Ann. I. H. Poincaré — ANO, 6 (2003) 999-1041

© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
10.1016/S0294-1449(03)00022-2/FLA

PERMANENCE UNDER STRONG AGGRESSIONS
IS POSSIBLE

LA PERMANENCE D’ESPECES QUI
S’ENTRE-DEVORENT EST POSSIBLE

Santiago CANO-CASANOVA?, Julian LOPEZ-GOMEZ b+
aDepartamento de Matematica Aplicada y Computacion, Universidad Pontificia Comillas de Madrid,
28015-Madrid, Spain
bDepartamento de Matematica Aplicada, Universidad Complutense de Madrid, 28040-Madrid, Spain

Received 27 February 2002, accepted 18 November 2002

ABSTRACT. — This paper analyzes the limiting behavior of the positive solutions of a general
class of sublinear elliptic weighted mixed boundary value problems as the amplitude of the
positive part of the lower order terms of the differential operator blows up to infinity. The
main result establishes that the positive solutions approximate zero within the support of the
positive part of the potential, whereas they stabilize to the positive solution of a certain elliptic
mixed boundary value problem on its complement. Further, we use this result for deriving
some general principles in competing species dynamics. Precisely, we shall show that in the
presence of a refuge region two competing species must coexist if their reproduction rates are
sufficiently large, independently of the strength of the competition. It should be emphasized that
the abstract theory developed here allows measuring how large the reproduction rates should
be for being permanent, providing us, simultaneously, with the limiting behavior of each of the
species separately. Basically, when the pressure from the competitor grows the tackled species
concentrates within its refuge. The results of this paper are substantial extensions of some pioneer
results found by one of the authors in [16, Section 4]. The main ingredients in deriving the main
results of this paper are the continuous dependence of the principal eigenvalue with respect to a
general class of perturbations of the domain around its Dirichlet boundary — very recent result
coming from [6] — and the continuous dependence of the positive solutions of the sublinear
problem — coming from [7].
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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RESUME. — On étudie le comportement asymptotique des solutions positives d’'une classe
trés générale de problémes aux limites non linéaires elliptiques lorsque I'amplitude du potentiel
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d’ordre zéro de I'opérateur différentiel tend vers I'infini. En particulier, on verra que la solution
tend vers zéro sur le support de la partie positive du potentiel, tandis qu’elle converge vers
la solution positive d’'un certain probléme aux limites elliptiques auxiliaires sur la région ou

le potentiel est nul. De plus, on va tirer de ce résultat de convergence un postulat biologique
concernant la lutte pour la vie des espéeces qui s’entredévorent : indépendamment de l'intensité
des agressions, en présence d'un refuge pour chaque compétiteur les espéces coexistent si leurs
coefficients d’accroissement sont assez longs. Il faut préciser qu'avec la théorie développée ici
on peut mesurer le coefficient d’accroissement critique des especes pour avoir la coexistence.
Naturellement, I'espéce agressée va se concentrer sur les refuges correspondants si l'intensité
des agressions croit. Tous les résultats obtenus ici sont des généralisations substantielles des
résultats [16, Section 4]. Pour démontrer ces résultats on utilise la dépendance continue de la
premiére valeur propre, et de la solution positive méme du probléme aux limites non linéaire, par
rapport aux perturbations du domaine (cf. [6] et [7]).

© 2003 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

In this paper we analyze the limiting behaviorjas” oo of the positive solutions of
the following elliptic boundary value problem

{£u+yV(x)u=kW(x)u —XX) f(x,w)u inQ, (L.1)

Bbu=0 onas2,

whereX, V, W € L,.(2), X andV belong to a certain class of nhonnegative potentials
to be introduced later, and we assume the following:
(@) Q is a bounded domain &, N > 1, of classC?, i.e., Q is an N-dimensional
compact connected@-submanifold ofRY with boundaryd 2 of classC?.
(b) y,2eR,and

82
8xi8xj

N
L=— Z Ol,'j(x)

N
]
+ ) ai(x)— + ao(x)
P T 8X,‘
i,j=1 i=1
is an uniformly strongly elliptic second order differential operatof2imith
aij:ajieCl(ﬁ), OliEC(Q), OZOELOO(Q), 1<Z,J<N
Subsequently, we denote jy> 0 the ellipticity constant of in 2. Then, for any
£ e RV \ {0} andx € Q we have that
N
> (&g, > ulgl.
i,j=1

(c) 2B(b) stands for the boundary operator

u onTI,
B(b)u := {
oyu+bu only,
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wherel'g andT"; are two disjoint open and closed subset$ Qfwith
Nyur;=09%,

be(C((y), and
v=_1,...,Vy) € Cl(Fl; RN)

is an outward pointing nowhere tangent vector field. Necessdrjyand I'y
possess finitely many components. Note th&tp) is the Dirichlet boundary
operator onl’g, denoted in the sequel B9, and the Neumann or a first order
regular oblique derivative boundary operatorIon It should be pointed out that
eitherI'g or I'; might be empty.

