Ann. |. H. Poincaré — ANO, 6 (2003) 947-974
© 2003 L'Association Publications de 'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
10.1016/S0294-1449(03)00013-1/FLA

ASYMPTOTIC BEHAVIOR OF GROUND STATES
OF QUASILINEAR ELLIPTIC PROBLEMS WITH
TWO VANISHING PARAMETERS, PART Il

Filippo GAZZOLA 2* Bert PELETIERP®, Patrizia PUCCI €,
James SERRIN @

aDipartimento di Scienze T.A., via Cavour 84, 15100 Alessandria, Italy

b Mathematical Institute, Leiden University, 2300 Leiden, Netherlands
CDipartimento di Matematica e Informatica, via Vanvitelli 1, 06123 Perugia, Italy
dSchool of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Received 11 February 2002, accepted 24 October 2002

ABSTRACT. — We study the pointwise asymptotic behavior of the radially symmetric ground
state solution of a quasilinear elliptic equation involving theLaplacian inR” with two
competing parameters. Roughly speaking, the first parameteasures the distance to a critical
growth problem while the second parameiemeasures the weight of the “linear” term. We
obtain the exact asymptotic behavior of the ground state, for anynl< n, both at the origin
and outside the origin, when the equation tends to critical growth (0). We also obtain the
“equilibrium relation” betweer ands so that when they both vanish according to this relation,
ground states neither blow up nor vanish. The results of this paper complete the description begun
in [F. Gazzola, J. Serrin, Ann. Inst. H. Poincaré AN 19 (2002) 477-504].
© 2003 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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REsSUME. — Nous étudions le comportement asymptotique ponctuel de I'état fondamental a sy-
métrie radiale d’'une équation elliptique quasilinéaire contenantlaplacien eriR” avec deux
parameétres en compétition. En gros, le premier paramétresure la distance d'un probléme a
croissance critique tandis que le second paransétnesure le poids du terme “linéaire”. Nous
obtenons le comportement asymptotique exact de I'état fondamental, pourtoutd n, aussi
bien a l'origine que ailleurs, lorsque I'équation tend a la croissance critigue ). Nous
obtenons également la “relation d’équilibre” endret § de fagcon que lorsqu’ils convergent vers
0 en respectant cette relation, I'état fondamental n’explose ni ne converge vers la solution nulle.
Les résultats de ce papier complétent la description commencée en [F. Gazzola, J. Serrin, Ann.
Inst. H. Poincaré AN 19 (2002) 477-504].
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1. Introduction
In this paper we studground state®f the quasilinear elliptic equation

—Apu=—8u""t+u""t inR", (Pl‘f)

inwhich 1<m <n,m < p <m*, § > 0 and ni is the critical Sobolev exponent

nm
m* = ,
n—m

and where the degenerate Laplace operatptis defined by
A = div(|Vu|"2Vu).

Here, by aground stateve mean gositive solutiorof problem @g) in CY(R") —in the
sense of distributions — which tends to zergxds— oo. In this paper we only deal with
radially symmetric solutionf (P;j). Thus, from now on we shall mean by a ground
state aradial ground state.

We know from [10,18] that 1(’;2) admits a unigue ground state for all values of
p € (m,m*) andé > 0. On the other hand, if eithes > m* ands > 0 or§ = 0 and
p € (m,m*), then equation R;f) admits no ground state (see [13, Theorem 5] and
[12]). We observe as well that foth § = 0 andp = m*, then (P2.) possesses the one-
parameter family of ground states

Ug(x) =d[1+ D (@ *|x)" 17" (@ >0, (1.1)
in which
m n—m
(- - D=D,,,=1/knY" b,
m m—1 m—1’ ' /kn

Herem' is the Hilder conjugate of the exponenmt, while k is the power decay rate of
the fundamental solution of the equatior),u = 0.

These facts raise two questions. First, how does the groundbstaﬁeéPg) evolve
and disappear as eithér—~ 0 or p — m*. Second, do the ground statesdmit a limit
whenever botld — 0 andp — m* at a suitableequilibrium behavior To this purpose,
in [9] it has been shown that:

(A) If § — 0, thenu — 0 uniformly inRR", see [9, Theorem 1].

(B) If p — m*, thenu concentrates at the origin, i.2(0) — co andu(x) — 0 at any
point x # 0, see Fig. 1. Moreover(x) — 0 weakly inW™. (The final statement is a
direct consequence of the limit conditions (5), (6), (7), (8) in[9].)

(C) If n > m?, ifboths — 0 andp — m*, and ifs andm* — p arelinearly related then
u converges uniformly to a suitable function of the family (1.1). For positive solutions
of the Dirichlet problem for f’g) in a bounded domain, similar but somewhat simpler
phenomena have been found. For details we refer to [3,5,7,8,11,16,17] and references
therein.
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5 Veu(0) u(0)

0 4.2003005 | oo

0.2 | 4.4534773 | 9.958278
0.4 | 4.6797187 | 7.399285
0.6 | 4.8683761 | 6.285047
0.8 | 5.0476843 | 5.643483
1.0 | 5.2234980 | 5.223498
1.2 | 5.3988591 | 4.928462

0 0.2 0.4 0.6 0.8
r

Fig. 1. Graphs of the function(r) = u.(r) for § =1, n = 3, m = 2, m* = 6 and for values of
e=6-—p=0.2,04,06, 08, L0 and 12. As ¢ decreases the valuag0) of u at the origin
increase monotonically to infinity as shown in the table; conversely, the valuefooflarger
decrease monotonically to zero. The table also gives valugé&af(0), with the limiting case
& — 0included as the first entry (see Corollary 1 in Section 2Zifer3). An asymptotic formula
closely representing(0) is given byu(0) = 4.20s~Y/2 4 1.25¢1/2 — 0.216%/2.

The purpose of the present paper is to make the statements (B) and (C) more precise,
and in particular to supplement the results obtained in [9] so as to arrive at a complete
asymptotic description of the ground statejas> m* for all m € (1, n). Specifically,
writing p =m* — ¢ (¢ > 0), and fixings > 0, we shall prove the following behavior:

If n>m? thenu(0) ~ cre™*/™ ase — 0.

