which is regular thanks to the transversality of the interval at the beginning,
• in the “bi -strip”, we get all the same thatω̃W isCm-regular whenf isCm+1-regular

and whenW is Cm-regular, for we can all the same find a suitable transve
interval inB(bi, r+),

• for the other points in�, we get again the same regularity, because they come
points in γ −(θ) at a distance of at leastτ/2 from ∂γ −(θ) and stay away from
∂γ +(θ)∪ ∂γ −(θ).
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Finally, we get the following regularity result

f ∈ Cm+1(�;R
2) and W ∈ Cm

(
�;R

2)∩ Tε ⇒ F(f,W) ∈ Cm(�). (34)

Note that, in particular, the operatorF actually sendsC2(�;R
2)× Tε in C1(�;R).

Defining the operator G
To anyω ∈ C1(�;R), one can continuously associate the unique vector fieldyω ∈

C1(�;R
2) as the solution of the following system

divyω = 0 in �,

curlyω = ω in �,

yω.ν = ∂νθ on ∂�,

(35)

and ∫
�

yω.∇⊥τi = 0, for all i in {1, . . . , g}. (36)

(In fact,yω is more regular thanC1, e.g.yω ∈ C1+α(�) for anyα ∈ (0,1).)
We now define

G : (ω,f ) �→ F(f, yω) (37)

for ω in

X := {ω ∈ C1(�;R) s.t.‖ω‖C1(�) < ε3
}
, (38)

andf in C2(�;R
2), with ε3 small enough, computed fromε2, so thatG is well defined,

i.e. for instanceyω ∈ Tε2/2.

2.5. Back to the proof of Theorem 1

The main idea is to prove that, at least forf small in theC2 norm, the operatorG
satisfies the assumptions of the Leray–Schauder fixed point Theorem. Then it is to
that this fixed point solves the problem. Finally, we get rid of the assumption of sma
onf .

Step1. We remark that, fixedf ,

X is a convex compact subset of the Banach spaceC0(�).

This is a clear consequence of Ascoli’s theorem.
Step2. We show that if we restrict ourselves to smallf for theC2 norm, then one get

G(X ) ⊂ X . (39)

It follows from the construction that, onγ −(θ), one gets∥∥G(ω,f )∥∥ 1 � C‖f ‖ 2 , (40)

C (V) C (�)
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whereV is a neighborhood of the points “B” in γ −(θ). This is also valid close to th
pointsDW

i in γ −(θ), since a straightforward computation shows that at these po
one has∇ω̃.ν = curlf/∂ν(θ). Moreover, forω ∈ X , the norm‖yω‖C1(�) is bounded
(by (1 + ε2)‖∇θ‖C1(�;R2)). Then the flowφyω(t,0, ·) is bounded in theC1(�) norm,
uniformly in t ∈ [−2T ,2T ].

Then the estimate (40) (with a perhaps greater constant) propagates insid� –
remember (21) – and at the neighborhood of the “A” points, exactly as for (34). Henc
one gets (39), at least forf small.

Step3. We show that, fixedf ,

G is continuous.

When considering the construction, one can see that it is sufficient to prov
continuity of the functionsW �→ T W

bi
(·) andW �→ T W

Di
(·). This continuity is again a

consequence of (16).
Step4. We hence find, by the Leray–Schauder theorem, a fixed point, sayζ of G(·, f )

(for f small enough). Let us show thatζ is a solution of the system.
From (30) and the relation∫

�

[
(yω.∇)yω

]
.∇⊥τi =

∫

i

(yω.ν)ω for all i in {1, . . . , g},

one gets ∫
�

[
(yζ .∇)yζ

]
.∇⊥τi =

∫
�

f.∇⊥τi, for all i in {1, . . . , g}. (41)

Together with (33), (35)–(36) and (37), this leads to (1), (2) and (3). TheC∞(�;R
2)-

regularity ofζ is a consequence of (34).
Conclusion. We have shown that the problem has a solution when‖f ‖C2(�;R2) is small

enough. The general case naturally follows from the previous one: it suffices to co
the homogeneity of the equation. So Theorem 1 is established.

3. A generalization of Theorem 1

3.1. Setting of the result

The solutiony of (1)–(3) is of course highly non-unique. Even, one could ask
supplementary properties of the solution.

The natural question is the possibility to prescribe the entering vorticity. Indee
the non-stationary system, the choice of the normal velocity and of the entering vo
(and of the initial range) uniquely determines the system (see e.g. [8]). In our m
it is essential that the normal velocity is fixed as the same as the one of the ref
solution. But we can wonder if the entering vorticity could be demanded.

Theorem 1 can be generalized the following way:

THEOREM 2. – Consider an open regionI in γ −(θ) such that
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• I does not touch∂γ −(θ),
• I does not contain the pointsMi .

