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ABSTRACT. – We study the pointwise asymptotic behavior of the radially symmetric gr
state solution of a quasilinear elliptic equation involving them-Laplacian inR

n with two
competing parameters. Roughly speaking, the first parameterε measures the distance to a critic
growth problem while the second parameterδ measures the weight of the “linear” term. W
obtain the exact asymptotic behavior of the ground state, for any 1<m< n, both at the origin
and outside the origin, when the equation tends to critical growth (ε → 0). We also obtain the
“equilibrium relation” betweenε andδ so that when they both vanish according to this relat
ground states neither blow up nor vanish. The results of this paper complete the descriptio
in [F. Gazzola, J. Serrin, Ann. Inst. H. Poincaré AN 19 (2002) 477–504].

Keywords:m-Laplacian; Ground states; Shooting methods; Asymptotic behavior

RÉSUMÉ. – Nous étudions le comportement asymptotique ponctuel de l’état fondamenta
métrie radiale d’une équation elliptique quasilinéaire contenant lem-Laplacien enRn avec deux
paramètres en compétition. En gros, le premier paramètreε mesure la distance d’un problème
croissance critique tandis que le second paramètreδ mesure le poids du terme “linéaire”. No
obtenons le comportement asymptotique exact de l’état fondamental, pour tout 1<m< n, aussi
bien à l’origine que ailleurs, lorsque l’équation tend à la croissance critique (ε → 0). Nous
obtenons également la “relation d’équilibre” entreε et δ de façon que lorsqu’ils convergent ve
0 en respectant cette relation, l’état fondamental n’explose ni ne converge vers la solutio
Les résultats de ce papier complètent la description commencée en [F. Gazzola, J. Serr
Inst. H. Poincaré AN 19 (2002) 477–504].
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1. Introduction

In this paper we studyground statesof the quasilinear elliptic equation

−�mu = −δum−1 + up−1 in R
n, (P δ

p )

in which 1<m< n,m< p <m∗, δ > 0 and m∗ is the critical Sobolev exponent

m∗ = nm

n−m
,

and where the degenerate Laplace operator�m is defined by

�mu = div
(|∇u|m−2∇u

)
.

Here, by aground statewe mean apositive solutionof problem (P δ
p ) in C1(Rn) – in the

sense of distributions – which tends to zero as|x| → ∞. In this paper we only deal wit
radially symmetric solutionsof (P δ

p ). Thus, from now on we shall mean by a grou
state aradial ground state.

We know from [10,18] that (P δ
p ) admits a unique ground state for all values

p ∈ (m,m∗) and δ > 0. On the other hand, if eitherp � m∗ and δ > 0 or δ = 0 and
p ∈ (m,m∗), then equation (P δ

p ) admits no ground state (see [13, Theorem 5]
[12]). We observe as well that ifboth δ = 0 andp = m∗, then (P 0

m∗ ) possesses the on
parameter family of ground states

Ud(x) = d
[
1+D

(
dm′/k|x|)m′]−k/m′

(d > 0), (1.1)

in which

m′ = m

m− 1
, k = n−m

m− 1
, D = Dm,n = 1/kn1/(m−1).

Herem′ is the H̋older conjugate of the exponentm, while k is the power decay rate o
the fundamental solution of the equation�mu= 0.

These facts raise two questions. First, how does the ground stateu of (P δ
p ) evolve

and disappear as eitherδ → 0 orp → m∗. Second, do the ground statesu admit a limit
whenever bothδ → 0 andp → m∗ at a suitableequilibrium behavior. To this purpose
in [9] it has been shown that:

(A) If δ → 0, thenu→ 0 uniformly in R
n, see [9, Theorem 1].

(B) If p → m∗, thenu concentrates at the origin, i.e.u(0) → ∞ andu(x) → 0 at any
point x �= 0, see Fig. 1. Moreover,u(x) → 0 weakly inW 1,m. (The final statement is
direct consequence of the limit conditions (5), (6), (7), (8) in [9].)

(C) If n >m2, if both δ → 0 andp → m∗, and ifδ andm∗−p arelinearly related, then
u converges uniformly to a suitable function of the family (1.1). For positive solut
of the Dirichlet problem for (P δ

p ) in a bounded domain, similar but somewhat simp
phenomena have been found. For details we refer to [3,5,7,8,11,16,17] and refe
therein.
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Fig. 1. Graphs of the functionu(r) = uε(r) for δ = 1, n = 3, m = 2, m∗ = 6 and for values o
ε = 6 − p = 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2. As ε decreases the valuesu(0) of u at the origin
increase monotonically to infinity as shown in the table; conversely, the values ofu for larger
decrease monotonically to zero. The table also gives values of

√
ε u(0), with the limiting case

ε → 0 included as the first entry (see Corollary 1 in Section 2 forn= 3). An asymptotic formula
closely representingu(0) is given byu(0)= 4.20ε−1/2 + 1.25ε1/2 − 0.21ε3/2.

The purpose of the present paper is to make the statements (B) and (C) more p
and in particular to supplement the results obtained in [9] so as to arrive at a com
asymptotic description of the ground state asp → m∗ for all m ∈ (1, n). Specifically,
writing p = m∗ − ε (ε > 0), and fixingδ > 0, we shall prove the following behavior:

If n >m2, thenu(0) ∼ c1ε
−k/mm′

asε → 0.
If n =m2, thenu(0) ∼ c2ε

−1/m′ | logε| asε → 0.
If n <m2, thenu(0) ∼ c3ε

−1/m′
asε → 0.

Herec1, c2, c3 are constants which can be computed explicitly in terms ofδ, m andn
(see Theorem 1; note that the first result already appears in [9, Theorem 2]).

The difference between the casesn >m2 andn �m2 is ultimately due to the fact tha
the fundamental solutionr−k , which is never inLm(Rn) whatever the dimensionn of the
space, nevertheless has itsmth power mass concentrated at infinity whenn <m2 though
it is integrable at the origin; while whenn > m2 its mth power mass is concentrated
the origin but isintegrable at infinity. Therefore in turn one expects that the growt
u(0) asε → 0 would be independent ofn whenn < m2 and would have a higher ra
whenn > m2. In consequence, a complete study of the asymptotic behavior ofu, both
at the origin and outside the origin, requires very fine estimates of the speed of tr
of mass.