If n=m?, thenu(0) ~ coe~¥"|loge| ase — 0.

If n<m? thenu(0) ~ cze~¥™ ase — 0.
Herec,, ¢;, c3 are constants which can be computed explicitly in termé, @i andn
(see Theorem 1; note that the first result already appears in [9, Theorem 2]).

The difference between the cases m? andn < m? is ultimately due to the fact that
the fundamental solutiorr*, which is never inL” (R") whatever the dimensiomof the
space, nevertheless hasitth power mass concentrated at infinity whea m? though
it is integrable at the originwhile whenn > m? its mth power mass is concentrated at
the origin but isintegrable at infinity. Therefore in turn one expects that the growth of
u(0) ase — 0 would be independent af whenn < m? and would have a higher rate
whenn > m?. In consequence, a complete study of the asymptotic behaviey ldth
at the origin and outside the origin, requires very fine estimates of the speed of transfer
of mass.

In [9] the exact asymptotic behavior 8t0) was determined in the case> m? while
for n < m? only partial results were established. Moreover, the behavior of the ground
stateoutsidethe origin (i.eu(x) for x # 0) was merely estimated in [9] by an inequality,
see (3.11) below. It is our purpose in this paper to fill these gaps and to furnish a complete
description of the asymptotic behavior of the ground state-asO for all 1 < m < n.
Clearly, this description will also enable us to write down explicitly the above mentioned
equilibrium behavior whea — 0 ands — 0 simultaneously.
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The limiting form of the ground state = u. at fixed§ > 0 can conveniently be
characterized by two scalings. First, peaks in arinner regionwith radius of the order
O(a~P=m/my 'wherea = u(0) = u,(0). Writing

F=a®™/My and @(X) = o tu(x),

we obtain in the limit ag — 0 (¢ — oo) thata — U; uniformly in R”, whereU; is
defined in (1.1), namely it is the unique radial solution of the equation

—AUL=U"M"1 U0 =1, (1.2)

see Lemma 2 in Section 3.
For fixedx # 0 it was shown in [9] that:(x) tends to zero at the rate(@ /"),
Thus in theouter region|x| > 0 a natural scaling is simply

al/(’"_l)u(x).

w(x) =
Passing to the limit a& — oo we shall show thatv(x) — W(x), where W is the
solution of the homogeneous equation

AW =8W"1 x#£0 (1.3)

which behaves at the origin like the fundamental solution of the equaljpi = O,
namely

W(x) ~ Qx| ¥, (1.4)

whereQ is a positive constant which can be determined explicitly in terms ahdn
only (see Lemma 1 below).

For a detailed description of the inner and outer asymptotics, and especially their
matching asymptotic behaviowe refer to Section 8 and Fig. 2. The underlying heuristic
arguments for our results can also be considered in these terms, as we indicate in that
section.

The final ingredient in the analysis of equatio?;f][ is the Ni—Pucci—Serrin [12,14]
generalization of the Pohozaev identity for ground states

m8/u’"(x)dx :8;*__,”8 /up(x)dx, e=m" — p. (1.5)

R" R

This identity allows us to relate the central vatlue- u,(0) with the principal parameter
e. Here it is interesting to note that= m? is a critical dimension for the asymptotic
evaluation of the integral on the left in this identity (1.5). That is, as we shall see, if
n > m? one requires for this evaluation thmer asymptotic solutigrwhile when: < m?
it is the outer solutionwhich is relevant for the evaluation. The integral on the right in
(1.5) is asymptotically determined by the inner solutiondoym € (1, n).

The paper is organized as follows. In the next section we state our main asymptotic
results, Theorems 1-4. In Section 3 we set the problEﬁr) ih radial coordinates and
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recall some results from [9]. These will be the starting points for the proofs of Theorem 1

(in Section 5) and Theorem 2 (in Section 4). We first prove Theorem 2 because its
results are used in the proof of Theorem 1. The proofs of Theorems 3 and 4 are also
conseqguences of Theorem 2 and are given, respectively, in Sections 6 and 7.

2. Main results

We first keeps > 0O fixed and letp — m*. Thanks to the scaling
X
ul(x) =8_l/(p_m)u<m), (21)

which transforms equatiorPﬁ) into (Pl}), we may takeS = 1 for the rest of this section
(except Theorem 3).

In order to state the main asymptotic results for the éasel, we first introduce some
notation. We recall that the beta functi®Tt-, -) is defined by

e tafl
B(a,b):/mdt, a,b> 0.
0

It arises here in the limits for the three cases m?2, n = m? andn < m?2. In the first

case we put
2 n n—m?2\\ k/mm’
m B(_/a ) 2
B = <n< > m___n > (n>m?), (2.2)
n—m B woom

and in the second case

m'3 1/m’ )
Wy = (mB(m(m—l),m)) (n=m"). (2.3)

To formulate the limit whem < m?, we use the singular radial solutioi of the
related homogeneous equation

AW =W"1 inR"\ {0}, (2.4)

with asymptotic behavior near the origin and at infinity given by

Wx)=W(F) ~ Ap.r ™ asr—0,
(2.5)

W) =W()=o0(r*) asr— oo,

where
n—m

A = nFmEm = (2.6)

m—1
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Note thatA,,, = D%/, where D = D,, , is given in Eq. (1.1). In the special cases
whenm = 2 and when n= m? we have

A2,n = [I’l(n - 2)} ("72)/2, A 2= mm—i—l.

m,m

In Section 4 we shall prove the following result about problem (2.4)—(2.5):

LEMMA 1. - Problem(2.4—2.5)has a unique positive radial solutioff. Moreover,
the function

V(r)=rw@)
is decreasing, decays exponentially to zere as co, andV (r) > A,,, asr — 0.