Then for anyκ ∈ C∞
0 (I;R) and for any(λ1, . . . , λg) ∈ R

g, there exists a solutiony of
(1)–(3)which moreover satisfies

curly = κ onI, (42)∫
�

y.∇⊥τi = λi, ∀i ∈ {1, . . . , g}, (43)

where(τi)i=1,...,g is defined by(12).

Remark3. – In fact, many points could play the same role asMi . So one should rea
the second assumption in Theorem 2 as “there are pointsM̃i in γ −(θ)\I that could
replace the pointsMi in Proposition 1”.

3.2. Sketch of the proof of Theorem 2

Let us briefly establish Theorem 2.
In the definition (32) ofF , we add the following functionω+ defined by:

(W.∇)ω+
W = 0 in�,

ω+
W = κ onI,

= 0 elsewhere onγ −(θ).
(44)

We may have to reduceε1 = τ/4 in order that the supports of the functio
P+
Ai+τ/2,ε1/4(Ai) and ofP+

Bi+τ/2,ε1/4(Bi) do not meetI. We have also, in the definitio
of (29), to chooseε1 small enough so that SuppUε1/4,Mi

does not meetI, and to replace
(30) by

µi

∫

i

(∂νθ)Uε1/4,Mi
=
∫

i

f . 
dx −
∫

i

(∂νθ)[ω̃W + ω+
W ]. (45)

Finally, in the definition ofyω, we replace (36) by∫
�

yω.∇⊥τi = λi, ∀i ∈ {1, . . . , g}. (46)

We can then define the operatorG all the same way. Then the only delicate point
order to prove thatG has a fixed point is (39). To obtain this, we in a first step res
ourselves to the case whereκ and(λi)i=1,...,g are small enough. Then estimatingG the
same way allows us to affirm (39) if they are all small. Then we get a fixed pointG.
This is again a solution of our problem, for the same reasons. (Relation (46) do
influence (41).)

Now, as for Theorem 1, we obtain the general case by homogeneity: ify is a solution
for [εf, εκ, (ελi)], theny/ε is a solution for[f, κ, (λi)].
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3.3. Uniqueness and continuity of solutions with respect to “exterior conditions”

Now we wonder if two stationary solutions obtained by the previous process are
when the entering vorticity, the exterior force and the “λi” are close. We obtain

THEOREM 3. – For any positive constantM and for I as above, there exists a
amplification of∇θ (sayλ∇θ0), such that the operatorYM, which associates to an
[κ,f, (λi)i=1,...,g] ∈ C∞

0 (I;R)×C∞(�;R
2)× R

g satisfying

‖κ‖C1(I) � M,

‖f ‖C2(�) � M, (47)

|λi| �M, ∀i = 1, . . . , g,

a solutionŷ satisfying(1)–(3)and (42)–(43)constructed as abovefor this∇θ exists and
is unique.

Moreover, there existsC(M,I) > 0 such that for [κ1, f1, (λ
1
i )] and [κ2, f2(λ

2
i )]

satisfying(47) one has∥∥YM
(
κ1, f1,

(
λ1
i

))− YM
(
κ2, f2,

(
λ2
i

))∥∥
H1(�)

� C(M,I)
[

‖κ1 − κ2‖L2(γ−(θ)) + ‖f1 − f2‖C1(�) +
g∑

i=1

∣∣λ1
i − λ2

i

∣∣]. (48)

Remark4. – For the existence, we required the∇θ to be sufficiently “amplified” too
Let us also underline that solutions of the 2-D stationary Euler system with presc
normal velocity and entering vorticity are not in general unique (see e.g. [7]).
comparable geometry of the two stationary solutions (particularly the “dominatio
the∇θ part in them) is essential here.

Remark5. – This result gives in particular a 2-D equivalent of the work of H.D. Alb
but with other entering conditions (these depend on the dimension) and with a fixe
constructed reference solution.

3.4. Proof of Theorem 3

The existence was already proven. To establish uniqueness, it is sufficient to
directly (48). The proof mainly follows [1]. Again using the homogeneity of
equation, we get that it is equivalent to fix∇θ and to show that the operator of Section
satisfies the required conditionsfor M small enough. We have for this∇θ an ε2 such
that the solutions are found inTε2/2. In particular, elements ofTε2/2 do not have vanishin
points in�, and their characteristics inside� have a uniformly bounded length (s
bounded byL).

