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ABSTRACT. — We consider isentropic gas dynamics equations with unilateral constraint on
the density and mass loss. Theand pressureless pressure laws are considered. We propose an
entropy weak formulation of the system that incorporates the constraint and Lagrange multiplier,
for which we prove weak stability and existence of solutions. The nonzero pressure model is
approximated by a kinetic BGK relaxation model, while the pressureless model is approximated
by a sticky-blocks dynamics with mass loss.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

MSC:76T10; 35L65; 35L85; 76N15; 35A35

Keywords:Conservation laws with constraint; Mass loss; Entropy weak product; Pressureless
gas; Sticky blocks

RESUME. — Nous considérons les équations de la dynamique des gaz isentropique avec
contrainte unilatérale sur la densité et perte de masse. Les lois de pregssimans pression
sont considérées. Nous proposons une formulation faible entropique du systéme qui incorpore
la contrainte et le multiplicateur de Lagrange, pour laquelle nous montrons la stabilité faible
et I'existence de solutions. Le modéle avec pression non nulle est approché par un modéle de
relaxation BGK cinétique, tandis que le modéle sans pression est approché par une dynamique

de bouchons collants avec perte de masse.
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1. Introduction and models
1.1. Models

The aim of this paper is to introduce a weak formulation and establish weak stability
and existence for solutions to some one-dimensional systems of conservations laws with
unilateral constraint. Such system arises for example in the modeling of two-phase flows,
see [8], as

9 p + 9 (pu) =0,
: (1.1)
9 (pu) + 0 (pu+ p(p) + ) =0,
with constraint and pressure Lagrange multiplier
and extremality relation
(1—p)r=0. (1.3)

This system was studied in [20] with viscosity. Existence and weak stability of suitable
weak solutions is obtained in [2] in the pressureless ¢age = 0, but however, the
general nonzero pressure case remains open. We refer to [1,2,16,18-20,22] for other
hyperbolic problems with constraints. Some general formulations can be found in [13].

Here we are going to consider a slightly different model with mass loss, that can be
written as

81/0 + 8x(pu) = Qa
) (1.4)
9 (pu) + dx(pu” + p(p)) = Qu,
with constraint and mass loss rate Lagrange multiplier
and extremality relation
(1—p)Q =0. (1.6)

This model is based on the physical idea to remove from the densitigat overflows

with 1 as rain could make overflow a reservoir or a river. The tgmon the right-

hand side of the momentum equation expresses that the overflowing matter travels at
velocity u. This interpretation is especially relevant for the Saint-Venant equations when
p(p) = kp?. We are going to consider here pressure laws of the form

pp)=kp”, 1l<y<3 «x=0. (1.7)

The pressureless cage= 0 is very particular. Existence and properties for the system
of pressureless gas without constraint have been studied in [9,10,12,15,17].

The main difficulty in the model is to give a suitable sense to the prodets (1.4)
andpQ in (1.6), becaus& is only a measure, and, « can be discontinuous. Indeed,
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sinceQ can be nonzero only whege= 1, we have formal formulas obtained by freezing
p=1in(1.4),

0 =1,-10,u, Qu =1 ,—1(d,u + d,u?), (1.8)

but of course this is again meaningless. Therefore, we provide the following entropy
weak formulation of the problem, that involves what we call entropy weak products.
The idea is to introduce a different velocityz, x) for the lost matter, and write the
system

0o+ 0 (pu) = Q,
2 (1.9)
0;(pu) + 9, (pu” + p(p)) = Qv,
with as before
0<p<l o0<o. (1.10)

We takev € L*(Q), so that the produaPv is well-defined as a measure. We need then
to formulate in a weak sense tha@w = Qu, and thatQp = Q. In order to do so, we
require the family of entropy weak product inequalities

ns(p,u)+ 0, Gs(p,u) < Ons(Lv)-(1,v), (1.11)

for any convex entropy)s in a suitable family parametrized by a convex functi®n
whereGg is its entropy flux, andy is its derivative with respect t@o, pu). Sincev, by
definition, is defined? a.e., the term on the right-hand side of (1.11) is well-defined. In
order to see that (1.9)—(1.11) is a weak formulation of (1.4)—(1.6), we observe first that
any suitable solution to (1.4)—(1.6) also solves (1.9)—(1.11) withu. Conversely, if we

have a sufficiently smooth solution to (1.9)—(1.11), then multiplying (1.9)ky, u)

and comparing with (1.11), we get

O ns(p,u)-(1,v) < Qns(L,v)-(1,v). (1.12)
If we take for the entropy the physical energy

K

n(p,u) = pu?/2+ p?, (1.13)

y—1

we haven'(p, u) = (ykp?’ Y/ (y —1) —u?/2,u), and (1.12) gives

0|5 (7 =) — w—w?/2| <. (1.14)
y —

Together with the constraints (1.10), we deduce Dat= Qu and Qp = Q, except in
the pressureless cagse= 0, in which we can only conclud®@v = Qu. We shall see in
Section 4.4 that in this case the formulation really fails to gi¥e = Q in the strong
sense.

Our main result is that the entropy formulation of the system (1.9)—(1.11) is
weakly stable. We are able to prove a priori estimates and compactness of suitable

approximations, that lead to existence for the Cauchy problem. For the nonzero pressure
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model, the approximate solutions are obtained by a kinetic BGK equation with additional
projection to enforce the constraipt< 1. For the pressureless model, the approximation
is based on the notion of sticky blocks that has been introduced in [8] and used in [2],
but here with a different dynamics based on mass loss.