Note that forn < m? we have—mk +n > 0, so by Lemma 1 the integral
o
Lyn= /r”ile(r) dr
0

is finite (e.g.,l2,3 = 3/2), and we can define the constant

nm'3  pr/n’ 1/m' )
Ymn = ( ﬁlm,n) (n <m ) (27)
k? B(.5, o

We may now formulate our first main result, thagymptotic behavior of at the origin
asp — m*:

THEOREM 1.— For all p € (m,m*), let u = u, be the unique ground state for
equation(Pl}) (i.e.8 =1). Then, writinge = m* — p, we have

Iimos"/’”’"/u(O) = Bun if n > m?,
E—>

1/m’'
: _ o 2 2.8
!ILno(|Iogg|) u0) =w, ifn=m", (2.8)
Iimosl/’"/u(O) = Ymn if n <m?,
£—

whereg,, ., w,, andy,, , have been defined {2.2), (2.3)and (2.7) respectively.

Note that the constantg,,, defined in (2.2) andy, , defined in (2.7) have the
properties

,Bm,n_)oo aSmTﬁ, Ymn —> OO aSmiﬁ.

This fact gives a further explanation for the “logarithmic” behavior in (2.8) in the case

n=m2.

In the important case: = 2 we may restate Theorem 1 explicitly as
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COROLLARY 1.—Letn >2and0<¢ < n% and letu = u, be the unique ground

2!
state of the equation

nt2 .
—Au=—u+ur—2"°% in R".

Then

o 16n(n—1) 71"2/4
n=2)/4, () —
ll[l)’loe u(0) = {(n—4)(n—2)2} if n >4,

lim  [—— u(0) = 2v6 if n =4,
e—0\ |loge|

|im0¢Eu(0) =4./12/7? if n=3.

The proof of these limits follows immediately from Theorem 1 and from standard
properties of the beta functiaB, see [1, Chapter 6].

With the help of the functiorW we may also describe thexact asymptotic behavior
of u away from the origin:

THEOREM 2. — For all p € (m, m*), letu = u, be the unique radial ground state for
the equation(P;) (8 = 1). Then, writings = m* — p, we have for all # 0,

lim [u(@] " u(x) = W), (2.9)

and

: 1/(m=1) _

|Im0[u(0)} Vu(x) =VW(x), (2.10)
whereW is the solution of probleni2.4—(2.5). The convergences are uniform outside
any neighborhood of the origin.

Whenm = 2, Eq. (2.4) is linear and may be solved in terms of Bessel functions. We
thus obtain

Wr)=—— >

I'(o)

2 (n(n -2
2 b

’ -2
) r°K,(r) forr>0, o= n—< (2.11)

where we have used the fact thiat (r) ~ %F(a)(%r)_" asr — 0" (see [1], p. 375). If
in additionn is an odd integer, then (2.9) becomes:
x|

. e
n=3, IImou(O)u(x) =32 __

x|

i e*|x|
n=>5.limu(Ou(x)= 15%2 (1 + |x])

|x[3”

i 2 x|? e !
n=7, limu(Ou(x)=235" <l+|x|+—>—,
0 3 /) IxP

2|x|? IXI3) e

5 15 X7

n=9, limu@u(x)= 637/2 (1+ x| +
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These formulas are perhaps most easily obtained by the explicit solutions of the linear
ordinary differential equation satisfied B%, namely

Vv’ n—
V'—(n—3— -V =0, V(O =Ay,=nn-2]""?
r
(see Eq. (4.23) below withe = 2).
Improving [9, Theorem 4], we can now describe more explicitly #wgiilibrium
behavior of u when bothe and§ tend to O simultaneously, in such a way thd0)
tendsneither to infinity nor to zeroThe result is as follows.

THEOREM 3. — Assumen < p < m*, and letu(x; §) be the unique radial ground
state of problen(P;) with § = §(¢), and

mm’ [ k
5(e) = ( ) e if n > m?,
Brn.n

5(8)=<i> ° if n = m?, 2.12)
wn/ |loge]

d m' qm/k .
5(e) = [( ) s} if n < m?,
Ym.n

wheree = m* — p andd is any given positive constant. Then

u(0;8(e)) >d, u(;8(e))—>U,; ase—0

uniformly onR”, whereU, is defined in(1.1).

We conclude with aharp estimation of the spika « at the origin, giving the rate at
which it becomes thinner as= u(0) — .

THEOREM 4. — Let M be any given positive constant, and {et} be the family of
radii defined by

b Ann
e = Ypql/m—1

wherea = 1 (0) andu = u, is the unigue radial ground state of proble(mj). Then
u(@r;) —> M ase— 0.

The Laplacian case = 2 gives patrticularly simple formulas, that is

r_n—24n(n—4) NG (n >4
2 n—1 MYwn-2 ’

2 e

re = 4 n=4),
M '\ 6]loge| ( )
4
1272 /e
e = _— :3 .
: 8 M (n=3
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3. Preiminaries

The existence and uniqueness of radial ground states for eqtqa’;jq)frs well known
[2,4,10,18]. We state this formally as

ProPoSITION 1. —Foralln >m >1,m < p <m* ands > Oequation(P;f) admits a
unique radial ground state = u(r), r = |x|. Moreoveru’(r) < Oforr > 0.

Aradial ground state = u(r), r = |x|, of (Pg) is in fact aC? solution of the ordinary
differential equation

’ —_— 1
(lu'1"2u") + —— /"% =8u"t —uP"t, r >0, 3.1)
r
u@®=a>0 u'0=0

for some initial valuex > 0. For our purposes the dimensiemay in fact be considered
as any real number greater thanFrom now on we refer indifferently to (3.1) or t@g).

The ground stata of (3.1) has several important properties. First, we recall the Ni—
Pucci—Serrin [12,14] generalization of the Pohozaev identity given in (1.5):

o0

nom /r'l_lu”(r) dr. (3.2)
*—¢
0

m

o0
m5/r”_1u'" rHdr=¢
0

Next, from [9] we recall the exponential decay of the ground statef’lf))t

PROPOSITION 2. — Suppose that there exist positive constanta, and o such that
the functionf e C1[0, co) satisfies the inequalities

A" fs) < —As"Y forO<s < p.
Letu be a(radial) ground state of
—Apu = f(u)
and letR be such that:(r) < p for all » > R. Letv =[A/(m — 1)]¥/™. Then
u(r) < pe’fe™ forr > R.