We will need the following lemma ([1, Corollary A.2])

LEMMA 1 (Alber). – ConsiderW ∈ Tε2/2 and a functionq ∈ C0(�). For x ∈ γ −(θ),
denote byl(x) the arc length of the characteristic ofW starting fromx. Consider finally
the parameterizationV of�: (s, ζ ) ∈ R

+ × γ −(θ) �→ φW/|W |(s,0, ζ ) for s � l(ζ ). Then
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one gets ∫
�

q(x) dx =
∫

γ−(θ)

l(ζ )∫
0

q
(
V (s, ζ )

) |∂νθ(ζ )|
|W(V (s, ζ ))| ds dζ.

The proof is elementary (use the transform law and the incompressibility), an
original one in 3-D is also valid here.

Let us denote bŷy1 and ŷ2 two solutions of the steady Euler equation obtained
the previous process for the same∇θ and for respective conditions[κ1, f1, (λ

1
i )] and

[κ2, f2, (λ
2
i )], small enough in order to apply Theorem 2.

In the sequel, we will denote byci various constants depending on�, �, I andθ , but
not onŷi (but neverthelesŝyi is found inTε3, so that e.g.‖ŷi‖C1(�) � 2‖∇θ‖C1(�)).

Thanks to (35) and (46), we get

∥∥ŷ1 − ŷ2∥∥
H1(�)

� c1

(∥∥curl ŷ1 − curl ŷ2∥∥
L2(�)

+
g∑

i=1

∣∣λ1
i − λ2

i

∣∣). (49)

So it is sufficient to estimate the latter norm‖ curl ŷ1 − curl ŷ2‖L2(�). We write:∥∥curl ŷ1 − curl ŷ2∥∥
L2(�)

= ∥∥Ff1

κ1,λ
1
i

(
ŷ1)− F

f2

κ2,λ
2
i

(
ŷ2)∥∥

L2(�)

�
∥∥Ff1

κ1,λ
1
i

(
ŷ1)− F

f2

κ2,λ
2
i

(
ŷ1)∥∥

L2(�)

+ ∥∥Ff2

κ2,λ
2
i

(
ŷ1)− F

f2

κ2,λ
2
i

(
ŷ2)∥∥

L2(�)
,

whereFf
κ,λi

is the operator of Section 3.2 corresponding to the fixed value of∇θ , to
the forcef , to the entering conditionκ and to condition (43) forλi . We now analyse
separately the two terms of the right hand side of (50).

1st term. From the definition ofF(·, ŷ1), we get that∥∥Af2
i −Af1

i

∥∥
L2(γ−(θ)) � c2‖f1 − f2‖C1(�),∥∥Bf2

i −Bf1
i

∥∥
L2(γ−(θ)) � c2‖f1 − f2‖C1(�).

Together with (45), we deduce∥∥Ff1

κ1,λ
1
i

(
ŷ1)−F

f2

κ2,λ
2
i

(
ŷ1)∥∥

L2(γ−(θ))

� c3
[‖κ1 − κ2‖L2(γ−(θ)) + ‖f1 − f2‖C1(�)

]
. (50)

Now, we write

ŷ1.∇(Ff1

κ1,λ
1
i

(
ŷ1)−F

f2

κ2,λ
2
i

(
ŷ1))= (curlf1 − curlf2).

Now we consider the parameterizationV corresponding tôy1. To simplify notations, we
omit theV . We get

d ∣∣Ff1

κ ,λ1

(
ŷ1)(s, ζ )−F

f2

κ ,λ2

(
ŷ1)(s, ζ )∣∣� | curlf1 − curlf2|(s, ζ ).
ds 1 i 2 i
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We deduce∣∣Ff1

κ1,λ
1
i

(
ŷ1)(s, ζ )−F

f2

κ2,λ
2
i

(
ŷ1)(s, ζ )∣∣� ∣∣Ff1

κ1,λ
1
i

(
ŷ1)(0, ζ )− F

f2

κ2,λ
2
i

(
ŷ1)(0, ζ )∣∣

+
l(ζ )∫
0

| curlf1 − curlf2|(s′, ζ ) ds′.

Now we multiply by|∂νθ(ζ )|/|ŷ1(V (s, ζ ))| and integrate over(s, ζ ) ∈ R
+ ×γ −(θ) with

s � l(ζ ). Using Lemma 1, the boundedness of the characteristics ofŷ1 and the fact tha
|∂νθ(ζ )|/|ŷ1(V (s, ζ ))| is bounded for(s, ζ ) ∈ R

+ × γ −(θ) with s � l(ζ ), we obtain∥∥Ff1

κ1,λ
1
i

(
ŷ1)− F

f2

κ2,λ
2
i

(
ŷ1)∥∥

L2(�)
� c4
[‖κ1 − κ2‖L2(γ−(θ)) + ‖f1 − f2‖C1(�)

]
.

2nd term. In this case, we have

F
f2

κ2,λ
2
i

(
ŷ1)= F

f2

κ2,λ
2
i

(
ŷ2) onγ −(θ)\⋃SuppUε1/4,Mi

.