In [9] the exact asymptotic behavior ofu(0) was determined in the casen >m2 while
for n � m2 only partial results were established. Moreover, the behavior of the gr
stateoutsidethe origin (i.e.u(x) for x �= 0) was merely estimated in [9] by an inequali
see (3.11) below. It is our purpose in this paper to fill these gaps and to furnish a co
description of the asymptotic behavior of the ground state asε → 0 for all 1<m< n.
Clearly, this description will also enable us to write down explicitly the above menti
equilibrium behavior whenε → 0 andδ → 0 simultaneously.
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The limiting form of the ground stateu = uε at fixed δ > 0 can conveniently b
characterized by two scalings. First,uε peaks in aninner regionwith radius of the orde
O(α−(p−m)/m), whereα = u(0) = uε(0). Writing

x̃ = α(p−m)/mx and ũ(x̃) = α−1u(x),

we obtain in the limit asε → 0 (α → ∞) that ũ → U1 uniformly in R
n, whereU1 is

defined in (1.1), namely it is the unique radial solution of the equation

−�mU1 = Um∗−1
1 , U1(0) = 1; (1.2)

see Lemma 2 in Section 3.
For fixedx �= 0 it was shown in [9] thatu(x) tends to zero at the rate O(α−1/(m−1)).

Thus in theouter region|x| > 0 a natural scaling is simply

w(x) = α1/(m−1)u(x).

Passing to the limit asα → ∞ we shall show thatw(x) → W(x), whereW is the
solution of the homogeneous equation

�mW = δWm−1, x �= 0 (1.3)

which behaves at the origin like the fundamental solution of the equation�mu = 0,
namely

W(x) ∼ Q|x|−k, (1.4)

whereQ is a positive constant which can be determined explicitly in terms ofm andn
only (see Lemma 1 below).

For a detailed description of the inner and outer asymptotics, and especially
matching asymptotic behavior, we refer to Section 8 and Fig. 2. The underlying heuri
arguments for our results can also be considered in these terms, as we indicate
section.

The final ingredient in the analysis of equation (P δ
p ) is the Ni–Pucci–Serrin [12,14

generalization of the Pohozaev identity for ground statesu,

mδ

∫
Rn

um(x)dx = ε
n−m

m∗ − ε

∫
Rn

up(x)dx, ε = m∗ − p. (1.5)

This identity allows us to relate the central valueα = uε(0) with the principal paramete
ε. Here it is interesting to note thatn = m2 is a critical dimension for the asymptot
evaluation of the integral on the left in this identity (1.5). That is, as we shall se
n >m2 one requires for this evaluation theinner asymptotic solution, while whenn <m2

it is theouter solutionwhich is relevant for the evaluation. The integral on the righ
(1.5) is asymptotically determined by the inner solution foranym ∈ (1, n).

The paper is organized as follows. In the next section we state our main asym
results, Theorems 1–4. In Section 3 we set the problem (P δ) in radial coordinates an
p
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recall some results from [9]. These will be the starting points for the proofs of Theo
(in Section 5) and Theorem 2 (in Section 4). We first prove Theorem 2 becau
results are used in the proof of Theorem 1. The proofs of Theorems 3 and 4 a
consequences of Theorem 2 and are given, respectively, in Sections 6 and 7.

2. Main results

We first keepδ > 0 fixed and letp → m∗. Thanks to the scaling

u1(x) = δ−1/(p−m)u

(
x

δ1/m

)
, (2.1)

which transforms equation (P δ
p ) into (P 1

p ), we may takeδ = 1 for the rest of this sectio
(except Theorem 3).

In order to state the main asymptotic results for the caseδ = 1, we first introduce som
notation. We recall that the beta functionB(·, ·) is defined by

B(a, b) =
∞∫

0

ta−1

(1+ t)a+b
dt, a, b > 0.

It arises here in the limits for the three casesn > m2, n = m2 andn < m2. In the first
case we put

βm,n =
(
n

(
m

n−m

)2 B( n
m′ ,

n−m2

m
)

B( n
m′ ,

n
m
)

)k/mm′ (
n >m2), (2.2)

and in the second case

ωm =
(

m′3

mB(m(m− 1),m)

)1/m′ (
n= m2). (2.3)

To formulate the limit whenn < m2, we use the singular radial solutionW of the
related homogeneous equation

�mW = Wm−1 in R
n \ {0}, (2.4)

with asymptotic behavior near the origin and at infinity given by

W(x) = W(r) ∼ Am,nr
−k asr → 0,

W(x) = W(r) = o
(
r−k
)

asr → ∞,

(2.5)

where

Am,n = nk/mkk/m
′
, k = n−m

. (2.6)

m− 1
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Note thatAm,n = D−k/m′
, whereD = Dm,n is given in Eq. (1.1). In the special cas

whenm = 2 and when n= m2 we have

A2,n = [
n(n− 2)

](n−2)/2
, Am,m2 =mm+1.

In Section 4 we shall prove the following result about problem (2.4)–(2.5):

LEMMA 1. – Problem(2.4)–(2.5)has a unique positive radial solutionW . Moreover,
the function

V (r) = rkW(r)

is decreasing, decays exponentially to zero asr → ∞, andV (r) →Am,n asr → 0.

Note that forn <m2 we have−mk + n > 0, so by Lemma 1 the integral

Im,n =
∞∫

0

rn−1Wm(r)dr

is finite (e.g.,I2,3 = 3/2), and we can define the constant

γm,n =
(
nm′3

k2

Dn/m′

B( n
m′ ,

n
m
)
Im,n

)1/m′ (
n <m2). (2.7)

We may now formulate our first main result, theasymptotic behavior ofu at the origin
asp →m∗:

THEOREM 1. – For all p ∈ (m,m∗), let u = uε be the unique ground state fo
equation(P 1

p ) (i.e. δ = 1). Then, writingε = m∗ − p, we have

lim
ε→0

εk/mm′
u(0) = βm,n if n >m2,

lim
ε→0

(
ε

| logε|
)1/m′

u(0) = ωm if n= m2,

lim
ε→0

ε1/m′
u(0) = γm,n if n <m2,

(2.8)

whereβm,n, ωm andγm,n have been defined in(2.2), (2.3)and (2.7) respectively.

Note that the constantsβm,n defined in (2.2) andγm,n defined in (2.7) have th
properties

βm,n → ∞ asm ↑ √
n, γm,n → ∞ asm ↓ √

n.

This fact gives a further explanation for the “logarithmic” behavior in (2.8) in the
n= m2.

In the important casem = 2 we may restate Theorem 1 explicitly as
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COROLLARY 1. –Let n > 2 and 0< ε < 4
n−2, and letu = uε be the unique groun

state of the equation

−�u= −u+ u
n+2
n−2−ε in R

n.