(d) The functionf : Q x [0, c0) — R satisfies

f el (Qx[0,00);R), Ii/m f(x,u) =occ0 uniformly in €,

and
0,f(C¢,u)>0 forallu=>0. 1.2)
It should be noted that
f(,0eCH{R)
and that there is no sign restriction ¢ig- , 0) in Q. Moreover, (1.2) implies

f¢,0 =§Ql;f(-,é)' (1.3)
As far as the weight function&’, V € L,.(2) are concerned, it is assumed that
X,V e Ar,r, (),
where Ar, r,(Q2) is the class of nonnegative potentials introduced by the following

definition.
DEFINITION 1.1.— Givena € L (Q2) (a € L»(2) such thatz > 0), it is said that
ae .Aro,rl(Q)
if an open subseR? of © and a compact subséf, of Q@ with Lebesgue measure zero
exist for which
K,N(Q2UT;) =0, (1.4)
QFi={xeQ a(x)>0}=Q\ (QQUK,), (1.5)

and each of the following four conditions is satisfied
(A1) Q0 possesses finitely many components of aidssayQ%/, 1< j <m, such
that

QINQY =g ifi#
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and
dist(l'y, 322N Q) > 0. (1.6)

Thus, if we denote by, 1 <i < nj, the components df;, then for each
1<i < nyeitherTi ¢ 9Q0 or elsel’; N 9Q° = @. Moreover, ifI"; C 9Q°,
thenI"] must be a component 6£2°. Indeed, ifl" N 9Q° # ¢ but '} is not a
component 0§22, thendist(I";, 32° N Q) = 0.

(Ap) Let{iq,...,i,} denote the subset ¢1, ..., ny} for which

r{nil=0 < jelin....ip)
Then,a is bounded away from zero in any compact subset of
p 7.
QfulJry.
j=1

Note that if['; ¢ 9Q2, then we are only imposing to be bounded away from
zero in any compact subsetQf .

(As) LetT§, 1<i < ng, denote the components b, and let{is, ...,i,} be the
subset of1, ..., ng} for which

(LUK, NTE#0 = jelit,....ig).

Then,a is bounded away from zero on any compact subset of
q .
QFu Ty \ (0Q2UK,)|.
j=1

Note that if(9Q° U K,) N To = @, then we are only imposing thatis bounded
away from zero on any compact subsefxjf.

(A4) Foranyn > Othere exist a natural numbef, () > 1 and£,(n) open subsets of
RY, G, 1< j <La(n), with |G| < n, 1 < j < £, (), such that

La(m)
GINGI=¢ ifi#], kK.c | al,

j=1

and, for eachl < j < £,(n), the open seG;? N Q is connected and of clag®.
Subsequently, it will be said thate Af - (Q) if a € Ar,r, (Q) and Q2 = ¢.

Remark1.2. — Whem € Af, 1, (), we have that

K,NT1=0 A QF:={xeQakx)>0}=Q\K,.
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Moreover, if we denote by, 1< i < no, the components df and by{iy, .. ., ig} the
subset off1, ..., ng} for which

K,NT{#0 =  jelin.... i,

then,(A,) and(As) are satisfied if, and only if; is bounded away from zero on compact
subsets of

a
Qfuryu <U Iy \Ka>.
j=1
If, in addition, K, N T = @, then(A,) and(As) are satisfied if, and only if; is bounded
away from zero on compact subsetsnf U I';.

Also, this paper assumes tiaf, is connected and
rg:=aQ\IricQ, dist(ly, 1Y) >0. 1.7)

Note that, sinceV € Ar, r,(€2), the second relation of (1.7) follows from (1.6). As
an immediate consequence from (1.7), for eachi i< ny eitherFi C BQE’, or else

I N aQY = @. Moreover,I"; must be a component 0% if I'; ¢ 9QY. Assumption
(1.7) allow us to apply [7, Theorem 4.2] (cf. Theorem 2.19 of Section 2 here in).
Subsequently, for any > 0 sufficiently small 2}, will stand for the open set

Q5 = Q% U {x e Q: dist(x,I'J) <5}

and we assume that there is a sequenge: > 1, such that lim., o, v, = 0 for which
some of the general assumptions (a)—(d) or (e) of Theorem 2.19 of Section 2 with