We look for solutions with regularities

p e L*(0,00; L¥(R) N Ly (R)), (1.15)
u e LX(0,00; LY (R)), (1.16)
Q e M([0,00[ xR), veL>®Q). (1.17)

The densityp and the momentum densipu are a priori not continuous with respect to

time, becaus® could contain Dirac distributions in time. However, (1.8) suggests that

it should not be the case, but it is an open question to decide whether or not it is the case.
Thus, we consider weak solutions in the sense that far aliD([0, co[ x R),

7/[P8t§0+l)uax(ﬂ] dr dx +/,00(X)§0(0,x)dx =— / /(PQ, (1.18)
0K - R [0,00[ R

// pudyg + (pu® + p(p))d. o] dr dx

0 R

+/,00(x)u0(x)<p(0, x)dy = — / /va. (1.19)
R [0,00[ R
It includes the initial data

p(0,x) = p°(x), (0, x)u(0,x) = p°(x)u’(x). (1.20)

We assume that® € L1(R), so that we can bound a priori the mass Ig§s; Q dr dx <
J pOdx.

1.2. Main results

The following compactness result is valid for the two possible pressure laws
(isentropic model with nonzero pressure or pressureless model).

THEOREM 1.1.— Let us consider a sequence of solutioGs,, u,,, Q,, v,) with
regularities (1.15)—(1.17)with uniform bounds in their respective spaces (tf15)—
(1.17) satisfying(1.18)—(1.19)and (1.10)—(1.11) Initial data p?, u° are supposed to
satisfy

n

0<p0<1, (,0,?),120 is bounded inL1(R), (1.21)

(u2),,>0 is bounded inL>(R). (1.22)

In the pressureless case, we also assume that the Oleinik ineq(iai®) holds, and
that Q, is bounded inL{x.(]0, co[, Mioc(R)). Then, up to a subsequence, s> oo,
(Pn> Uy On, V) —(p, u, Q, v) satisfying(1.15)—(1.17) in the following sense
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on—p, uy—u inL>¥(]0,00[ xR), (1.23)
0,— 0, Quvu,— Qv INnM([0, oo[ x R)wsx, (1.24)

where(p, u, Q, v) is a solution to(1.18)—(1.19)and (1.10)—(1.11)with initial data p°,
u® defined by

,0,?—\,00 in L (R), and pBuS—\pouo in L) (R). (1.25)

In the pressureless case, we also eR6) In the nonzero pressure case, we have the
convergence a.gy, — 0, Pult, —> PU.
We turn now to existence. The theorem is again the same for both pressure laws.

THEOREM 1.2. —Let p° € LY(R) such that0 < p° < 1 andu® e L*(R). Then there
exists(p, u, Q, v) with regularities (1.15)—(1.17)satisfying(1.18)—(1.19)and (1.10)—
(1.11)

In the pressureless context, we have more precise results.

THEOREM 1.3.— In addition, in the pressureless case= 0, the solution of
Theoreml.2 satisfies

dxu(t, x) < % (1.26)
TViap(u(t, ) < 2o-a) +2||u°||,~ Va<b, (1.27)
essinfu®(x) <u(r, x) < esssup®(x), (1.28)
Q € Lﬁ)oc(]oa OO[, M|0C(R))’ (129)
p, pu € C(]0, oo[, L®wx), (1.30)
o (pSw)) + 9, (puSw)) = Qs In]0,00[ xR (1.31)
for everyS € C(R), whereQs € M([0, o[ x R) satisfies
Qs < (IS1lL= Q. (1.32)

The remainder of the paper is organized as follows. In Section 2, we prove the stability
of the entropy weak product formulation. In Section 3, we study the non-zero pressure
case. We prove the existence of solutions for a BGK model with relaxation of the type
of those introduced in [6]. We obtain kinetic entropy inequalities and the existence of
kinetic invariant domains, following [4,24]. Using compensated compactness, we prove
the convergence, as— 0, towards the nonzero pressure gas dynamics model with
mass loss. Finally, we provide an alternate analysis of the BGK model in the particular
casey = 3 using averaging lemma. In Section 4, we study the pressureless model. We
introduce the sticky blocks dynamics, and specify in this case how entropy weak product
inequalities arise. Finally, we prove that the strong extremality relation is lost in weak
limits for the pressureless model.
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2. Stability of the entropy weak product

The weak stability of the formulation (1.11) becomes clear with the two following
lemmas.

LEMMA 2.1.—-Let Q, be nonpositive measures ang € L*(Q,). If (Q,)n>0
is a sequence bounded i oc([0, oo x R) and (||v,|l=,))n>0 iS bounded, then
there exists a measur@ and a functionv € L*®(Q) such that after extraction of
a subsequenceQ, — Q, Q,v,— Qv and Q,¢(v,) — Q¥ < Qe(v) for any convex
functione.

Proof. —The measure®),, are bounded in\1,, thus for a subsequena@, — Q in
Miocwx. By diagonal extraction, there exists a subsequence such that

Qnp(vy) = Q°

for every¢ continuous. We haveQ,v,| < C|Q,|, thus at the limit 0'Y| < —CQ and
therefore there existse L>(Q) such thatQ'? = Quv.
We compare now? and Q¢ (v) for ¢ convex. A convex functiow can be written as

¢(v) =supav + b; a,b such thaty > ald + b}.