(That is, theω̃ parts coincide onγ −(θ).)
This needs not to be true on SuppUε1/4,Mi

because coefficientsµi computed in each
case are not necessarily equal.

We want to estimate the difference and, thanks to the definition ofF , it is sufficient
to check the difference of the integrals

∫

i
(∂νθ)ω̃, or equivalently

∫

i∩γ+(θ)(∂νθ)ω̃,

computed in both cases.
Consider the operatorF defined exactly asF , but with µi ≡ 0 instead of (45). We

denotewi := F
f2

κ2,λ
2
i
(ŷi ) and we have

wi = F
f2

κ2,λ
2
i
(ŷi ) onγ −(θ),

ŷi .∇wi = curlf2 in �.
(51)

Then ∫

i

wj (∂νθ) =
∫
�

wj ŷ
j .∇τi +

∫
�

τi curlf2,

for all i = 1, . . . , g andj = 1,2. So we easily obtain∣∣∣∣ ∫

i

(w1 −w2)∂νθ

∣∣∣∣� c5
[‖w1 − w2‖L2(�) + ‖w2‖L2(�)

∥∥ŷ1 − ŷ2∥∥
L2(�)

]
. (52)

(Remember̂yi in bounded inC1(�) by 2‖∇θ‖C1(�).)
Now we estimate‖w1 −w2‖L2(�) by Lemma 1. We get as previously

d ∣∣w1(s, ζ )−w2(s, ζ )
∣∣� ∣∣(ŷ1 − ŷ2).∇ curl ŷ2∣∣(s, ζ ).
ds



O. GLASS / Ann. I. H. Poincaré – AN 20 (2003) 921–946 937

”

With w1 = w2 onγ −(θ), this leads all the same way to:

‖w1 −w2‖L2(�) � c6
∥∥(ŷ1 − ŷ2).∇ curl ŷ2∥∥

L2(�)
.

Hence we deduce

|µi,1 −µi,2| � c7
[∥∥(ŷ1 − ŷ2).∇ curl ŷ2∥∥

L2(�)
+ ‖w2‖L2(�)

∥∥ŷ1 − ŷ2∥∥
L2(�)

]
.

Note moreover that‖w2‖L2(�) � ‖ curl ŷ2‖L2(�). Now we can go back to the “full
operatorF ; we have now∥∥Ff2

κ2,λ
2
i

(
ŷ1)−F

f2

κ2,λ
2
i

(
ŷ2)∥∥

L2(γ−(θ)) � c8
[∥∥(ŷ1 − ŷ2).∇ curl ŷ2∥∥

L2(�)

+ ∥∥curl ŷ2∥∥
L2(�)

∥∥ŷ1 − ŷ2∥∥
L2(�)

]
.

We have the following equation

ŷ1.∇(Ff2

κ2,λ
2
i

(
ŷ1)− F

f2

κ2,λ
2
i

(
ŷ2))= −(ŷ1 − ŷ2).∇F

f2

κ2,λ
2
i

(
ŷ2),

and using as previously Lemma 1, we get∥∥Ff2

κ2,λ
2
i

(
ŷ1)−F

f2

κ2,λ
2
i

(
ŷ2)∥∥

L2(�)

� c9
[∥∥(ŷ1 − ŷ2).∇ curl ŷ2∥∥

L2(�)
+ ∥∥curl ŷ2∥∥

L2(�)

∥∥ŷ1 − ŷ2∥∥
L2(�)

]
.

Conclusion. So finally we get:∥∥curl ŷ1 − curl ŷ2∥∥
L2(�)

� c10
[‖κ1 − κ2‖L2(γ−(θ)) + ‖f1 − f2‖C1(�)

+ ∥∥(ŷ1 − ŷ2)∇ curl ŷ2∥∥
L2(�)

+ ∥∥curl ŷ2∥∥
L2(�)

∥∥ŷ1 − ŷ2∥∥
L2(�)

]
.

Now we use Sobolev and Hölder inequalities in order to find∥∥curl ŷ1 − curl ŷ2∥∥
L2(�)

� c11
[‖κ1 − κ2‖L2(γ−(θ)) + ‖f1 − f2‖C1(�)

+ ∥∥(ŷ1 − ŷ2)∥∥
L2(�)

∥∥∇ curl ŷ2∥∥
L∞(�)

+ ∥∥curl ŷ2∥∥
L2(�)

∥∥ŷ1 − ŷ2∥∥
L2(�)

]
.