Then

lim
ε→0

ε(n−2)/4u(0) =
[

16n(n− 1)

(n− 4)(n− 2)2

](n−2)/4

if n > 4,

lim
ε→0

√
ε

| logε| u(0) = 2
√

6 if n= 4,

lim
ε→0

√
ε u(0) = 4 4

√
12/π2 if n= 3.

The proof of these limits follows immediately from Theorem 1 and from stan
properties of the beta functionB, see [1, Chapter 6].

With the help of the functionW we may also describe theexact asymptotic behavio
of u away from the origin:

THEOREM 2. – For all p ∈ (m,m∗), let u= uε be the unique radial ground state fo
the equation(P 1

p ) (δ = 1). Then, writingε = m∗ − p, we have for allx �= 0,

lim
ε→0

[
u(0)

]1/(m−1)
u(x) = W(x), (2.9)

and

lim
ε→0

[
u(0)

]1/(m−1)∇u(x) = ∇W(x), (2.10)

whereW is the solution of problem(2.4)–(2.5). The convergences are uniform outs
any neighborhood of the origin.

Whenm = 2, Eq. (2.4) is linear and may be solved in terms of Bessel functions
thus obtain

W(r) = 2

)(σ )

(
n(n− 2)

2

)σ

r−σKσ (r) for r > 0, σ = n− 2

2
, (2.11)

where we have used the fact thatKσ (r) ∼ 1
2)(σ )(

1
2r)

−σ asr → 0+ (see [1], p. 375). If
in additionn is an odd integer, then (2.9) becomes:

n = 3, lim
ε→0

u(0)u(x) = 31/2 e−|x|

|x| ,

n = 5, lim
ε→0

u(0)u(x) = 153/2 (1+ |x|)e−|x|

|x|3 ,

n = 7, lim
ε→0

u(0)u(x) = 355/2
(

1+ |x| + |x|2
3

)
e−|x|

|x|5 ,

n = 9, lim
ε→0

u(0)u(x) = 637/2
(

1+ |x| + 2|x|2 + |x|3)e−|x|
7
.

5 15 |x|
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These formulas are perhaps most easily obtained by the explicit solutions of the
ordinary differential equation satisfied byV , namely

V ′′ − (n− 3)
V ′

r
− V = 0, V (0) = A2,n = [

n(n− 2)
](n−2)/2

(see Eq. (4.23) below withm = 2).
Improving [9, Theorem 4], we can now describe more explicitly theequilibrium

behavior of u when bothε and δ tend to 0 simultaneously, in such a way thatu(0)
tendsneither to infinity nor to zero. The result is as follows.

THEOREM 3. – Assumem < p < m∗, and letu(x; δ) be the unique radial groun
state of problem(P δ

p) with δ = δ(ε), and

δ(ε) =
(

d

βm,n

)mm′/k
ε if n >m2,

δ(ε) =
(

d

ωm

)m′
ε

| logε| if n= m2,

δ(ε) =
[(

d

γm,n

)m′

ε

]m/k

if n <m2,

(2.12)

whereε = m∗ − p andd is any given positive constant. Then

u
(
0; δ(ε))→ d, u

(·; δ(ε))→ Ud asε → 0

uniformly onR
n, whereUd is defined in(1.1).

We conclude with asharp estimation of the spikeof u at the origin, giving the rate a
which it becomes thinner asα = u(0) → ∞.

THEOREM 4. – Let M be any given positive constant, and let{rε} be the family of
radii defined by

rkε = Am,n

Mα1/(m−1)
,

whereα = u(0) andu = uε is the unique radial ground state of problem(P 1
p ). Then

u(rε) →M asε → 0.

The Laplacian casem = 2 gives particularly simple formulas, that is

rε = n− 2

2
4

√
n(n− 4)

n− 1

4
√
ε

M1/(n−2)
(n > 4),

rε = 2√
M

4

√
ε

6| logε| (n= 4),

rε =
4
√

12π2

8

√
ε

M
(n= 3).
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[9]:
3. Preliminaries

The existence and uniqueness of radial ground states for equation(P δ
p) is well known

[2,4,10,18]. We state this formally as

PROPOSITION 1. – For all n >m> 1, m< p <m∗ andδ > 0 equation(P δ
p) admits

unique radial ground stateu= u(r), r = |x|. Moreoveru′(r) < 0 for r > 0.

A radial ground stateu= u(r), r = |x|, of (P δ
p ) is in fact aC1 solution of the ordinary

differential equation



(|u′|m−2u′)′ + n− 1

r
|u′|m−2u′ = δum−1 − up−1, r > 0,

u(0) = α > 0, u′(0) = 0
(3.1)

for some initial valueα > 0. For our purposes the dimensionn may in fact be considere
as any real number greater thanm. From now on we refer indifferently to (3.1) or to (P δ

p ).
The ground stateu of (3.1) has several important properties. First, we recall the

Pucci–Serrin [12,14] generalization of the Pohozaev identity given in (1.5):

mδ

∞∫
0

rn−1um(r)dr = ε
n−m

m∗ − ε

∞∫
0

rn−1up(r)dr. (3.2)

Next, from [9] we recall the exponential decay of the ground states of(P δ
p):

PROPOSITION 2. – Suppose that there exist positive constantsλ, ., andρ such that
the functionf ∈ C1[0,∞) satisfies the inequalities

−λsm−1 � f (s) � −.sm−1 for 0< s < ρ.

Letu be a(radial) ground state of

−�mu= f (u)

and letR be such thatu(r) � ρ for all r � R. Letν = [./(m− 1)]1/m. Then

u(r) � ρeνRe−νr for r �R.

Moreover, there exists a constantµ > 0 (depending onm, n, λ and.) such that, forr
suitably large, ∣∣u′(r)

∣∣� µe−νr ,
∣∣u′′(r)

∣∣� µe−νr .

Proof. –See [9, Theorem 8]. ✷
Using a Lyapunov function introduced in [11], the following result was proved in

LEMMA 2. – For all r � 0,

0< z
(
α(p−m)/mr

)− 1
u(r) < cε| logε|, (3.3)
α
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where

z(s) = 1

[1+ (1− η)1/(m−1)Dsm
′ ]k/m′ . (3.4)

Herec > 0 is a constant,D = Dm,n is given in(1.1), andη = αm−p → 0 asε → 0.