Let ¢ be a convex function and let » € R such thatp > ald +b. The measur®,, is
nonpositive thusQ,¢(v,) < Q,(av, + b), which gives at the limitQ¥ < Q(av + b).
Since this is true for any, b such thatp > a Id +b, we conclude thaD? < Qe (v). O

LEMMA 2.2. -The functionv — n(1,v) - (1, v) is convex forS:R — R convex
and C'. Furthermore, it is a nonnegative function as soonsas O.

Proof. —We have first to specify what are the entropigsWe take the so called weak
entropies, that are defined as

ns(o. u) =/x(p,s —WSE)ds, S convex 2.1)
R

wherey is defined by (3.8)—(3.9) in the case- 0, and byx (p, &) = pd (&) if «k =0 (in
other wordsjs(p, u) = pS(u)). Recalling that prime denotes differentiation with respect
to (p, pu), we can express the desired quantity and get, fanl< 3,

1
1-6 _
ns(Lv) - (Lv) = /(1—z2)A 'S +a,7)dz, 2.2)
L),
fory =3,
ns(Lv) - (L v) = (S(v++3c) +S(v—+3))/2 (2.3)
and fork =0,

ns(L,v) - (L, v) = SW). (2.4)
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The result follows obviously. O

Remark2.1. — The sign assertion in Lemma 2.2 is helpful because the right-hand side
in (1.11) becomes itself nonpositive wh&n= 0 and we deduce the decreasef affs dx.

3. Isentropic model with nonzero pressure

In this section, we introduce a kinetic BGK relaxation model that approximates the
problem with nonzero pressum(p) = kp? with « > 0, 1 < y < 3. We first prove
existence of solutions for the BGK model and establish kinetic invariant domains leading
to uniform bounds. Then we let the relaxation parametiend to 0, and get an entropy
solution to (1.9)—(1.11) via compensated compactness. For the special ea8e an
alternate proof via averaging lemma is provided.

3.1. BGK modd

We consider the following kinetic BGK relaxation model, which is obtained from the
one of [3,4] by including an overall projection onto the constrairg 1,

8,f+§8xf:% in 10, oo xR x R, (3.1)

wheref = f(t,x,&) = (fo(t, x,&), f1(t,x,§)) € R? ¢t>0,xeR, £ eR,

f(t’xvg)EDEa (32)
p0) = [t xods pevutn=[fAcroHE @I

R R
M1, x, &) = M* (p(t, x), u(t, x), §), (3.4)
M*(p,u,&)=M(min(1, p),u, §), (3.5)

andM is the Maxwellian defined by
M(,O, u, g) = (X(/O’E - M)a ((1_ 9)” +95)X(p,f - M)>’ (36)
X(p. &) =cyi(a2pr™t —£2), (3.7)
_y—1 1 _a P

G—T, )\,—m—i, CV’K_T’ (38)

1

2
JA=/(1—22)%=ﬁr()\+1)/r()\+3/2), ay=y—*/_y_;. (3.9)

-1

We complete (3.1) by initial data

f0,x,8) = f2x, ), (3.10)
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satisfying energy bounds. Fordy < 3, we take

D;=D={(fo, f1) €R? fo>0o0rf1= fo=0}, (3.11)
while if y = 3,
De = {(fo. f1) €R% fi=¢Efoand 0< fo < 1/2v/3¢ }, (3.12)

and the Maxwellian simplifies in

1
M &)= o =t v, KO, KO=L5. (13

In this case a single scalar equation fincan be written, the second one gnbeing
proportional to it.

The entropies involved in the inequality (1.11) are the so called weak entropies,
defined by

ns(o.u) = / X(p & —w)SE)ds, S convex (3.14)
R

and their entropy fluxes are defined by

Gs(p.u)= /((1—9)u 108)x (0. & — u)S(&) k. (3.15)

R

To each entropy;s we can associate a kinetic entropy, in the case 3 they can be
defined from a kernel by

Hs(f.8) = / O(p(f.6). u(f.6).6.v)SW)dv, for f#£0, Hs(0.6)=0, (3.16)
R

where
M(f’ E) = %_905,
' fi/fo—&\° V(-1 (3.17)
p(f. &)= a;Z(V—1)<<ﬁ) N (fo/C,,,,()l/A)

is the inverse relation fof = M (p, u, &). The kernekb is symmetric irgé, v and satisfies
in particular® > 0 and [ (1, v)®(p, u, &, v)dv = M(p, u, §). For more details about
this model, we refer to [4].

Fory = 3, the kinetic entropy is simply given fof = (fo, £fo) € D¢, by
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so that finally for any K y < 3,

ns<p,u>=/HS<M<p,u,s>,s)ds,
R

(3.19)
Gs<p,u>=/5HS(M(p,u,s>,5)ds.
R

Let us finally introduce the kinetic invariant domains. The macroscopic invariant
domains are defined as follows for amyin < wmax
l~)={(,0,u)eR+xR; p =0 0rwmin < w1 < w2 < Omax} (3.20)
where the Riemann invariants,, w, are given by
w1 =u— ayp(y_l)/z, wr=1u-+ ayp(y_l)/z. (3.22)

Their corresponding kinetic invariant domains are defined in the case & 3 by

[)E = {f € D; f =0 OF Wmin < Cl)l(f, E) < wz(f, E) < CUmax}, (3-22)
where
w1(f, &) =u(f.&) —a,p(f.&)7 Y2,
(3.23)
wo(f, &) =u(f, &) +a,p(f, &)V V2,
and in the casg =3
~ 1
DSZ{fEDE; 0< fogmﬂwmin<§<wmax}' (324)