Using (49), we get

∥∥curl ŷ1 − curl ŷ2∥∥
L2(�)

� c12

[
‖κ1 − κ2‖L2(γ−(θ)) + ‖f1 − f2‖C1(�) +

g∑
i=1

∣∣λ1
i − λ2

i

∣∣]
+ K
∥∥curl ŷ1 − curl ŷ2∥∥

L2(�)

∥∥curl ŷ2∥∥
W1,∞(�)

.

So we get (48) if we can restrictM enough in order that

∥∥curl ŷ2∥∥
W1,∞(�)

� 1

2K . (53)

This is obtained as for Section 2.5, step 2. We observe again thatφyω(t,0, ·) is bounded
in theC1(�) norm, uniformly int ∈ [−2T ,2T ]. So again, the smallness of curlŷ2 for
theC1 norm inγ −(θ) propagates inside�. Hence forM small enough, we get (53).
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Remark6. – The previous proof also shows that two solutionsy1 andy2 of (1)–(2) for
the same forcef , and moreover satisfying curly1 = curly2 onγ −(θ), y1.ν = y2.ν = ∂νθ

on ∂�,
∫
� y1.∇⊥τi = ∫� y2.∇⊥τi , and for whichf , curly1|γ−(θ) and

∫
� y1.∇⊥τi are

small with respect to∂νθ , are equal. (This formulation does not involve the oper
of Section 2.)

4. Proof of Proposition 1

Before proving precisely Proposition 1, we establish some preliminary result
will be useful during the proof.

4.1. Approximation results

We will use the two following propositions:

PROPOSITION 3. – Consider� a nonempty regular bounded connected open s
C, and let us be given� a nonempty open part of its boundary∂�. We considerv ∈
C∞(∂�\�;C). Then for anyε > 0, for anyk ∈ N, there existsφ ∈ H(�)∩ C∞(�;C)

satisfying

‖φ − v‖Ck(∂�\�;C) < ε. (54)

For the proof of Proposition 3, we refer to [5].
This proposition leads to the following corollary:

COROLLARY 1. – Under the same assumptions as for Proposition3, one can
moreover require fromφ, besides(54), that either its real part or its imaginary one
exactly coincides with the one ofv on ∂�\�.

Proof of Corollary 1
Let us show this result in the case where the real parts are to be equal, and w�

meets only one connected component of the boundary, say
0. (The general case triviall
follows.)

We consider an operatorO(∂�\�)→∂� :C∞(∂�\�;R)→ C∞(∂�;R), which satisfies
for all f in C∞(∂�\�;R),

O(∂�\�)→∂�(f ) ≡ f on ∂�\�,

‖O(∂�\�)→∂�(f )‖Ci(∂�) � CO‖f ‖Ci(∂�\�), ∀i ∈ {0, . . . , k + 1},
dist(x, ∂�\�)� d, ∀x ∈ Supp[O(∂�\�)→∂�(f )] ∩�,

(55)

with d to be small enough, and for a suitable constantCO.
Givenε small enough and givenk ∈ N

∗, we consider, by Proposition 3, a holomorph
functionf , C∞-regular up to the boundary and satisfying (54) in the spaceCk+1.

We then introduce the functionψ1 ∈ C∞(�;R) as the solution of the following
Dirichlet problem: {

�ψ1 = 0 in�,

ψ = O (Re(f − v)) on ∂�.
1 (∂�\�)→∂�
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Our problem at this point, is that there does not necessarily exist a real harmonic
tionψ2 defined in�, such that the complex-valued functionψ1 + iψ2 is holomorphic in
�. Indeed, the Cauchy–Riemann equations would imply in that case that such a fu
should satisfy ∫




∂νψ1 =
∫



∂τψ2 = 0,

for any connected component
 of ∂�. Conversely, when this latter condition is satisfi
it is then sufficient (in addition to the harmonicity ofψ1) to define the holomorphi
functionψ1 + iψ2.

These Cauchy–Riemann conditions will be satisfied, if not byψ1, by a “modified
version” ofψ1, sayψ1 +ψ ′

1, where(ψ ′
1)|∂� will be supported in

�̂ := �\Supp
[
O(∂�\�)→∂�

(
Re(f − v)

)]
.

Let us denote by
1, . . . , 
g the other different connected components of∂�. One
gets, for alli ∈ {1, . . . , g},

∫

i

∂ν(ψ1 +ψ ′
1) =
∫
∂�

(ψ1 +ψ ′
1)∂ντi, (56)

where(τi)i=0,1,...,g is the family of functions inC∞(�;R) given again by (12).
The integral in the right side of (56), computed only on the part of the boun

Supp[O(∂�\�)→∂�(Re(f −v))] is completely determined by the original definition ofψ1.
We wish to equilibrate this integral computed on the support ofO(∂�\�)→∂�(Re(f − v))

by the one computed on the rest of∂�, that is,
∫
�̂
ψ ′

1∂ντi dx. It remains to prove that thi
is possible simultaneously for alli ∈ {1, . . . , g}. (The flux along the
0 component will
automatically follow.) For this, it suffices to observe that the family of(∂ντj |I )j=1,...,g,
for any intervalI nonempty and open in
0, is a free family. Indeed, all the functions
this family vanish on
0. If there existed a non-trivial linear dependence relation betw
the functions(∂ντj |I )j=1,...,g, then by harmonicity of the functionsτi , the corresponding
linear combination of theτi would vanish on the whole�. But this is impossible: fo
instance, consider traces of this combination on the other
j components.