Proof. –These bounds follow directly from (30), (33), (49), and (59) in [9].✷
Remark. – The functionz(s) in Lemma 2 is the solution of the problem

(
sn−1|z′|m−1z′)′ + (1− η)sn−1zm

∗−1 = 0, z(0)= 1, z′(0) = 0. (3.5)

Note that

z(s) <
Am,n

(1− αm−p)k/m
s−k for s > 0, (3.6)

and

z(s) ∼ Am,n

(1− αm−p)k/m
s−k ass → ∞. (3.7)

As already mentioned, part of the asymptotic results for (P 1
p ) given in Section 2 were

previously obtained by Gazzola and Serrin [9]. More precisely, there it was proved

lim
ε→0

εk/mm′
u(0) = βm,n if n >m2. (3.8)

Moreover, it was shown that ifn= m2, then

(
ε

| logε|
)1/m′

u(0) ≈ 1, (3.9)

while if m< n<m2, then for appropriate positive constants

Const| logε|(n−m2)/m2 � ε1/m′
u(0) � Const| logε|(n−m)/m2

. (3.10)

Finally, for all x �= 0

lim
ε→0

[
u(0)

]1/(m−1)
u(x) � Am,n |x|−k (3.11)

and

lim
ε→0

[
u(0)

]1/(m−1)∣∣∇u(x)
∣∣� kAm,n|x|−k−1. (3.12)

In (3.11) and (3.12) the convergence is uniform in closed sets which do not conta
origin.

For later use, we state the following elementary calculus lemma for the function

g(y) = (1− y)ϑ − 1, y < 1, (3.13)

in whichϑ is a given positive constant.
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LEMMA 3. – We have
(i) If y < 0, then0� g(y) � max{1,2ϑ−1}(1+ |y|ϑ );
(ii) If −1< y < 0, then0 � g(y) � max{ϑ,2ϑ − 1}|y|;
(iii) If 0< y < 1, then0 � −g(y) � max{1, ϑ}y.

4. Proof of Lemma 1 and Theorem 2

In light of the scaling law (2.1) we may putδ = 1.
In order to improve (3.11) and (3.12) to the form (2.9) and (2.10), we make

substitutions

v(r) = α1/(m−1) rk u(r), k = n−m

m− 1
, α = u(0). (4.1)

It is also convenient to introduce the simpler rescaling

w(r) = α1/(m−1)u(r) = r−kv(r). (4.2)

The functionw now obeys the equation

�mw =wm−1(1− up−m
)
,

or in radial terms with primes denoting differentiation with respect tor ,

(
rn−1|w′|m−2w′)′ = rn−1wm−1(1− up−m

)
. (4.3)

Note in particular that, likeu, the functionsv andw depend onε, though in general thi
will not be explicitly emphasized in the notation.

The first main step in the proof is to show that the family of functionsv = vε defined
by (4.1) converges asε → 0. To this end, we prove a crucial uniform upper bound.

LEMMA 4. – Whenε is small enough, we have

0< v(r) � 2Am,n for r > 0, (4.4)

and also,

v(r) � 2Am,neν rk e−νr for r > 1, ν = {
2(m− 1)

}−1/m
. (4.5)

Proof. –Using Lemma 2, (3.6) and (3.7) and recalling the substitution (4.1) abov
obtain

v(r) < αm′
rkz
(
α(p−m)/mr

)
<

Am,n

(1− αm−p)k/m
αε(k/m) for r > 0. (4.6)

Sinceα → ∞ andαε → 1 asε → 0, the first assertion follows.
To obtain the second bound, we apply Proposition 2 and the fact thatw(1) = v(1) �

2Am,n, to get

w(r) � 2Am,ne
ν e−νr for r > 1, ν = {

2(m− 1)
}−1/m

.
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Sincev = rkw the assertion is proved.✷
We can now prove the convergence of the familyv = vε asε → 0.

LEMMA 5. – Let v be the function defined by(4.1). Then, there exists a functio
V ∈ C0,1(0,∞) such that(along an appropriate subsequence of valuesε)

lim
ε→0

v(r) = V (r) pointwise on(0,∞) (4.7)

and also uniformly outside any neighborhood of the origin. Moreover,

0� V (r) � 2Am,n for r > 0,

andV (r) decays exponentially to0 asr → ∞.

Proof. –Observe that

v′ = α1/(m−1)[rku′ + krk−1u
]
.

Hence by (3.11) and (3.12) we obtain, forr in any compact intervalI of (0,∞) and for
all sufficiently smallε,

∣∣v′(r)
∣∣� 4k

A1/(m−1)
m,n

r
.

In turn, by the Ascoli–Arzelà Theorem, there exists a functionV ∈ C(I) such that
v → V along an appropriate subsequence of valuesε going to 0, the convergence bei
uniform onI . A standard diagonal process then proves (4.7), uniformly on any com
subset of(0,∞). The first required result then follows using the uniform exponen
decay (4.5) ofv(r) asr → ∞.

The final part of the lemma is now an immediate consequence of Lemma 4.✷
The rest of the proof of Theorem 2 relies on various further estimates forvε asε → 0,

the principal goal being (4.19) and (4.20) below. We first introduce the family of
{ρε} according to the condition

αm′
ρk
ε = ε−θ , 0< θ < 1. (4.8)

The following lemma then holds.

LEMMA 6. – One hasρε → 0 asε → 0. Moreover

lim
ε→0

v(ρε) = Am,n.

Proof. –As ε → 0, we see from (3.8) that

α ≈ ε−k/mm′
if n >m2,

and from (3.9), (3.10) that

α ≈ ε−1/m′
if n �m2,
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where in the second case the approximation is up to logarithmic terms which d
affect the following argument. Thatρε → 0 asε → 0 now follows at once.

To prove the main assertion, we observe to begin with that, by (4.6),

lim sup
ε→0

v(ρε) �Am,n.

Thus it remains to show

lim inf
ε→0

v(ρε) � Am,n. (4.9)

By Lemma 2, we have

v(r) > −Cαm′
rkε| logε| + αm′

rkz
(
α(p−m)/mr

)
for r > 0. (4.10)

An easy computation shows thatα(p−m)/mρε → ∞ asε → 0, so that by (3.7),

αm′
ρk
ε z
(
α(p−m)/mρε

)→ Am,n asε → 0. (4.11)

By definition, however, we have

αm′
ρk
ε ε| logε| = ε1−θ | logε|. (4.12)

Thus by (4.10)–(4.12) and the fact that 0< θ < 1, we conclude that

v(ρε) > Am,n − o(1) asε → 0,

and (4.9) follows. This completes the proof.✷
We continue with two useful integral identities.