Moreover, there exists a constaat> 0 (depending omn, n, A and A) such that, forr
suitably large,
‘l/t/(l")| guefw, ‘l/t//(}")‘ gluefur
Proof. —See [9, Theorem 8]. O
Using a Lyapunov function introduced in [11], the following result was proved in [9]:

LEMMA 2.—Forall » >0,

1
0<z(aP™/™r) — Zu(r) < ce|logel, (3.3)
o
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where
1
[1 + (1 _ n)l/(m—l)Dsm’]k/m’ :
Herec > Ois a constantD = D,, ,, is given in(1.1), andn =™ 7 — 0ase — 0.
Proof. —These bounds follow directly from (30), (33), (49), and (59) in [9f1

Remark— The functionz(s) in Lemma 2 is the solution of the problem

z(s) = (3.4)

(snfllz/|mflz/>/ + (1 _ n)sn—lzm*,l — 0, Z(O) — 1, Z/(O) =0. (35)
Note that
Am,n —k
Z(S)<ms fOI‘s>0, (36)
and
Am,n —k
Z(S) ~ m S ass — o0. (37)

As already mentioned, part of the asymptotic results R;}r) (given in Section 2 were
previously obtained by Gazzola and Serrin [9]. More precisely, there it was proved that

Iimosk/m'"/u(O) =By ifn>m? (3.8)

Moreover, it was shown that if = m?2, then

e 1/m’'
0) ~ 1, 3.9
(fogat)  “© (3:9)
while if m < n < m?, then for appropriate positive constants
Const loge|™—""/m* < ¢¥m';,(0) < Const loge|—™/™". (3.10)
Finally, forallx £ 0
Iimo[u(O)}l/(mfl)u(x) < Ay |17 (3.11)
and
; 1/(m-1) —k—1
IImO[u(O)] |Vu(x)‘ <kApalxl . (3.12)

In (3.11) and (3.12) the convergence is uniform in closed sets which do not contain the
origin.

For later use, we state the following elementary calculus lemma for the function
g=01-y"-1 y<1, (3.13)

in which ¢ is a given positive constant.
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LEMMA 3. - We have

(i) 1f y <0, then0< g(y) <max1, 2’11+ |y|");
(i) If —1<y<0,then0< g(y) <maxw,2” —1}|yl;
(i) FO0<y<1,then0< —g(y) <maxl, d}y.

4. Proof of Lemmaland Theorem 2

In light of the scaling law (2.1) we may pat= 1.
In order to improve (3.11) and (3.12) to the form (2.9) and (2.10), we make the
substitutions

n—m
v(r) =a’ "Vl u@y, k= 1T
It is also convenient to introduce the simpler rescaling

a=u(0). (4.1)

w(r) =" Pu@r) =r*v(r). (4.2)
The functionw now obeys the equation
Apw =w"" (L1 —ul™m),
or in radial terms with primes denoting differentiation with respeat,to
(r"Yw'|" 2w =t (L= uP ). 4.3)

Note in particular that, like:, the functionsy andw depend orz, though in general this
will not be explicitly emphasized in the notation.

The first main step in the proof is to show that the family of functions v, defined
by (4.1) converges as— 0. To this end, we prove a crucial uniform upper bound.

LEMMA 4. — Whene is small enough, we have
O<vwv(r)<24,, forr=>0, (4.4)

and also,
v(r) <24, & rf e forr>1, v={2(m— 1)}_1/'". (4.5)

Proof. —Using Lemma 2, (3.6) and (3.7) and recalling the substitution (4.1) above, we

obtain
Am,n

(1 _ Olm—p)k/m
Sincea — oo anda® — 1 ase — 0, the first assertion follows.

To obtain the second bound, we apply Proposition 2 and the factutiat= v(1) <
2A,.0, 10 get

v(r) < a™ rkz(aPmmy) < af®/m forr > 0. (4.6)

w(r) <24, €' forr>1 v={2(m— l)}_l/m.
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Sincev = r*w the assertion is proved.o
We can now prove the convergence of the famibg v, ase — 0.
LEMMA 5.— Let v be the function defined bgt.1). Then, there exists a function
V e €%1(0, oo) such that(along an appropriate subsequence of valags
Iimov(r) =V(r) pointwise on(0, co) 4.7
£—>
and also uniformly outside any neighborhood of the origin. Moreover,

0<V(r)<2A,, forr=>Q0,

and V (r) decays exponentially dasr — oo.
Proof. —Observe that
U, — O[l/(m—l) [rku/ + krk—lu} .

Hence by (3.11) and (3.12) we obtain, foin any compact interval of (0, o) and for
all sufficiently smalle,

1/(m-1)
|V'(r)] < 4k—=
.

In turn, by the Ascoli-Arzela Theorem, there exists a functiore C(I) such that
v — V along an appropriate subsequence of vakugsing to 0, the convergence being
uniform onI. A standard diagonal process then proves (4.7), uniformly on any compact
subset of(0, co). The first required result then follows using the uniform exponential
decay (4.5) ofv(r) asr — oo.

The final part of the lemma is now an immediate consequence of Lemma 4.

The rest of the proof of Theorem 2 relies on various further estimates fmse — 0,
the principal goal being (4.19) and (4.20) below. We first introduce the family of radii
{p.} according to the condition

oz’"/,of =¢? 0<0h<1l (4.8)

The following lemma then holds.