Then, it follows from this linear independence that one can findg distinct points inI ,
sayX1, . . . ,Xg, such that the vectors:


∂ντ1(Xj)

...

∂ντg(Xj)

 for j ∈ {1, . . . , g},

are linearly independent. (This is easily done by induction.)
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Then it follows that one can find a regular functionψ ′
1 with support in�\Supp

[O(∂�\�)→∂�(Re(f − v))] and such that∫
�̂

ψ ′
1∂ντj = −

∫
Supp(O(∂�\�)→∂�(Re(f−v)))

ψ1∂ντj .

For example, one can take forψ ′
1 a linear combination of “bell functions” around theXj

(that is, functions which are very concentrated around the pointsXj ).
Once found such aψ ′

1, we can consider the holomorphic functionφ2 (C∞-regular up
to the boundary), associated toψ1 +ψ ′

1, i.e. with the following shape:

φ2 := ψ1 +ψ ′
1 + iψ2.

Thenf − φ2 will fit the requirements of Corollary 1, if one can establish that

‖φ2‖Ck(�;C) �Cε. (57)

But (57) is a consequence of (54): it follows from this inequality, from (55) and f
Schauder estimates thatψ1 is of orderε for the Ck,α(�)-norm, for anyα ∈ (0,1). It
follows thatψ ′

1 is also of orderε, since the coefficients of the so-called “bell-function
are linearly computed from the following integrals:∫

∂�

ψ1.∂ντi for i ∈ {1, . . . , g},

the coefficients of the combinations being independent ofε.
This ends the proof of Corollary 1.

4.2. Another preliminary result

We will also need the following lemma

LEMMA 2. – ConsiderI a compact connected subset, with nonempty interior,
regular not insertecting curve in the plane. Letf ∈ C∞

0 (I̊ ;R). Then for anyα ∈ (0,1),
for anyε > 0, there existsf̃ ∈ C∞(I ;R) which satisfies the following properties

Suppf̃ ⊂ I̊ , (58)∫
I

f̃ = 0, (59)

the set of all zeros off − f̃ is the union of a finite number

of intervals which have nonempty interiors, (60)

‖f̃ ‖Cα(I ;R) �K(f )ε. (61)
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Proof of Lemma 2
Given thisf , one can construct a “plateau function”D in C∞(I ;R) satisfying the

following requirements:
0 �D � 1 onI,

D ≡ 1 on Suppf,

SuppD ⊂ I̊ ,

I\(SuppD) has exactly 2 connected components.

We introduce also a functionZ ∈ C∞(R;R) satisfying:
0� Z � 1 onR,

Z ≡ 0 on[−1/2,1/2],
Z ≡ 1 on(−∞,−1] ∪ [1,+∞).

(62)

Let ε > 0 (small). By Sard’s theorem, one can chooseλ ∈ (0, ε) such thatλ is
not a critical value off . We then consider the functionF := f − λD. The zeros o
this function on Suppf are simple and (hence) isolated. Let us denote these zer
x1, . . . , xN , by ordering them increasingly onI . Then we define the function:

F2(x) = F(x)
∏
i∈I

Z

(
x − xi

ε/2

)∏
i∈J

(1 − χ[xi ,xi+1]), (63)

where we fixed

I := {1, . . . ,N}\{i ∈ {2, . . . ,N − 1} such that|xi+1 − xi−1| < 2ε
}
,

J := {i ∈ {1, . . . ,N} such that|xi+1 − xi | < 2ε
}
,

and whereχJ is the characteristic function of the intervalJ , and where we transporte
Z on I by the arc length.

It is easy to see that the functionF2 constructed this way isC∞(I )-regular. Essentially
we will definef̃ := F2 − f . We now want to show that

‖F − F2‖Cα(I ) �K(f )ε1−α. (64)

First, we remark that

‖F − F2‖C0(I ) �K(f )ε.

Indeed,F2 differs fromF only for points situated at distance at mostε from a zero of
F . It follows immediately, together with (62), that‖F −F2‖C0(I ) � (1+ ‖f ′‖C0(I ))ε.

We have yet to study the ratio

R(x, y) := |F(x) − F2(x)− F(y) +F2(y)|
|x − y|α .