LEMMA 7. – The functionsv andw defined in(4.1) and (4.2) satisfy the following
identities:

rn−1∣∣w′(r)
∣∣m−1 = a −

r∫
ρε

sn−1wm−1(1− up−m
)

ds, r > 0,

and

v(r) = a1/(m−1)

k
− brk + a1/(m−1)rk

1∫
r

g

(
y

a

)
dt

tk+1
, r > 0, (4.13)

where

g(z)= (1− z)1/(m−1) − 1 (z < 1),

y = yε(t) =
t∫

ρε

(s v)m−1(1− up−m
)

ds (y < a).

Herea = aε > 0 andb = bε are constants which depend onε.
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Proof. –Integration of the (radial) equation (4.3) forw(r) yields the first identity, with
a = aε = ρn−1

ε |w′(ρε)|m−1. Note thata > 0 and y < a, sinceu′(r), and hence alsow′(r),
is negative for allr > 0.

Rewriting the first identity as

w′(r) = −r−k−1

(
a −

r∫
ρε

sn−1wm−1(1− up−m
)

ds

)1/(m−1)

,

integrating over(r,1) and using the relationw = r−kv, we obtain

v(r) = rkv(1)+ rk
1∫

r

(
a −

t∫
ρε

sm−1vm−1(1− up−m
)

ds

)1/(m−1)
dt

tk+1
.

Then from the fact that

rk
1∫

r

dt

tk+1
= 1− rk

k
,

we arrive at the second identity, withb = a1/(m−1)/k − v(1). ✷
The second identity is in fact arranged so that the function

Rε(ρε) = a1/(m−1)ρk
ε

1∫
ρε

g

(
y

a

)
dt

tk+1
(4.14)

tends to zero asε → 0. Before proving this delicate fact, we first show that the const
a = aε andb = bε are uniformly bounded asε → 0.

LEMMA 8. – There are postive constantsM± and M∗ such that, forε sufficiently
small,

M− < aε <M+ and |bε| <M∗.

Proof. –Letting r → ∞ in the first identity of Lemma 7, and recalling that bothv and
w decay exponentially (see Lemma 4), gives

a =
∞∫

ρε

sn−1wm−1(1− up−m
)
ds �

1∫
ρε

sm−1vm−1 ds +
∞∫

1

sn−1wm−1 ds.

Estimating v by means of Lemma 4 andw by (4.2) and (4.5), we conclude th
a � CAm−1

m,n for some constantC > 0. Next, puttingr = 1 in the second identity, w
find that

0< v(1) = a1/(m−1)

− b � 2Am,n,

k
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so thatb is also bounded.
It remains to show thata is bounded away from 0. To this end, we first assert that

t ∈ (ρε,1),

t∫
ρε

(s v)m−1up−m ds � Constεθm/(n−m) = o(1) asε → 0. (4.15)

Granting this assertion for the moment, it then follows from Lemma 3(i) withϑ =
1/(m− 1) that, wheny < 0, for all t ∈ (ρε,1) we have

a1/(m−1)g

(
y

a

)
� Const

[
a1/(m−1) +

( t∫
ρε

(s v)m−1up−m ds

)1/(m−1)]

� Consta1/(m−1) + o(1) asε → 0.

On the other hand, wheny > 0, then obviouslya1/(m−1)g(y/a) < 0. Hence after an eas
integration,

Rε(ρε) � Consta1/(m−1) + o(1) asε → 0.

Now puttingr = ρε in (4.13), there results

v(ρε) = a1/(m−1)

k
− bρk

ε +Rε(ρε) � Consta1/(m−1) + o(1) asε → 0.

But v(ρε) → Am,n asε → 0 by Lemma 6, so that

lim inf
ε→0

a1/(m−1) � ConstAm,n,

as required.
To prove assertion (4.15), we first use the fact thatu(r) = α−1/(m−1)r−kv(r). Then,

sincev � 2Am,n andp −m = m2/(n−m)− ε, we find easily that, fort ∈ (ρε,1),

t∫
ρε

(sv)m−1up−m ds � α−m2/(m−1)(n−m)+ε/(m−1)(2Am,n)
p−1

t∫
ρε

s(1−2m)/(m−1)+εk ds,

so that finally (recallαε � Const)

t∫
ρε

(sv)m−1up−m ds � Const
(
αm′/kρε

)−m′ = Constεθm/(n−m),

where in the last equality we have taken into account the definition (4.8) ofρε. This
proves the assertion.✷

Thanks to Lemma 8 we may prove that the important quantityRε(ρε), defined in
(4.14), vanishes in the limit:

lim Rε(ρε)= 0. (4.16)

ε→0
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(4.13),
From the definition ofRε we see that the integration variablet is restricted to the interva
(ρε,1). Therefore, the variabley = yε(t) in (4.14) satisfies

−o(1) � y(t) � (2Am,n)
m−1

m
tm,

the left hand inequality being due to (4.15), and the right hand following from an
integration.

Accordingly, by Lemma 3(ii), and Lemma 8 we get

−Consttm � g

(
y(t)

a

)
� o(1). (4.17)

Combining the preceding lines then gives

∣∣Rε(ρε)
∣∣� a1/(m−1)ρk

ε

1∫
ρε

[
Consttm−k−1 + o(1)t−k−1]dt = o(1) asε → 0,

which is (4.16), as required.
Now insertr = ρε in (4.13), and letε → 0. By (4.16) and Lemmas 6 and 8 the

results

lim
ε→0

a1/(m−1)

k
= Am,n. (4.18)

Next, for fixedr > 0, we letε → 0 through an appropriate subsequence, so that
v → V (by Lemma 5) andb → B (for some constantB with |B| � M∗, see Lemma 8)
Using (4.13), (4.18), estimate (4.15), and an easy application of dominated conver
then yields the principal integral equation forV :

V (r) =Am,n −Brk + kAm,nR(r) for r > 0, (4.19)

where

R(r) = rk
1∫

r

g

(
(kAm,n)

1−m

t∫
0

(s V )m−1 ds

)
dt

tk+1
,

and the functiong was defined in Lemma 7.
It is immediate from the preceding discussion thatR(r) → 0 as r → 0. Hence

by (4.19) we get

V (r) → Am,n asr → 0. (4.20)

Moreover, by reversing the steps which were used to derive the integral equation
one finds that the functionW = r−kV satisfies

(
rn−1|W ′|m−2W ′)′ = rn−1Wm−1, (4.21)
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that is, the radial form of (1.3) withδ = 1; also by (4.20) and Lemma 5

W(r) ∼ Am,nr
−k asr → 0, W(r) = o

(
r−k
)

asr → ∞.