LEMMA 6.— One hasp, — 0 ase — 0. Moreover
lim v(pe) = Am,n‘
e—0

Proof. —As ¢ — 0, we see from (3.8) that

2

— / .
g kM i > m?,

o~

and from (3.9), (3.10) that

—-1/m’

o e if n <m?,
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where in the second case the approximation is up to logarithmic terms which do not
affect the following argument. That — 0 ase — 0 now follows at once.
To prove the main assertion, we observe to begin with that, by (4.6),

lim SUpU(,OS) < Am,n-

£—0
Thus it remains to show
IiEnJQf V(0e) = A (4.9
By Lemma 2, we have
v(r) > —Ca" r*e|loge| + am/rkz(a(p’m)/’”r) forr > 0. (4.10)

An easy computation shows that’—"/"p, — oo ase — 0, so that by (3.7),
" pkz(@PmMp) > A, ase — 0. (4.11)
By definition, however, we have
o™ pkelloge| =7 loge. (4.12)
Thus by (4.10)—(4.12) and the fact thak® < 1, we conclude that
v(pe) > Apn —0(1) ase — 0,

and (4.9) follows. This completes the proof
We continue with two useful integral identities.

LEMMA 7.— The functionsy and w defined in(4.1) and (4.2) satisfy the following
identities:
r”_l|w’(r)|m_1 =a— /s”_lw’"_l(l —uP™™)ds, r>0,

Pe

and
1

d
_ +a1/(m—1)rk/g(X) L orso (4.13)

a tk+l’

al/m=1

v(r) = p

r

where

g =A-Y" P -1 (z<1),

y=3= (6o ia-w s (<o,
Pe

Herea = a, > 0 andb = b, are constants which depend en
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Proof. —Integration of the (radial) equation (4.3) forr) yields the first identity, with
a=a, = p" Y w'(p:)|" . Note thatz > 0 and y < g sinceu/(r), and hence alse’(r),
is negative for alk > 0.

Rewriting the first identity as

r 1/(m—1)

w'(r)y = —r**t (a — /s"_lw’"_l(l —uP™™) ds) ,

Pe
integrating overr, 1) and using the relatiom = r~*v, we obtain

1 t 1/(m-1)

v(r) =rfu() + rf / (a - /sm*lvmfl(l —uP™™) ds) t"%

r Pe
Then from the fact that

1
i dr 1—rk
tk+l - k ’

we arrive at the second identity, with= %" /k —v(1). O

The second identity is in fact arranged so that the function

1

o v\ dr

R.(ps) =a"" l)Pf/g(;) e (4.14)
Pe

tends to zero as — 0. Before proving this delicate fact, we first show that the constants

a = a, andb = b, are uniformly bounded as— 0.

LEMMA 8.— There are postive constanid,. and M* such that, fore sufficiently
small,

M_<a, <M, and |b|<M".

Proof. —Lettingr — oo in the first identity of Lemma 7, and recalling that batlind
w decay exponentially (see Lemma 4), gives

[e'e) 1 [e'e)
a= /s"*lwm*l(l— uP™™) ds < /sm*lvmflds +/s”71wm*1ds.
1

Pe Pe

Estimatingv by means of Lemma 4 and by (4.2) and (4.5), we conclude that
a < CA™.! for some constanC > 0. Next, puttingr = 1 in the second identity, we
find that

ql/m=1)

O<v() = k

- b < 2Am,n,
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so thatb is also bounded.
It remains to show that is bounded away from 0. To this end, we first assert that, for
t G (psv 1)!

13
/ (s v)"tuP=™ds < Conste?"/"=™ = o(1) ase — 0. (4.15)

Pe

Granting this assertion for the moment, it then follows from Lemma 3(i) with:
1/(m — 1) that, wheny < 0, for all z € (p., 1) we have

t 1/(m—1)
al/(m—l) + </(S U)m—lup—m dS) ‘|
Pe

< Constw™ Y 4 0(1) ase — 0.

On the other hand, when> 0, then obviously:/~Vg¢(y/a) < 0. Hence after an easy
integration,

a/m=Dg <%) < Const

R.(p.) < Consta¥™ Y 4 0(1) ase— 0.
Now puttingr = p, in (4.13), there results

q/m=1
k

Butv(p:) - A,,, ase — 0 by Lemma 6, so that

v(pp) = — bp* + R.(p.) < Consta” ™Y 1 o(1) ase— 0.

Iimigf a'/"=b > ConstA,, ,,

E—>

as required.
To prove assertion (4.15), we first use the fact that = o= "=Yr~*y(r). Then,
sincev < 24,,, andp —m =m?/(n —m) — e, we find easily that, for € (p,, 1),

t t
/(sv)mflupfm dS < a7mz/(m71)(n7m)+6/(mfl)(2Am n)pfl/s(lem)/(mfl)Jrsk dS,
Pe Pe

so that finally (recalkr® < Const)

t
/(sv)’"‘lu”"" ds < Const(a™/*p,) ™" = Const?"/"=m

Pe

where in the last equality we have taken into account the definition (4.8).0fhis
proves the assertion.O

Thanks to Lemma 8 we may prove that the important quarRitgpo.), defined in
(4.14), vanishes in the limit:

lim Re(pe) =0. (4.16)
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From the definition ok, we see that the integration variabl&s restricted to the interval
(pe, 1). Therefore, the variable = y, (¢) in (4.14) satisfies

2A m—1
—o() < y(r) < EAmn)" " .
m

the left hand inequality being due to (4.15), and the right hand following from an easy
integration.
Accordingly, by Lemma 3(ii), and Lemma 8 we get

—Constt™ < g (M) <o(D. (4.17)

a

Combining the preceding lines then gives
1
|R:(pe)| < a¥m b pk / [Constt™ % + o)t * ! dr =0(1) ase— 0,
Pe

which is (4.16), as required.
Now insertr = p, in (4.13), and lett — 0. By (4.16) and Lemmas 6 and 8 there
results
g/ m=1)
lim
e—0 k
Next, for fixedr > 0, we lete — 0 through an appropriate subsequence, so that both
v— V (by Lemma 5) and — B (for some constanB with |B| < M*, see Lemma 8).
Using (4.13), (4.18), estimate (4.15), and an easy application of dominated convergence,
then yields the principal integral equation fgr

= Apn. (4.18)

Vir)y=An,— Brf + kAn.R(r) forr >0, (4.19)

where
1

t
dr
R) =" [ g ((kAm,n)l—'" [ V)'"—lds> e
0

r

and the functiorg was defined in Lemma 7.
It is immediate from the preceding discussion titr) — 0 asr — 0. Hence
by (4.19) we get

V(r)— A,, asr—0. (4.20)

Moreover, by reversing the steps which were used to derive the integral equation (4.13),
one finds that the functiol = r*V satisfies

(rn—l|W/|m—2W/)’ — I"n_lwm_l, (421)
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that is, the radial form of (1.3) with = 1; also by (4.20) and Lemma 5
W)~ Ayr* asr—0, W) = O(r*k) asr — 0o.
In other words, we have shown that the functidngiven by
W) =r*v(@), (4.22)

whereV is the limit function introduced in Lemma 5, satisfies (2.4)—(2.5). Furthermore,
multiplying both sides of (4.7) by* then gives (2.9) on a subsequence.