3.2. Properties of the kinetic entropy

We recall the value of the moments &f,

[ M6t = o). [eMp.u) = (pu. pu® + 7).
R R

and

lpV =n(p,u),

1 1 K
/ ~E°Mo(p,u, &) dt = ~pu® + ——
J 2 2 y —
for everyp > 0 andu € R. It results from the definition of a convex function that
LEMMA 3.1.—ForeveryS:R — R convex, we have
(w2 — w1)S(&) + (w1 — &) S(w2) + (§ — w2)S(w1)
<0 ifwi <& <wy,
>0 fé<wi<wrorw; <wy<E. (3.25)
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As in [3,4], we need a subdifferential inequality in order to prove boundedness of the
entropy, hamely

ProPOSITION 3.2 (Subdifferential inequality). 4 S:R — R is convex, of clas€™?,
then for everyp >0, u, £ e Rand f € D;, we have

Hs(f.6) > Hs(M(p,u.£).§) + Ts(p.u) - (f = M(p.u.8).  (3.26)
with
1
1 S +ayp°2) + (Bay p’z — w)S'(u +a o
TS(P,”):J_A/(]‘_ZZ)A< (u+a,p’z) S,((ua:_pazpezu)) (u+a,p Z))dz,
14

(3.27)
which coincides withys(p, u) whenp > 0, where prime denotes differentiation with
respect to the conservative variablgs, g = pu). We also have if # 0

where ify =3, Hi(f, £) = S(§)(1, 0) by convention.

Proof. —The casey < 3 was treated in [4], thus let us assume that 3. We set
w1=u—/3kp, wy=u—+~/3kp, thusw, — w; = 2+/3kp > 0. We have forp > 0

1 ((@p —u)S(u 4 ~/3kp) + (V3o +u)S(u — @p))

Ts(p,u)=

2V/3kp S(u +~/3kp) — S — /3 p)
_ 1 <—wlS(w2) +wgS(wl)> ’ (3.29)
wy — w1 S(w2) — S(w1)
andTs(0, u) = (S(u) —uS'(u), S'(u)). We compute
A=Hs(f,$)—Hs(M(p,u,E),E) - TS(/O’M)' (f—M(,O,M,s))

Then, ifp > 0,
S(S) - TS(/O’ M) : (1’ g)
= [(w2 — 01) S (&) + (01— §)S(w2) + (§ — w2)S(w1)] /(w2 —w1),  (3.31)
andifp =0,

SE) —Ts(p,u)- (L,§)=SE) — Sw) — S'w)(¢ —u) >0. (3.32)

If &€ <wyporé > w, then Mo(p,u,&) =0, andS(E) — Ts(p, u) - (1,&) > 0 thanks
to Lemma 3.1, thusA > 0. If w; < & < wy, then My(p, u, &) = 1/(2v/3k) > fo and
SE) —Ts(p,u)- (1, &) <0, thusA > 0 also, which proves (3.26) and (3.28)0

The kinetic entropy associated to the physical energy is denotdd yH,.,. We
recall thatH > 0. Applying the previous result to mih, p) and integrating ir§, we get
a minimization principle.
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COROLLARY 3.3 (Entropy minimization principle). -Assume thatS:R — R is
convex of classC! and such that|S(v)| < B(1 + v?) for someB > 0. Consider
f € LY(R;) such thatf € D; a.e. and

/ H(f (). £) d < 0. (3.33)
R

ThenHg(f(§),&) and Hs(M*[f1(§), &) lie in Ll(RE), and setting(p, pu) = fRfdf;‘
we have
/Hs(M*[f](E),E) dg + Ts(min(L, p), u) - (L, u)(p — D)4 < /Hs(f(é), £)de.
- - (3.34)
For further reference, we also provide the following obvious estimate.

LEMMA 3.4.— For everyp > 0andu, £ € R, we have

0< My(p,u, &) < Mo(p,u,§).
3.3. Existence for the BGK model

We proceed as in [3] in order to apply Schauder’s theorem and to get the existence of
global solutions. We notice that the proofs simplify foe= 3 because (f, £) = fo£2/2
is linear and because the kinetic system becomes in fact a rank-one model, and as a
conseguence we mainly only study the convergence of the first component which is non-
negative. In any case we get the following result.

THEOREM 3.5. —Assume thaf® e L1(R, x R;) satisfiesf%(x, &) € D; a.e.inR xR
and

//H(fo(x, £),£)dxdg = CY < oo. (3.35)

RxR

Then there exists a solutiofito (3.1)—(3.12)satisfying
fe(€nL®), ([0, 00, L"R, x Ry)), (3.36)
Vi >0, f(t,x,§)eD; ae. inRxR, (3.37)
viz0, [[ fotrxodrae < [[ 9o e, (3.38)
RxR RxR
Vi >0, //H(f(t,x,s),s)dxdsgcg, (3.39)
RxR

o [ soce) +ou( [ esoe) == <o (3.40)
R R
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%//H(f(t’xvé),é)dxdg

RxR

RxR

1 2
1 <V_"(p*)y1 v ”_> (p—1), <O, (3.41)
e\y—1 2

where(p, pu) = [ fdé and p* =min(1, p).
We notice that we have a representation of the solufipn

ft,x,6)= fOx —t&,6)e/* + ;—L/eS/SM*[f](t — 5, x —s&, &) ds. (3.42)
0

3.4. Kinetic invariant domains

By using Corollary 3.3 and Lemma 2.2 in a computation similar to (3.41), we get

PROPOSITION 3.6. — Assume thats:R — R is convex of clas€! and such that
0< S(v) < B(1+ v?) for someB > 0. Then, withf the solution of Theorer®.5,

[ Hs(rax 8 deae < [ [ Hs(r°n).6) e (3.43)

RxR RxR

Noticing that the invariant domain (3.20) is stable by the projectipnu) +—
(min(1, p), u), this allows to obtain invariant domains and bounds faoru, f
andM*[f].