In other words, we have shown that the functionW given by

W(r) = r−kV (r), (4.22)

whereV is the limit function introduced in Lemma 5, satisfies (2.4)–(2.5). Furtherm
multiplying both sides of (4.7) byr−k then gives (2.9) on a subsequence.

We next assert thatV , that isrkW , is such thatV (r) > 0 and V′(r) < 0 for all r > 0,
and thatV is unique (and so alsoW ). This will first of all prove Lemma 1 of Sectio
2, and moreover, since bothV andW are unique, that it is in fact unnecessary to
subsequences in (4.7) and (2.9).

To prove the assertion, we first note that the strict positivity ofV is equivalent to the
strict positivity ofW . This last result however can be shown exactly as in the pro
[6, Proposition 1.3.2].

Next, we see from (4.21) and (4.22) thatV satisfies the equation

(m− 1)
∣∣∣∣V ′ − k

V

r

∣∣∣∣
m−2 [

V ′′ − (k − 1)
V ′

r

]
− V m−1 = 0. (4.23)

To show thatV ′(r) < 0 for r > 0, let us suppose for contradiction that there
some pointr0 > 0 whereV ′(r0) > 0. Then, by Lemma 5, there must be some lo
maximum pointr1 > r0 of V . Clearly V ′(r1) = 0 so from the equation one then h
V ′′(r1) > 0, contradicting the fact thatr1 is a local maximum. Similarly ifV ′(r0) = 0,
thenV ′′(r0) > 0, and again there would be a local maximumr1 > r0 of V , giving once
more a contradiction.

In order to prove the uniqueness, we write (4.23) as

V ′′ = (k − 1)
V ′

r
+ 1

m− 1

(
k

r
− V ′

V

)2−m

V, (4.24)

where we have used the fact thatV (r) > 0,V ′(r) < 0 for all r > 0.
Now for contradiction, assume that (4.24) admits two different solutionsV1 andV2

such that

V1(0) = V2(0) = Am,n. (4.25)

Of course also bothV1 andV2 decay exponentially to 0 asr → ∞. From these condition
it is easy to see that there existsR ∈ (0,∞) such that the functionV1(r) − V2(r) attains
either a positive global maximum or a negative global minimum atR. By switchingV1

andV2 we may in fact assume thatR is a global maximum, that is

V1(R)− V2(R)= d > 0, V ′(R)− V ′(R)= 0, V ′′(R)− V ′′(R)� 0. (4.26)
1 2 1 2
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2(R) = −V ′

1(R) so thath > 0 by what has been shown above. By subtrac
the equations (4.24) relative toV1 and toV2 at the pointr = R, we get

V ′′
1 (R)− V ′′

2 (R)= <
(
V2(R)+ d

)−<
(
V2(R)

)
, (4.27)

where

<(s) = s

m− 1

(
k

R
+ h

s

)2−m

.

Also

<′(s) = 1

m− 1

(
k

R
+ h

s

)1−m[
k

R
+ (m− 1)

h

s

]
> 0.

Hence, by (4.27), we getV ′′
1 (R)−V ′′

2 (R) > 0, which contradicts (4.26). This complet
the proof of the assertion.

It remains to prove (2.10). Of course, it is enough to consider its radial version, n

lim
ε→0

α1/(m−1)u′(r) = W ′(r), α = u(0). (4.28)

Letw be as in (4.2). Sincew′ < 0 for r > 0, we may rewrite (4.3) as

−(rn−1|w′|m−1)′ = rn−1
(
wm−1 − wp−1

α(p−m)/(m−1)

)
. (4.29)

Now fix r > 0. By Proposition 2, integration of (4.29) over[r,∞) yields

rn−1∣∣w′(r)
∣∣m−1 =

∞∫
r

tn−1
(
wm−1(t)− wp−1(t)

α(p−m)/(m−1)

)
dt. (4.30)

Thanks to an obvious modification of Lemma 4, we may apply Lebesgue’s Theor
the right-hand side of (4.30), so that by (2.9) we have

rn−1∣∣w′(r)
∣∣m−1 →

∞∫
r

tn−1Wm−1(t)dt = rn−1∣∣W ′(r)
∣∣m−1

,

where the last equality follows by integrating (4.21). Returning to the functionu by
means of (4.2), this proves (4.28).

The uniform convergence ofw′ outside any neighborhood of the origin follows
once, since for alld > 0 we have, from the last two displayed equations,

sup
r�d

∣∣∣∣w′(r)
∣∣m−1 − ∣∣W ′(r)

∣∣m−1∣∣� d1−n

( ∞∫
d

tn−1∣∣wm−1(t)−Wm−1(t)
∣∣dt

+α−(p−m)/(m−1)

∞∫
tn−1wp−1(t)dt

)
.

d
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The right-side can be made arbitrarily small asα → ∞ when we use (2.9), completin
the proof of Theorem 2.

5. Proof of Theorem 1

The asymptotic behavior ofu(0) given in (2.8) forn > m2 was proved in [9], se
also (3.8) above. In this section we establish this behavior forn� m2. We treat the case
n <m2 andn =m2 separately. As in the previous section, we putδ = 1.

5.1. The case n < m2

We start from the generalized Pohozaev identity (3.2). Multiplying byαm/(m−1)/m

and making the substitution (4.2) in the integral on the left-hand side, we obta
identity

m

∞∫
0

rn−1wm(r)dr = ε
n−m

m∗ − ε
αm/(m−1)

∞∫
0

rn−1up(r)dr. (5.1)

From Lemma 2 it follows that (see (52) in [9])

∞∫
0

rn−1up(r)dr → 1

m′D
−n/m′

B

(
n

m′ ,
n

m

)
asε → 0, (5.2)

this being valid for anyn >m.
Estimating the integral on the left hand side of (5.1) is more delicate. From Lem

we know that ifε → 0, thenv(r) → V (r) andw(r) → W(r) for all r > 0, and by
Lemma 4,

rn−1wm(r) = rn−1−mkvm(r) � (2Am,n)
m r(m

2−n)/(m−1)−1 for r > 0.