We next assert that, that isr* W, is such that/ (r) > 0 and V(r) < 0 for all r > O,
and thatV is unique (and so als@). This will first of all prove Lemma 1 of Section
2, and moreover, since boti and W are unique, that it is in fact unnecessary to use
subsequences in (4.7) and (2.9).

To prove the assertion, we first note that the strict positivity’aé equivalent to the
strict positivity of W. This last result however can be shown exactly as in the proof of
[6, Proposition 1.3.2].

Next, we see from (4.21) and (4.22) tHatsatisfies the equation

m—2

1% %4
(m — 1)‘\/’ —k— {V” —(k=-1)—| —vmri=o. (4.23)
r r

To show thatV'(r) < O for r > 0, let us suppose for contradiction that there is
some pointrg > 0 whereV’(rg) > 0. Then, by Lemma 5, there must be some local
maximum pointr; > rg of V. Clearly V'(r;) = 0 so from the equation one then has
V”(ry) > 0, contradicting the fact that, is a local maximum. Similarly ifV’(rg) = 0,
thenV”(rg) > 0, and again there would be a local maximum- rg of V, giving once
more a contradiction.

In order to prove the unigueness, we write (4.23) as

% 1 /k V"
Vi=thk—1)— + —— (- — — 1% 4.24

( ) r + m—1 (r \% ) ’ ( )
where we have used the fact tHatr) > 0, V'(r) <0 for all » > 0.

Now for contradiction, assume that (4.24) admits two different solutidnand V,
such that

V]_(O) = VZ(O) = Am,n- (425)

Of course also botlr; andV, decay exponentially to 0 as— oco. From these conditions
it is easy to see that there exifts= (0, oo) such that the functiofv,(r) — Vo (r) attains
either a positive global maximum or a negative global minimurk aBy switching V,
andV, we may in fact assume th&t is a global maximum, that is

Vi(R)— Vo(R)=d >0,  VJ(R)—Vj(R)=0,  V/(R)—V}(R)<O0. (4.26)
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Leth = —V,(R) = —V/(R) so thath > 0 by what has been shown above. By subtracting
the equations (4.24) relative 1g and toV, at the point- = R, we get

Vl”(R) — VZ”(R) = <I>(V2(R) + d) — <I>(V2(R)), (4.27)
where
(s) = — (5 ﬂ)z_m
9= m—1\R s '
Also

'(s)= (k + h)l_m[k y 1>h] 0
S)=——| = + — — m—1)—|>0.
m—1\R s R s
Hence, by (4.27), we gét;’(R) — V,/(R) > 0, which contradicts (4.26). This completes
the proof of the assertion.
It remains to prove (2.10). Of course, it is enough to consider its radial version, namely

Iimoozl/('"_l)u'(r) =W'(r), a=u(0). (4.28)

Letw be asin (4.2). Since’ < 0 forr > 0, we may rewrite (4.3) as

_(rn71|w/|mfl)’ _ rnfl wm*]- _ L (4 29)
= o p—m/m-1) )° :

Now fix » > 0. By Proposition 2, integration of (4.29) ovier co) yields

n=1| ./ m—=1 __ r n—1 m—1 wp_l(t)
r |w (”)| —/t (w (t)—W dr. (4.30)

Thanks to an obvious madification of Lemma 4, we may apply Lebesgue’s Theorem to
the right-hand side of (4.30), so that by (2.9) we have

m—1

00
rn71|w/(r)|m—l N /tnlemfl(t) dr = rn71| W/(}")‘ ,

where the last equality follows by integrating (4.21). Returning to the funatidoy
means of (4.2), this proves (4.28).
The uniform convergence af’ outside any neighborhood of the origin follows at
once, since for all > 0 we have, from the last two displayed equations,
S;JJJ)Hw/(r)‘mfl _ ‘W/(r)|mfl| < dlfn </tnl|wml(t) _ Wmfl(t)| dr
r=z d

o0
4 g (e /=1 /t”—lw”—l(t) dt) _
d
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The right-side can be made arbitrarily smalloas> co when we use (2.9), completing
the proof of Theorem 2.

5. Proof of Theorem 1

The asymptotic behavior af(0) given in (2.8) forn > m? was proved in [9], see
also (3.8) above. In this section we establish this behavior form?. We treat the cases
n < m? andn = m? separately. As in the previous section, we pui 1.

5.1. Thecasen < m?

We start from the generalized Pohozaev identity (3.2). Multiplyingey = /m
and making the substitution (4.2) in the integral on the left-hand side, we obtain the
identity

m/r”_lw’"(r) dr=¢ n*— m o™/ =D /r”_lu”(r) dr. (5.1)
0 " 0
From Lemma 2 it follows that (see (52) in [9])

n

o 1 )
/rn—lup(r) dr — _/D_”/m B<—/, £> ase — 0, (5.2)
) m n m

this being valid for any: > m.

Estimating the integral on the left hand side of (5.1) is more delicate. From Lemma 5
we know that ife — 0, thenv(r) — V(r) andw () — W(r) for all » > 0, and by
Lemma 4,

2
rn—lwm(r) — rn—l—mkvm (I") < (2Am,n)m r(m —n)/(m—-1)—1 for r>0.