THEOREM 3.7. —For any wmin < wmax the systen(3.1) has the property thaﬁg is a
family of convex kinetic invariant domains. Moreover, the Bgis associated with the
invariant domainD in the sense that

V(p,uye D, M(p,u,§) € D a.e.é, (3.44)

and

for any f(£) € L*(R;) such thatf (¢) € D; a.e.&,

~ 3.45
(p.u) € D with (p. pu) =/f<s>ds. (3.45)
R

In particular, if the initial data of Theoren®.5 satisfies f°(x, &) e 55 for a.e.x, &,
then, denoting by the solution obtained in Theore&s, (p, 1) defined by3.3) verify
vVt >0, (p(t,x),u(t,x)) € D fora.e.x.

Besidesf (z, x, &) € D¢Vt > 0 and consequently’ has compact support with respect
toé, supp S C [@min, ®maxl-

Furthermorep, u, f, M[ f] and M*[ f] are uniformly bounded i .
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Proof. —Using the functionsS(v) = (v — wmad?, S(v) = (wmin — v)2 in Proposi-
tion 3.6, and the fact that

L u2<zep? < Logn<t<omax < U —V3k p,u+ 3k p[ Clomin, ®max,
we obtain the result by adapting the proof of [4]
3.5. Reaxation limit via compensated compactness

In this section, we prove the stability Theorem 1.1 and the existence Theorem 1.2 in
the case of nonzero pressure.

Proof of Theorem 1.1 for nonzero pressurd.et (o, u,, Q,, v,) satisfy the assump-
tions of Theorem 1.1. Then

3:’75(,0;1, Mn) + axGS(pm Mn) < an_/s‘(l, Un) : (17 U,l), (346)

and since the right-hand side is boundedty,., we can apply the compensated
compactness result of [21] and it gives that, up to a subsequéngces,u,) converge
a.e. in]0, oo[ x R whenn — oo to some functiongp, pu). Using Lemmas 2.1 and 2.2,
we can pass to the limit in (3.46), while the limit in (1.18)—(1.19) is obvious.

We turn now to the existence result (Theorem 1.2) and prove the relaxation of (3.1) to
(1.9—(1.11).

THEOREM 3.8. —Let us denote by, the solution of Theorei.5with the same initial
data fO(x, &) € LY(R x R) that satisfiesf°(x, &) € D¢ a.e. for Somevyin < wmax and
the energy bound3.35) Then(p,, u.) defined by3.3) are uniformly bounded ird.*°,
and passing if necessary to subsequenc¢es,p.u.) converge a.e. ifj0, co[ x R when
e — 0to(p, pu), —(p:—1)1 /e = Q, —(pe — D u./e — Qu, where(p, u, Q, v) have
the regularities(1.15)—(1.17)and satisfy(1.18)—(1.19)and (1.10)—(1.11) with initial
data (p°, p%°% = [ fOdk.

Proof. —The bounds of Theorem 3.7 give that u. f. and the support ig of f, are
uniformly bounded. Then, the renormalization result for a transport equation of [7] gives
for any convexC* function §

O Hs(fe, &) +E0:Hs(fe, §) = Hg(fe, &) - (M*[fe] = fe) /e
By integration ing, it yields

81/Hs(fs,’§)d§ +3x/§Hs(fs,§)d§
R R

1
/ (H{(fo ) — Ts(pf s u0)) - (MPLf] — f.) &

&
R

+ Ts (ol ute) /

R

M*[fs] - fs d

&

£, (3.47)
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with p = min(1, p,). Define

(pa - 1)+

0.=-"" Pt <o (3.48)
Then
/ W 4 = 0,(L 1), (3.49)
R
and
Qe TS(,O:, ug) = 0, Ts(1,u,) = ang(l, Ug), (3.50)

thus by (3.28)

Ins(pg, ue) +0xGs(pg, ue) <0, /(Hs(M*[fs], £) — Hs(f..8))d§

R

+, / £ (Hs (MP[£.).£) — Hs(fo. £)) dé
R

+ ang‘(lv us) : (1’ us)‘ (351)
Next, we observe tha®, is bounded in1(]0, oo[ x R) since
[[-eiaxar< [[ o) avee. (3.52)
RxR

as a consequence of (3.40). We deduce that— 1), tends to 0 inL!, and after
extraction of a subsequence, — p; — 0 a.e. Provided thaf, — M*[f.] — 0 a.e.
t,x, &, using (3.51), we can then apply the compensated compactness result of [21]
which gives that up to a subsequence;, p;u.) (and also(p,, p.u.)) converge a.e.

in 10, oo[ x R whene — 0 to some(p, pu), with (p,u) € D, 0< p < 1. By applying
Lemma?2.1,we geP, — Q, Q.u, — Quwith Q € M([0, oo[ x R), v € L*(Q). Using
againf, — M*[f.] — O a.e.t, x, & and with Lemma 2.2, the limitin (3.51) gives (1.11).