For x andy such that|x − y| � ε, it follows from the previous point thatR(x, y) �
K(f )ε1−α. Now for x andy such that|x − y| < ε, one gets:
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• eitherF andF2 have identical values at pointsx andy, thenR(x, y) = 0,
• or both pointsx andy are at distance at most 2ε from a zero ofF . We then have

three possible cases:
– either x and y are both in an interval of the type[xi, xi+1] with i ∈ J , in

which caseF2 vanishes for bothx and y. Therefore in this caseR(x, y) �
‖f ′‖C0(I )ε

1−α,
– or neitherx nory are in an interval of the type[xi, xi+1] with i ∈ J ; then in (63),

the two products in the right side are reduced to at most one termZ(x − xi/
ε
2),

then we easily obtainR(x, y)�K(f )ε1−α,
– or x is not in an interval of the type[xi, xi+1] with i ∈ J , but on the contraryy

is in one of them (if needed, inversex andy). But since the functioñZ which
coincides withZ at the left of 0 and with 0 at the right of zero is all the same
classC∞, one getsR(x, y) �K(f )ε1−α as in the previous point.

In all cases, we therefore get (64).
In order to get (59), we add a function with support inI̊ , at the exterior of SuppD. We

obtain this way the functioñf . This modification also has a cost of orderε for the norm
Cα(I ).

Finally, we obtain the condition (61) (renormalizeε to get it precisely). Condition
(58) and (60) follow from the construction. This ends the proof of Lemma 2.

4.3. Back to the proof of Proposition 1

Let us denote by
0,
1, . . . , 
g the different connected components of∂�, 
0 being
the exterior one. We recall thatν is the unit outward normal vector on∂�, and we denote
by τ the unit tangent along∂� chosen in order that(τ, ν) is a direct basis of the plan
Finally, we noteH the following function:

H :

{
R

2 → C,

(x, y) �→ x − iy.

We reduce the component of� in 
0 in a strictly smaller open set�′, still regular, and
which still intersects
0. (We keep this way a kind of “margin”.) On the other connec
components of∂� (for i ∈ {1, . . . , g}), we let�′ ∩ 
i := � ∩ 
i except if� ∩ 
i = 
i ,
in which case we choose�′ ⊂⊂ �, in order to obtain generally


i\�′ �= ∅, ∀i ∈ {0, . . . , g}. (65)

Let us now define a vector fieldv on ∂�\(�′ ∩ 
0), regular (in theC∞ class).
For i ∈ {1, . . . , g}, one choosesvi ∈ C∞(
i;R

2) which satisfies the seven followin
conditions:

vi = τ on
i\�′, (66)

γ +
i (vi) := {x ∈ �′ ∩
i | vi.ν > 0} andγ −

i (vi) := {x ∈ �′ ∩ 
i | vi .ν < 0}
are nonempty, connected and have disjoint closures, (67)
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|vi| � 1 on
i, (68)

deg(vi,
i,0) = 0, (69)∫

i

vi . 
dx = 0, (70)

∫
γ−
i
(vi )

|vi .ν|dx � g, (71)

∫
γ+
i
(vi )

vi.ν dx � 1. (72)

It is easy to construct such vector fieldsvi and we remark that these vector fields alw
satisfy the property:

vi is “pointing outside”γ +
i on∂γ +

i

and “pointing inside”γ −
i on∂γ −

i , for i ∈ {1, . . . , g}.
We will denote by�i

τ the part of the boundary included in�′ ∩
i and situated betwee
γ +
i andγ −

i for i ∈ {1, . . . , g} (uniquely defined thanks to (65)). Remark that

vi .τ < 0 on�i
τ . (73)

For what concerns the
0 component, we definev0 only on
0\�′ by condition (66).
Finally, we set

v =
{
vi on
i, ∀i ∈ {1, . . . , g},
v0 on
0\�′.

(74)

Thanks to (68) and (69), one may defineW := logH(v) on ∂�\(�′ ∩ 
0).
We then use Corollary 1 onW , with ε ∈ (0,1) andk = 0, and with�′ ∩ 
0 as the

“window” in the boundary. We furthermore require that the imaginary parts sh
exactly coincide. We therefore get a functionφε ∈ H(�)∩C∞(�;C) such that

‖φε −W‖C0(∂�\(�′∩
0);C) < ε, (75)

Im(φε) = Im(W) on∂�\(�′ ∩
0). (76)

The problem is that we are no longer sure that the circulations∫

i

H−1 exp(φε) . 
dx, for i = 1, . . . , g, (77)

are exactly null (but we nevertheless know that these integrals are of orderε; let us say
they are all of modulus inferior toKε). These conditions are of course necessary in o
for the vector fieldH−1 exp(φε) to be a gradient.
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To fix this problem, we defineg functions w1, . . . ,wg in C∞(∂�\(�′ ∩ 
0);C)

satisfying the following conditions (i ∈ {1, . . . , g}):


Im(wi) = 0 on∂�\(�′ ∩ 
0),

Re(wi) = 0 on∂�\[(�′ ∩ 
0)∪�i
τ ],

Re(wi)� 0 on�i
τ ,∫

�i
τ
| Re(wi)| = 1.