Hence, ifn < m? the integrand of the integral on the left in (5.1) is bounded uniformly
by a function which is integrable near the origin. By Proposition 2 it is also uniformly
bounded by a function which is integrable at infinity. Therefore, it follows from the
dominated convergence theorem that

/r"flwm(r) dr — /r"flwm (rydr=1,, ase—0. (5.3)
0 0

Putting (5.3) and (5.2) into (5.1) yields the desired limit fo& m? in Theorem 1.
5.2. Thecasen = m?

First of all we note that (3.9) yields

log? «

am

I 1
oge _, =~ and a6=1+0<
[loge| m’

ase — 0. (5.4)
)
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Whenn = m? the limit (5.2) of the right hand integral in (5.1) still holds. However
the argument used to obtain the limit of the left hand integral whenm?, now breaks
down at the origin. We therefore split this integral into two parts at the radius

Ro= Ro(e) = |loge|~2/™. (5.5)

With the help of Lemma 4 we can prove
LEMMA 9. — Letn =m?, and letR, be as in(5.5). Then

/ r" " (r)dr = O(log|loge|) ase — O.
Ro

Proof. —By the substitution (4.2) and the fact thlat=m in the present case, the
statement of the lemma is equivalent to

/ v ) dr =0O(log|loge|) ase — 0. (5.6)
-

Ro

SinceRg(e) — 0 ase — 0, we may write[ Ry, o0) = [Ro, 1] U [1, 00). By Lemma 4
we know that there exists a constant O such that

oo

/ v ) dr <c (5.7)

r

1
for all suitably smalk. On the other hand, using Lemma 4 again, we infer that

1
/ Y0 4 < (2A,2,,)" | log Ro|
r s

Ro

for ¢ sufficiently small. Therefore

1
/v ) dr =0O(log|loge|) ase — 0,
.

Ro

which, together with (5.7), proves (5.6) 0

From now on, we argue mostly in terms @finstead ofe (@ — oo if and only if
& — 0); then by (5.4) and Lemma 9, we can write (5.6) in the form

/rmzflwm (r)dr = O(logloge) asa — co. (5.8)
Ro

Next we estimate the integral over the inter@l Ry).
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LEMMA 10. — Letn =m?, and letR, be as in(5.5). Then

Ro

/rmzflwm (rdr =

0

loga

m— 1D T O(logloga) asa—oco.  (5.9)

Proof. —For convenience we write

1
[l + D(X(l’—'")/(m—l)rm’]k/m’

@(r)=

and formulate an upper and a lower bounddgt. More precisely, we claim that there
exist constants,, ¢, > 0 such that

w”(r) <™ {@" (1) +cing” N}, n=a"", (5.10)

and
w"(r) = o™ {¢"(r) — ca¢|logelg™ 1 (r)}. (5.11)

In order to prove these bounds we remark that Lemma 2 yields

u(r) <a{er)+Cn}

for some constant’ > 0. The upper bound (5.10) then follows by taking thth power
and transforming tav. On the other hand, Lemma 2 also gives

u(r) > a{e(r)— Celloge|}, (5.12)
where(C is a different positive constant. If the right-hand side of (5.11) is negative, there
is nothing to prove. If it is positive, then the right-hand side of (5.12) is also positive and

(5.11) follows by taking thenth power and transforming to.
The bounds (5.10)—(5.11) suggest to write

Ro
/rmz_lwm(r) dr=1+1J,
0
where the principal ternd is given by
Ro
I =ozmm//rm2*1(pm(r) dr.
0

We first estimatd . With the substitutions

t = DaP~m/m=Dypn'and T = pg(r=m/m=b gn’ (5.13)
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968
we obtain
Ro T
(m—l)—ld
o mm’ m2—1_m _ o " 4
I=a /r Q" (r)dr = DD | A e
0 0

SinceT — oo asa — oo ande — 0, we find that

logT
g +0(1) asa— oc.

I= m/Dm(m—l)

However, from (5.13) and definition (5.5) & it is not hard to see that

logT = " loge + O(logloge) asa — oo.
(m — 1)
Thus, finally
loga + O(logloga) asa — oc.

I= (I’I’l _ 1)Dm(mfl)
Next, we estimate the remainder tesmwhich we write as

Ro
J = /rmz—l [wm r) — C(mm/gom (I")] dr. (514)

0

1The calculation is as follows. Pat= m(m — 1) and write

ra—1 1 1 t o\ ra—1
= - 1— .
A4+ 141 1+r( (1+z))+(1+z)a+l
But
T
a1 1/ T \a 1
7(1[:_(—) < -
(1+41)a+1 a\1+4+T a
0

and by Lemma 3(iii) withy = a,

t a 1 1
1-(—) =—g(—) <maxi, .
(1+z) g<1+t) (L a) 77

Now from the three preceding lines and the fact tﬁjgt(l+ H2dt=1—(1+7T)"1<1wethus get

T

a1
/mdt :lOg(l—l—T)—Hc,
0

where maxl, a} <« < 1/a, and the result now follows.



F. GAZZOLA ET AL./Ann. I. H. Poincaré — AN 20 (2003) 947-974 969

To do this, we use the upper and lower bound (5.10)—(5.11). Both bounds involve the
integral
Ro
Jo=a"" /rmzflgam*l(r) dr, (5.15)
0
which we can write as

o™ T tm(mfl)fldt
Jo= m/ D=1 | (14 pym=-12"
0

Howevermm=D=1/(1 4 £)m=D* < ym=2 50 plainly
Jo= O(T’"_l) aso — 00.
From (5.14) and use of (5.10), (5.11) and (5.15), we get
—cpelloge| Jo < J < e Jo.

Moreover, from definitions (5.13) and (5.5) Bfand R,

m—1

Tmfl — DmflRm — — 0,
! " llogel?

whence

& ’
elloge| T" 1= D’”*l“o—gI a™ ¢ < Const
&

where (3.9) was used at the last step. Thus, findlkt O(1) ase — oo, so that
Ro I
0
O/rlnz—lwm (}") dl" = (’nTgl;xm(ml) + O(|Og |OgOl) asoa — OO,

as asserted. This completes the proof of Lemma 10.
When we substitute (5.2), (5.8) and (5.9) into (5.1) we arrive at the limit

€ . (m)® 1

m

— .
[loge| m  Bm@m—1),m)

asoa — o0,

which is equivalent to the second limit in Theorem 1.