A direct integration of (3.1) also gives (1.18)—(1.19) at the limit. Thus it only remains
to prove thatf, — M*[ f.] — 0 a.e.t, x, £. This can be justified as follows. From (3.41),

the integral

[ @G~ 1aperu) - s @59

10, T[xRxR

is bounded uniformly ire. Thus, if y < 3, we can adapt the dissipation result of [4]
and get thatf, — M*[f.] — O a.e, x, &, replacing the use of the identitf (f;)ods =
Jr (M1 f:1)odé by

0< / / ((f)o— (M*[£.])o) dr dx df < Ke

(t,x)eB
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for any bounded seB. For y = 3, the study is a little bit different and we refer to the
next section for the precise analysis, that leads to the same esult/*[ f.] — O a.e.
t,x, €. O

Proof of Theorem 1.2. ket p° u° satisfy p° € L*(R), 0 < p® <1 andu® €
L>(R). Then there exist®min, wmax sSuch that(p®, u®) € D a.e. We takef°(x, &) =
M(p°(x),u’(x), £) € D;. Since

//H(M(po, W0, €), €) dr dé =/n(p0, u®) dx < oo,
R

RxR

we can apply Theorem 3.8 and we get the resuit.
3.6. Relaxation limit for y = 3 via averaging lemma

In this section, we complete the proof of Theorem 3.8 in the gase3 by proving
that f, — M*[f.] > 0 a.er, x, £ also in this case, and we give an alternate compactness
argument via averaging lemma instead of compensated compactness, following the ideas
of [11,14,23,25,26]. Letf. be the solution of Theorem 3.5 with the same initial data
£Ox, &) and(p,, u,) be the approximate solutions to (1.9) defined by (3.3). In order to
prove the compactness pf andp.u., we use the compactness averaging lemma of [14]
in the following form.

PROPOSITION 3.9. — Letg, € L*°(]0, oo[ x R x R) satisfy
0:8c + 60,8 =—As — ag:zg,us, (354)

for some nonnegative measures, u. locally bounded uniformly ine. If g. is
bounded inL> uniformly ine, then [ g.(z, x, )y (§) d§ belongs to a compact set of
L{:(10,00[ x R), 1 < p < o0, for anyyr € C2(R).

ProPoOsSITION 3.10. — The solutionf, of TheorenB.5for y = 3 satisfies

0 (f)o+Edc(fo)o=—he — 0Z e (3.55)

where(i,).-0 and(u.).~o are nonnegative measures bounded uniformby. ikherefore,
by Proposition3.9, p, and p.u. are locally compact.

Proof. -We seti, = (Mol f.] — Mg[f.])/e andh, = ((f:)o — Mol f:1)/c. We have
Le > 0 thanks to Lemma 3.4. Sincg h.dé =0, [y &h.dE =0 andh, has compact
support in&, there exists a distributiop, with compact support if such thath, =
8525“5. Thus we have (3.55). We integrate this equality and get

/// A8</ FO(x, &) e .
10,T[xRxR RxR

Take now a test functiop(s, x, £) = ¢1(¢, x)@2(§), with ¢1, ¢, nonnegative and of class
C, and definep € C* by ¢, = 8525(;5. We have that is convex, and by the entropy
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minimization principle

(e o) = (OFnesnd) = [[[ wohe =0,

10,T[xRxR

thusu, > 0. We integrate now (3.55) agairist/2, and we get

JIf o ffSripac

10, T[xRxR RxR

which concludes the proof. O

Proof of Theorem 3.8 whep = 3. —The beginning of the proof is the same, we
can replace compensated compactness by Proposition 3.10, but it remains to get that
fe — M*[f.]— 0 a.et, x, . For a subsequence, we have

Oe —> 0,  Pelly = pu AL X, (3.56)

with (p, u) € D. The bound (3.53) implies that for a subsequence,

1
> (€ —uo)® =3k (p)?][(fo)o— Moo}, us, §)] > 0 aet, x,&. (3.57)
Sincep, — p} — O a.e., it gives

[(& — ue)® — 3p? | [(fo)o — Mo(pe, ue, &)] — 0 a.et,x,&, (3.58)

and we recall that this quantity is nonnegative.

We setE = {(t,x) €10, T[ xR; p(¢,x) > 0}. On E, we haveu, — u a.e., and from
(3.58),(f.)o = Mo(p, u, &) a.e.£ since the set of such thai& —u(z, x))? = 3kp?(t, x)
has measure zero. Then, for any bounded dorBaiim (¢, x), by passing to the limit as

e—0in
I[ [oodracas+ [[ /(fe)odtdxdé

(t,x)eBNE & (t,x)eB
(t,x)¢E

J| [molragracds+ [[ [ ol iranaree.

(t,x)eBNE & (t,x)eB &
(t,x)¢E

we get that

// /(fs)o(t,x,é)dtdxdée // /Mo(,o,u,é)dtdxdézo,

(t,x)eB & (t,x)eB &
(t.x)¢E (t,x)¢E

Finally we get that, up to an extraction,

(f&)o_) MO(/O’uvé) a'e't’xvé' (359)
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Since (fe)1 = &(f:)o, We also get(fi)1 — EMo(p,u,§) = Mi(p,u,§) a.e., and the
result follows. O

4. Pressureless model

This section is devoted to the proof of Theorems 1.1-1.3 when0. We build a
sticky blocks dynamics with mass loss that solves the system for particular data, that is
used to approximate arbitrary initial data.