(78)

We define, given a positive real numberε′, approximations in theC0 norm on
∂�\(�′ ∩ 
0) of the functionswi by Corollary 1, requiring again that the imagina
parts should exactly coincide. LetWε′

i be theg functions obtained by this process.
The idea here is to consider, instead ofφε, a function defined by the following formula

φ̃
λ1,λ2,...,λg
ε,ε′ := φε + (λ1W

ε′
1 + λ2W

ε′
2 + · · · + λgW

ε′
g

)
, (79)

theλi being real numbers, and then to findλ1, . . . , λg, small, in order that the circulation
(77) computed for̃φε,ε′ instead ofφε are null fori = 1, . . . , g. We denoteψε := exp(φε)
andψ̃ε,ε′ := exp(φ̃ε,ε′) (we omit theλi in the writing of φ̃ε,ε′ andψ̃ε,ε′).

But for λj all in [−1,1], for i ∈ {1, . . . , g}, one gets, using (68), (73) and (78):∫

i

H−1(ψε) . 
dx −
∫

i

H−1(ψ̃ε,ε′) . 
dx �
(
(1− ε)λi − Cε′) for λi ∈ [0,1], (80)

∫

i

H−1(ψ̃ε,ε′) . 
dx −
∫

i

H−1(ψε) . 
dx � −
(
(1− ε)

λi

2
−Cε′

)
for λi ∈ [−1,0], (81)

the constantC being independent ofε′, whatever the values of the othersλj ∈ [−1,1].
Indeed, we cut these integral in two: on
i\�τ

i , the “error” between the two integrals
of orderε′; on�τ

i , the “growth” of the circulation is at least of(1 − ε)λi , with still an
error of orderε′.

From now, we takeε < 1/2 and ε′ := ε
10C. Then we consider the application:

H :

{
R

g → R
g,

(λ1, . . . , λg) �→ (∫
i
H−1(ψ̃ε,ε′) . 
dx)

i=1,...,g.

We endowR
g with the norm‖(x1, . . . , xg)‖ := max(|x1|, . . . , |xg|). If we restrict the

applicationH to the sphere (in fact, the cube) with center 0 and radius 4(K + 1)ε, say
S(0,4(K +1)ε) (denote byB(0,4(K +1)ε) the corresponding ball), then from (80) a
(81), we deduce that 0 is not reached. So we can define:

H′ :
{S(0,4(K + 1)ε) → S(0,4(K + 1)ε),

λ := (λ1, . . . , λg) �→ 4(K + 1)ε H(λ) .
‖H(λ)‖
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This application is continuous and has a non-null degree – in fact, deg(H′) = 1 – (for
instance, by (80) and (81), no point is sent to its antipodal point). Hence,

∃λ̄ ∈ B
(
0,4(K + 1)ε

)
such that H(λ̄) = 0.

That is, one finds a solution of the system, with scalarsλi of orderε.
Therefore, we get a functionψ ′, holomorphic in�, C∞-regular up to the boundar

such that the integrals
∫

i
H−1(ψ ′) . 
dx, are null fori ∈ {1, . . . , g} (and hence are null als

for i = 0). When consideringH−1(ψ ′), one therefore obtains the gradient of a harmo
function, sayθ1, which satisfies (6) and (7). We have left to slightly modify this funct
in order to get (8)–(9) (which are satisfied everywhere except perhaps on
0).

This is where we use Lemma 2, withI := 
0 ∩ �, f := ∂νθ1 and with a givenε′′ to
be fixed (f is actually compactly supported, thanks to the margin we kept on�). We
hence find a certain functioñf , and define for this function the following solution of t
Neumann problem, using (59),

�θ2 = 0 in�,

∂νθ2 = f̃ on
0 ∩ �,

∂νθ2 = 0 on∂�\
0 ∩ �,∫
� θ2 = 0.

We know that|∇θ1(x)| � µ> 0 in�. Forε′′ small enough, using Schauder estima
we get

|∇θ2|(x)� µ/2 in �.

Consequently, for such anε′′, the functionθ1 − θ2 satisfies the required properties (
to (9). Finally, (10) is a consequence of the incompressibility of∇θ , of the fact that∇θ

is close tov, and of (71)–(72).
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