6. Proof of Theorem 3

In this section we translate the results we obtained for equ&ﬂg}m, in which the
coefficients has been chosen equal to 1, to the solutign; §) of Eq. (P;j) in which §
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is arbitrary positive. To this end we use the scaling invariance
u(x; 8) = &Y P=my (81 mx, 1), (6.1)

From Theorem 1 we know that as— 0,

u(0; 1) ~ By e tm™ if n > m?,
u(0; 1) ~ wy (| |Ogs|/8)l/m/ if n=m?,

u(0;1) ~ Y g~ if n <m?.

Therefore, by rescaling back according to (6.1), we obtain

u(0; 8) ~ Br.n(8/6)"/ ™" if n>m?,
1(0; 8) ~ wp(|logels/e)™  if n=m?
u(0; 8) ~ Ym.n ((Sk/m/s)l/m/ if n <m?.
If § =6(e), wheres(e) is defined in (2.12), then these limits imply thgD; §(¢)) — d

in all the three cases above. The proof of Theorem 3 may now be completed as in [9,
Theorem 4].

7. Proof of Theorem 4

As ¢ — 0, the solutionu of problem(PI}) develops a spike at the origin, which
becomes progressively taller and thinner. In this section we give an estimate for the
rate at which level curves shrink to a pointsas> O.

Let u be the unique radial ground state of probleﬂ;}), and letM be a postive
number. We then define the radiusthrough

A,
re=—ra MO, (7.1)

wherea = u(0). We shall show that
u@r,) — M ase— 0. (7.2)
We first prove that, > p, for ¢ small enough. By (4.8),
k -m' -6

p=a " -, 0<6<l

Hence, by (7.1) and the asymptotic estimates (3.8), (3.9) and (3.10),

P\ A
(—6) ~ e > 00 ase — 0,
Pe M
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provideds is restricted to 6< 0 < 1/m’.?
We now use the integral equation (4.13) fom Lemma 7 to determine the limit of
u(r,) ase — 0. By (4.1) and (7.1), we have

imu(r,) = limv(r,),
e—0 0

m,n €

and by (4.13) and (4.18) we have
!anOU(rs) — Am,n + !ILnO Rs(rs)v

where

1
— gY/m=D .k & i
R.(r)=a r /g< P reeg

r

Therefore, the assertion (7.2) is proved once we have showRtl@h — 0 ase — 0.
In (4.17) we have established that for some positive congtant

—Ct" <g(%) <0(l) ase—0

foranyt € (p,, 1). Hence, since, > p,,
1
R.(re) < al/(m_l)l"f /l_k_l dr-o(l) -0

and
1
Re(rs) > —Ca =Dk / m=k=lg 5 0

Te

ase — 0. Therefore R.(r,) — 0 ase — 0, which we set out to prove.

8. Matching

In the introduction we noted that to describe the limiting form of the ground state
u = u, one can distinguish an inner and an outer region, each being associated with a
particular scaling. In this section we return to this observation and provide more details.
For simplicity one can také =1 here.

We begin with thénner region It is associated with the scaling

s=aP™/Mr and G(s) = o tu(r). (8.1)

2 Up to this point, any valué < (0, 1) would have sufficed, sa§ = 1/2; it is only here that further care
in the choice ob is required.
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Fig. 2. (Left) Graphs of the function(r) = v.(r) for n =3, m =2, § = 1 and for
e=0.2, 04, 0.6, 0.8, 1.0, and 1.2. For large the graphs decrease aslecreases to zero.
The lowest curve (dashed) is the graph of the limiting functiég) = +/3€™"; note that
V(0) = /3. (Right) Graphs of the functiofi(s) = ¥,(s) for n =3, m =2, § = 1 and for
e=0.2, 04, 0.6, 0.8, 1.0,and 1.2. For any fixedthe graphs eventually decrease a&creases
to zero. The dashed curve is the graph of the limiting functiesn) = sUx(s) = s/(1+ 3522,

note thatV (co) = +/3.

By Lemma 2, it is not hard to see that for al> O,
u(s) — Uqi(s) ase— 0, (8.2)

whereU; is defined by (1.1). That is, in the inner region, whose radius shrinks to zero
ase — 0, the solution, when normalised, converge#/io
In the outer regionwe use the scaling (see (4.1), (4.2))

v(r) = " Vrky ). (8.3)
Itis proved in Lemma 5 that (no subsequence being needed)
vir) > V() ase—0,r>0; (8.4)
see Fig. 2(left).
To show that the two limiting solution8(s) andV (r) match, we first transform the
functionv(r) to the variables, that is, we sefi(s) = v(r) andr = o~ ?~™/"g, so that

ﬁ(s) — Cl{m/(m—l)(x—(p—m)k/mskﬁ(S) — ozgk/'"skﬁ(s).

Then from (8.2),
v(s) —> \7(s) =skUi(s) ase — 0,
see Fig. 2(right).
Plainly, by the definition (1.1) ot/; together with (2.6), we have

V(s) > A, ass— oo. (8.5)
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On the other hand, by (4.20),
V(r)— A,, asr—0. (8.6)

From (8.5) and (8.6) one concludes that the limiting profiles in the inner and the outer
region match at theuter boundary of the inner region and tivner boundary of the
outer region.

The limits 3 — V andv — V can be expected intuitively, by virtue of the related
limiting differential equations (1.2) and (1.3), except that one would then only get
V(r) > Q asr — 0 for someQ > 0, see (1.4). Recalling the limit (8.5), it then
follows by heuristic matching, as above, ti@at& A, ,. While certainly suggestive, this
approach should still be clearly understood only as a heuristic procedure, requiring the
full apparatus here for a rigorous and convincing proof.
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