The analysis is similar to that of [2], and differs from the one for the system of
pressureless gases without constraint, that gives Dirac distributiopsirofinite time
(see [5,9,12]). The entropies and entropy fluxes are defined by

ns(p,u) = pS(u), Gs(p,u)=puS(u), 4.1)
for any S: R — R convex. They satisfy
ns(L,v) - (1, v) = S(v), (4.2)
thus the entropy inequalities (1.11) write

3 (pS)) + d (puS(u)) < OS(v). (4.3)
4.1. Sticky blocks dynamics

Let us consider a volume fractiop(z, x) and a momentum density(z, x)u(z, x)
given by

n n
Pt X) = Lowyex<nirr  PEXUEX) =D i () ay)<x<byo), (4.4)
i=1 i=1

with a1(t) < b1(t) < ax(t) < by(t) <--- < a,() < b,(t). The time evolution is defined
as follows. The number of blocksindeed depends an but is piecewise constant. As
long as the blocks do not meet, they move at constant velagity. When two blocks
collide at a timer*, the dynamics is exhibited in Fig. 1, and is defined as follows. The
volume fractionp is given locally by

1a1(1)<x<bl(z) + ]la,(;)<x<b,(,) if t < t*,
pt,x) = ]la/(t)<x<br(t) if t* <r< Ly, (45)
]]-a(t)<x<b(t) if ¢ > ty

and the momentum densipu by

ul]la/(t)<x<b[(t) + ur]lar(t)<x<hr([) |f < t*,
,OM(t, X) = ul]]-al(t)<x<c(t) + ur]]-c(t)<x<b,(t) if £* < r< tfv (46)
u*]]-a(t)<x<b(t) if > Ir.
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t
Q
Uy
tr y*
t* a* " m b*
T* L
Uy Uy

Fig. 1. Collision of two blocks.

We haveq,(t) = a* + u;(t — %), bj(t) = x* + u;(t — t*), a,(t) = x* + u,(t — t*),
br(t) = b* + up(t — 1), c(t) = x* + uosdt — 1), a(t) = ai(ty) + u*(t — t;) and
b(t) = br(tf) +u*(r — tf)v With u, < ujoss < uy,

Ir= min(t* + (" — x7)/(ioss— ur), t* + (x* —a™) /(u; — uloss)), 4.7)
" {ul if (x* —a*)/(u —wioss) > (b* — x*)/(tioss— u,),
ut = . (4.8)
u, i (x* —a*)/(u — uos9 < (b* — x*)/(Ui0ss— ;).
One of the right or left block disappears, and in case of equality in (@8)= b(¢) and
all the mass disappears.
When more than two blocks collide at the same time, or if a block collides at a time
t1 with two blocks that are colliding since a timé with t* < #; <y, we perform
the collisions locally at each interface between two blocks. We notice that with this
constructionp andpu are both continuous in time with valuesif(R).

It only remains to define the interface velocityss, and we can indeed take any
relation

Uioss= P (u;, u,), (4-9)

where® is defined fory; > u, and satisfies
Uy < (D(ul, Mr) <u. (410)
4.2. Propertiesof sticky blocks

We have the following consistency result.

THEOREM 4.1. —There exists a honpositive meas@é€, x) € M(]0, oo[ x R) with
concentrations only i, such that withp (z, x) andu (¢, x) defined by{4.4), and with the
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above defined dynamics, we get a solution to the weak formulgitiaB8)—(1.19) (4.3),
Wlth V= Ml + Mr - M|oss.

Proof. —As long as there is no collision, each block moves at the constant velggity
and (p, u) solves the pressureless Euler system. In a neighborhood of initial data, the
proof is given in [2]. Let us now look at the case of a collision of two blocks at a time

Let ¢(¢, x) be a smooth function with support 2 of Fig. 1 such that there is no other
contact inQ2. We have

Iy c(t)
/ [Su)drp(t, x) + S(u)ud,p(t, x)| dt dx

* a(t)

ir c(t)
d
=S(uz){ / la / w(nx)dx—ulossw(t,c(r))+u,qo(t,az(t>)] dr

t* a(t)

ty
+/ul(<p(t,c(t)) —(p(t,al(t)))dt}

C(I_/)

x* Ly
- swn{ / ot x)dr — / o(t*, ) dx + / (w1 — w1059 (1, c(8)) dr},

ai(ty)
and similarly

Ir br(t)
[ 1582+ S by, x)] dr s

* o)

b (i) b*

t
=S(u,){ [ etrnde= [oerxde+ [ s el o) dr}.

c(ty)

Thus by addition
iy
[ [ (oS + pSwud,g] rds
t* R

=/(,0S(u)<p)(tf,x) dx — /(pS(u)(p)(z‘*,x) dx

R R
t
+/[(”l — Uios9) S () + (Uioss— Mr)S(”r)]‘/’(tv C(t)) dr,
t*

and finally

(3 (pSw)) + 0, (puSw)), @)
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Iy

=- /[(”l — Uios9) S (u7) + (tioss — Mr)S(”r)]‘/’(tv C(t)) dr.