Hence, ifn < m2 the integrand of the integral on the left in (5.1) is bounded unifor
by a function which is integrable near the origin. By Proposition 2 it is also unifo
bounded by a function which is integrable at infinity. Therefore, it follows from
dominated convergence theorem that

∞∫
0

rn−1wm(r)dr →
∞∫

0

rn−1Wm(r)dr = Im,n asε → 0. (5.3)

Putting (5.3) and (5.2) into (5.1) yields the desired limit forn <m2 in Theorem 1.

5.2. The case n = m2

First of all we note that (3.9) yields

logα → 1
′ and αε = 1+ O

(
log2α

m′

)
asε → 0. (5.4)
| logε| m α
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Whenn = m2 the limit (5.2) of the right hand integral in (5.1) still holds. Howev
the argument used to obtain the limit of the left hand integral whenn <m2, now breaks
down at the origin. We therefore split this integral into two parts at the radius

R0 = R0(ε) = | logε|−2/m. (5.5)

With the help of Lemma 4 we can prove

LEMMA 9. – Letn= m2, and letR0 be as in(5.5). Then

∞∫
R0

rm
2−1wm(r)dr = O

(
log | logε|) asε → 0.

Proof. –By the substitution (4.2) and the fact thatk = m in the present case, th
statement of the lemma is equivalent to

∞∫
R0

vm(r)

r
dr = O

(
log | logε|) asε → 0. (5.6)

SinceR0(ε) → 0 asε → 0, we may write[R0,∞) = [R0,1] ∪ [1,∞). By Lemma 4
we know that there exists a constantc > 0 such that

∞∫
1

vm(r)

r
dr � c (5.7)

for all suitably smallε. On the other hand, using Lemma 4 again, we infer that

1∫
R0

vm(r)

r
dr � (2Am2,m)

m| logR0|

for ε sufficiently small. Therefore

1∫
R0

vm(r)

r
dr = O

(
log| logε|) asε → 0,

which, together with (5.7), proves (5.6).✷
From now on, we argue mostly in terms ofα instead ofε (α → ∞ if and only if

ε → 0); then by (5.4) and Lemma 9, we can write (5.6) in the form

∞∫
R0

rm
2−1wm(r)dr = O(log logα) asα → ∞. (5.8)

Next we estimate the integral over the interval(0,R0).
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LEMMA 10. – Letn = m2, and letR0 be as in(5.5). Then

R0∫
0

rm
2−1wm(r)dr = logα

(m− 1)Dm(m−1)
+ O(log logα) asα → ∞. (5.9)

Proof. –For convenience we write

ϕ(r) = 1

[1+Dα(p−m)/(m−1)rm
′ ]k/m′

and formulate an upper and a lower bound forwm. More precisely, we claim that the
exist constantsc1, c2 > 0 such that

wm(r) � αmm′{
ϕm(r)+ c1ηϕ

m−1(r)
}
, η = αm−p, (5.10)

and

wm(r) � αmm′{
ϕm(r)− c2 ε| logε|ϕm−1(r)

}
. (5.11)

In order to prove these bounds we remark that Lemma 2 yields

u(r) � α
{
ϕ(r)+C η

}
for some constantC > 0. The upper bound (5.10) then follows by taking themth power
and transforming tow. On the other hand, Lemma 2 also gives

u(r) � α
{
ϕ(r)−C ε| logε|}, (5.12)

whereC is a different positive constant. If the right-hand side of (5.11) is negative,
is nothing to prove. If it is positive, then the right-hand side of (5.12) is also positive
(5.11) follows by taking themth power and transforming tow.

The bounds (5.10)–(5.11) suggest to write

R0∫
0

rm
2−1wm(r)dr = I + J,

where the principal termI is given by

I = αmm′
R0∫
0

rm
2−1ϕm(r)dr.

We first estimateI . With the substitutions

t =Dα(p−m)/(m−1)rm
′

and T =Dα(p−m)/(m−1)Rm′
, (5.13)
0
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I = αmm′
R0∫
0

rm
2−1ϕm(r)dr = αεm

m′Dm(m−1)

T∫
0

tm(m−1)−1 dt

(1+ t)m(m−1)
.

SinceT → ∞ asα → ∞ andε → 0, we find that1

I = logT

m′Dm(m−1)
+ O(1) asα → ∞.

However, from (5.13) and definition (5.5) ofR0 it is not hard to see that

logT = m

(m− 1)2
logα + O(log logα) asα → ∞.

Thus, finally

I = logα

(m− 1)Dm(m−1)
+ O(log logα) asα → ∞.

Next, we estimate the remainder termJ , which we write as

J =
R0∫
0

rm
2−1[wm(r)− αmm′

ϕm(r)
]
dr. (5.14)

1 The calculation is as follows. Puta = m(m− 1) and write

ta−1

(1+ t)a
= 1

1+ t
− 1

1+ t

(
1−
(

t

1+ t

)a)+ ta−1

(1+ t)a+1
.

But

T∫
0

ta−1

(1+ t)a+1
dt = 1

a

(
T

1+ T

)a
� 1

a

and by Lemma 3(iii) withϑ = a,

1−
(

t

1+ t

)a = −g

( 1

1+ t

)
� max{1, a} 1

1+ t
.

Now from the three preceding lines and the fact that
∫ T

0 (1+ t)−2 dt = 1− (1+ T )−1 � 1 we thus get

T∫
0

ta−1

(1+ t)a
dt = log(1+ T )+ κ,

where max{1, a} � κ � 1/a, and the result now follows.
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e the
To do this, we use the upper and lower bound (5.10)–(5.11). Both bounds involv
integral

J0 ≡ αmm′
R0∫
0

rm
2−1ϕm−1(r)dr, (5.15)

which we can write as

J0 = αεm

m′Dm(m−1)

T∫
0

tm(m−1)−1 dt

(1+ t)(m−1)2
.

Howevertm(m−1)−1/(1+ t)(m−1)2 � tm−2, so plainly

J0 = O
(
T m−1) asα → ∞.

From (5.14) and use of (5.10), (5.11) and (5.15), we get

−c2 ε| logε|J0 � J � c1ηJ0.

Moreover, from definitions (5.13) and (5.5) ofT andR0,

ηT m−1 = Dm−1Rm
0 = Dm−1

| logε|2 → 0,

whence

ε| logε|T m−1 =Dm−1 ε

| logε| α
m′−ε � Const,

where (3.9) was used at the last step. Thus, finally,J = O(1) asα → ∞, so that

R0∫
0

rm
2−1wm(r)dr = logα

(m− 1)Dm(m−1)
+ O(log logα) asα → ∞,

as asserted. This completes the proof of Lemma 10.✷
When we substitute (5.2), (5.8) and (5.9) into (5.1) we arrive at the limit

ε

| logε| α
m′ → (m′)3

m
· 1

B(m(m− 1),m)
asα → ∞,

which is equivalent to the second limit in Theorem 1.

6. Proof of Theorem 3

In this section we translate the results we obtained for equation(P 1
p), in which the

coefficientδ has been chosen equal to 1, to the solutionu(x; δ) of Eq. (P δ) in which δ
p



970 F. GAZZOLA ET AL. / Ann. I. H. Poincaré – AN 20 (2003) 947–974

in [9,

h
or the
is arbitrary positive. To this end we use the scaling invariance

u(x; δ) = δ1/(p−m)u
(
δ1/mx,1

)
. (6.1)

From Theorem 1 we know that asε → 0,

u(0;1) ∼ βm,n ε
−k/mm′

if n >m2,

u(0;1) ∼ ωm

(| logε|/ε)1/m′
if n = m2,

u(0;1) ∼ γm,n ε
−1/m′

if n <m2.

Therefore, by rescaling back according to (6.1), we obtain

u(0; δ) ∼ βm,n(δ/ε)
k/mm′

if n >m2,

u(0; δ) ∼ ωm

(| logε|δ/ε)1/m′
if n= m2,

u(0; δ) ∼ γm,n

(
δk/m/ε

)1/m′
if n <m2.

If δ = δ(ε), whereδ(ε) is defined in (2.12), then these limits imply thatu(0; δ(ε)) → d

in all the three cases above. The proof of Theorem 3 may now be completed as
Theorem 4].

7. Proof of Theorem 4

As ε → 0, the solutionu of problem (P 1
p) develops a spike at the origin, whic

becomes progressively taller and thinner. In this section we give an estimate f
rate at which level curves shrink to a point asε → 0.

Let u be the unique radial ground state of problem(P 1
p ), and letM be a postive

number. We then define the radiusrε through

rkε = Am,n

M
α−1/(m−1), (7.1)

whereα = u(0). We shall show that

u(rε) → M asε → 0. (7.2)

We first prove thatrε > ρε for ε small enough. By (4.8),

ρk
ε = α−m′ · ε−θ , 0< θ < 1.

Hence, by (7.1) and the asymptotic estimates (3.8), (3.9) and (3.10),

(
rε
)k

∼ Am,n
α εθ → ∞ asε → 0,
ρε M
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f

state
with a
etails.

e

providedθ is restricted to 0< θ < 1/m′. 2

We now use the integral equation (4.13) forv in Lemma 7 to determine the limit o
u(rε) asε → 0. By (4.1) and (7.1), we have

lim
ε→0

u(rε)= M

Am,n

lim
ε→0

v(rε),

and by (4.13) and (4.18) we have

lim
ε→0

v(rε) = Am,n + lim
ε→0

Rε(rε),

where

Rε(r) = a1/(m−1)rk
1∫

r

g

(
y(t)

a

)
dt

tk+1
.

Therefore, the assertion (7.2) is proved once we have shown thatRε(rε) → 0 asε → 0.
In (4.17) we have established that for some positive constantC,

−Ctm < g

(
y(t)

a

)
< o(1) asε → 0

for any t ∈ (ρε,1). Hence, sincerε > ρε,

Rε(rε) � a1/(m−1)rkε

1∫
rε

t−k−1 dt · o(1) → 0

and

Rε(rε) � −Ca1/(m−1)rkε

1∫
rε

tm−k−1 dt → 0

asε → 0. Therefore,Rε(rε) → 0 asε → 0, which we set out to prove.

8. Matching

In the introduction we noted that to describe the limiting form of the ground
u = uε one can distinguish an inner and an outer region, each being associated
particular scaling. In this section we return to this observation and provide more d
For simplicity one can takeδ = 1 here.

We begin with theinner region. It is associated with the scaling

s = α(p−m)/mr and ũ(s) = α−1u(r). (8.1)

2 Up to this point, any valueθ ∈ (0,1) would have sufficed, sayθ = 1/2; it is only here that further car
in the choice ofθ is required.
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zero
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Fig. 2. (Left) Graphs of the functionv(r) = vε(r) for n = 3, m = 2, δ = 1 and for
ε = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2. For larger the graphs decrease asε decreases to zer
The lowest curve (dashed) is the graph of the limiting functionV (r) = √

3e−r ; note that
V (0) = √

3. (Right) Graphs of the functioñv(s) = ṽε(s) for n = 3, m = 2, δ = 1 and for
ε = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2. For any fixeds the graphs eventually decrease asε decrease
to zero. The dashed curve is the graph of the limiting functionṼ (s)= sU1(s) = s/(1+ 1

3s
2)1/2;

note thatṼ (∞)= √
3.

By Lemma 2, it is not hard to see that for alls � 0,

ũ(s) → U1(s) asε → 0, (8.2)

whereU1 is defined by (1.1). That is, in the inner region, whose radius shrinks to
asε → 0, the solution, when normalised, converges toU1.

In theouter regionwe use the scaling (see (4.1), (4.2))

v(r) = α1/(m−1)rku(r). (8.3)

It is proved in Lemma 5 that (no subsequence being needed)

v(r) → V (r) asε → 0, r > 0; (8.4)

see Fig. 2(left).
To show that the two limiting solutionsU1(s) andV (r) match, we first transform th

functionv(r) to the variables, that is, we set̃v(s) = v(r) andr = α−(p−m)/ms, so that

ṽ(s) = αm/(m−1)α−(p−m)k/mskũ(s) = αεk/mskũ(s).

Then from (8.2),

ṽ(s) → Ṽ (s) = skU1(s) asε → 0,

see Fig. 2(right).
Plainly, by the definition (1.1) ofU1 together with (2.6), we have

Ṽ (s) →Am,n ass → ∞. (8.5)
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On the other hand, by (4.20),

V (r) → Am,n asr → 0. (8.6)

From (8.5) and (8.6) one concludes that the limiting profiles in the inner and the
region match at theouter boundary of the inner region and theinner boundary of the
outer region.

The limits ṽ → Ṽ andv → V can be expected intuitively, by virtue of the relat
limiting differential equations (1.2) and (1.3), except that one would then only
V (r) → Q as r → 0 for someQ � 0, see (1.4). Recalling the limit (8.5), it the
follows by heuristic matching, as above, thatQ= Am,n. While certainly suggestive, th
approach should still be clearly understood only as a heuristic procedure, requiri
full apparatus here for a rigorous and convincing proof.
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