¥

Therefore we have (1.31) with

Os=— [(ul — Ujose) S (U) + (Ujoss— ur)S(ur)}]lt*<t<tf8(x - C(t))‘ (4.11)
ForS =1, we get

Ot x) = —(uy — u) oy, 8(x — (1)), (4.12)
and forS =Id, we get

(Qu)(t,x) = —(u; — u,)(u; +u, — MlOSS):ﬂ-t*<t<tf6(x - C(t))- (4.13)

Sinceu; > u, is necessary to have the collision, we ha@e< 0, and (4.13) gives
v=u; +u, — ujpss WWe prove now the entropy weak product inequality. Since

0S() = —(uy — u,)S(uy + uy — iosd Lpe<r <18 (x — (1)), (4.14)

we obtain, by using that, < ujoss< u;, Which imply thatu, < v < uy, that forS convex,

3 (pSW)) + dx (puS(w)) = Qs < OS(v), (4.15)

which concludes the proof. O
Similarly to the model with pressure Lagrange multiplier of [8], we have the discrete
Oleinik entropy inequality

wi(t) — u;_1(t) < M for2<i <n. (4.16)

Extending the value af(z, x) to all x by linear interpolation between two blocks and by
putting a constant at infinity, we get that the sticky blocks dynamics satisfies Oleinik’s
condition (1.26). Then, we observe that according to (4.12)—(4.13), the formulas (1.8)
hold, and in particular we have

Q| < [9;ul, (4.17)

thus Q € L{.(10, oo[, Mioc(R)). We also have the maximum principle (1.28) and the
entropy equality (1.31) with

Os(t, x) = | L2055 (1)) + 105 g4 ) [ 08, x). (4.18)

uy— u, uy — Uy

Thus, we get (1.32) for every continuous.
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4.3. Existence of a solution

We do not detail the proof of Theorem 1.1, since it is very close to that of [2]. The
same argument is used to prove that for ghgontinuous,p, S(u,) — pS(u). Only
Lemma 2.1 is new and gives directly the entropy weak product inequality.

Remark4.1. —In Theorem 1.1, we also have the existenc® g M ([0, oo x R)
such that (1.31) and (1.32) are satisfied.

The proof of Theorems 1.2 and 1.3 is straightforward. As in [2], we approximate the
initial data by blocks. For this data, we build the solution by the above sticky blocks
dynamics. Uniform bounds follow from the analysis of Section 4.2. Then, we use the
stability to get the solution.

4.4, Lossof the strong extremality relation

This section is devoted to a counterexample that shows that in the pressureless case,
the extremality relation in the strong sense (1.6) is not included in the entropy weak
product inequality (1.11). We construct a sequence of sticky blocks solutions to which
we can apply the stability theorem, but for which the limit does not satisfy the strong
extremality relation(1 — p)Q =0.

We consider initially two blocks of height/2,

1 1
pO(x) = 5(10<x<1 + ]]-2<x<3), po(x)uo(x) = 5(10<x<1 - ]]-2<x<3)- (419)

We use the following approximation of these initial data,

n n
0
,On(x):Z]l%—lqK% +212+2“§;1)<x<2+%’ (4.20)
k=1 k=1
n n
0 0
op(Xu, (x) = Z]lsz—i<x<% — 212+2(l§;l) <xr<2 %L (4.22)
k=1 k=1

Using the dynamics of Section 4.1 with(u;, u,) = (u; + u,)/2, we get a solution
(o, Un, O, v,) to (1.18)—(1.19), (1.10)—(1.11) with regularities (1.15)—(1.17), which is
indeed given by

n n
Pn = Z ]lt+—2k2;1<x<t+% 1x<% + Z 127t+—2(1§;1) <x<2-14+ 21 1x>%’ (4.22)
k=1 k=1
n n
Pnltn = Z ]lt+_2/§;1 <x<t+% 1x<% B Z 1271+—2(1§;1) <x<27t+—2k2;1 1x>% ’ (423)
k=1 k=1

3

n
Q,,:—zzﬂ%%«%%a(x—i), v, =0. (4.24)
k=1

Now, asn — oo, one can check easily that

3
Q"_\_]]‘%<t<§6<x - §>’ (425)

2
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1 1
Pn—p = §1t<x<t+l]lx<iz3 + 5127t<x<37t1x>%’ (426)

and

Pnlty — pU = 51t<x<t+lﬂx<% - 51271<x<37t1x>%‘ (427)

We use the stability result and we get that u, O, 0) is a solution to (1.18)—(1.19),
(1.10)—(1.11) with regularities (1.15)—(1.17) for the initial dat& and p°°. This
solution is half of a usual sticky block solution, as can be easily checked in the
pressureless case, we can multiply any weak solution by a factor between 0 and 1, it
is still a solution. It can be also interpreted as the sticky block solution with constraint
o < 1/2. The two blocks with height/R loose their mass when they collide, all the mass
disappears thoughis staying less than/2. The extremality relation is lost because here

Q does not vanish even if < 1 everywhere. We get instedtl/2 — p) O = 0. However,

for the initial data (4.19), we have not been able to find a solution that satisfies the strong
extremality relation, and the above weak solution could be considered as the most natural
one. One could say that anyway it satisfies the extremality relation if we definéake

the value 1 ontheline =3/2, 1/2 <t < 3/2. But this indicates clearly that the model
introduced here is not satisfactory in the pressureless case. However the phenomenon
should not occur with pressure, as indicated by (1.14).
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