(a’ QO! Qn): (X’ Q?/’Ql\}/")v n 21’
are satisfied. Moreover, we also assume that, for &agl0 sufficiently small,
X e -Aaszﬁv\rl,aggmrl(gi/)- (1.8)

Throughout this paper, (1.1) will be refereed to as probleify, 1, 2, B(»)], and
Aly, 2,98B(b)] will stand for the set of values of € R for which P[y, A, Q, B ()]
possesses a positive solution. Thanks to the main result oP[54, A, 2, B(b)] has a
unique positive solution ik € Aly, 2, B(b)]. Throughout this paper such a solution
will be denoted by

ULL+yV AW, X,Q,B ()]

To state our main result we need to introduce some notation. Given any proper
subdomairg, of Q of classC? satisfying

diSt(F]_, 020N ) >0
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we shall denote b5 (b, ©¢) the boundary operator defined fraBy(b) through

D onopN 2,

B(b, Qo) :=
(6. ) {‘B(b) on a2 N L.

The main result of this paper reads as follows.

THEOREM 1.3. — Beside all previous general assumptions, suppose the following
conditions hold

(1) » e A[0, 2%, B(b, 29)],

(2) yo > Oexists for which

re () Aly.Q.B®)].

Y20
(3) Foreachl <i <N,

N
V; ::Za,jnj OnFlﬂE)Q(‘),.
j=1
Then, for eaclp € [1, 00),
Vli/moo ety viw.x.Q8e0 — Uieaw .00 8m.0 L@ =0 (1.9)
and

im lluesyviwx.o8m:illieg) =0 (1.10)
y /100

in any compact subsé of @ \ QY. In particular,

o0
Upe w20 8p.e%) N Ly,

; 0
0 inQ\ QY

lim UL+y VAW, X, Q,B(b)] = { a.e. inQ.
y /100

This theorem provides us with a substantially sharper version of [16, Theorem 4.1],
where a very special case was treated. No other result of this nature seems to available
in the mathematical literature. The proof of Theorem 1.3 is based upon the construction
of an adequate supersolution of probléty, A, 2, B(b)] for y > 0 sufficiently large.

Such construction is extremely delicate, since it contains a number of very fine technical
details. In constructing these supersolutions one should slightly enlarge the vanishing set
Q9 of the potentialv’ in the domainQ and it is in this precise moment when we need to
use the results on continuous dependence with respect to the underlying domain of the
positive solutions ofP[y, A, 2, B(b)]. Those results, coming from [7], will be collected

in Section 2.

An outline of this paper is as follows. In Section 2 we fix the main notations and
give some previous results — more or less known — that are going to be used throughout
this paper. In Section 3 we prove Theorem 1.3. In Section 4 we give some sufficient
conditions so that Theorem 1.3 can be applied. Finally, in Section 5 we use Theorem 1.3
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to show that in the presence of refuge areas two competing species will coexist provided
their reproduction rates are sufficiently large. How large those rates must be will be
ascertained in terms of the principal eigenvalues of some elliptic operators supported in
the refuges of the species. Quite strikingly, the critical reproduction rates are independent
of the aggression caused by competition. Further, it will be shown that as soon as the
competition level grows the corresponding species must concentrate in its refuge area.
Actually, they must segregate toward their respective refuges as the “amplitude” of the
competitive interaction becomes large. So, in the presence of a refuge, the stress caused
by competition forces the species to concentrate in its refuge area. In obtaining all those
sort of biological principles we will use a general class of Lotka—\Volterra competing
species models with diffusion and transports effects.

Competition, as most ecologists employ the word, means the active demand by a
number of individuals of the same species — intraspecific competition — or members
of a number of species at the same trophic level — interspecific competition — for a
common resource or requirement that is actually, or potentially, limiting, [4,27]. It is
commonly agreed that this definition is consistent with the assumptions of the Lotka—
\olterra equations, which still seems to conform the basis of the mathematical theory
of competition. So, our results might have a significant value from the point of view
of mathematical biology. Actually, the model is providing us with an idealized behavior,
apparently described for the first time, against which reality can be judged and measured.

The weakest part of those models from the modeling perspective is the diffusion
term. Nevertheless, although filled with hard to justify (or even doubtful) hypothesis,
the competition Lotka—Volterra model does not suffer so much faults from the point of
view of population dynamics.

It should be noted that theoncentration principledescribed in Section 5 cannot
occur inhomogeneous models, but exclusively in heterogeneous ones. The mathematical
difficulties that one must overcome to deal with degenerate spatially heterogeneous
problems might explain the lack of mathematical results in that direction (cf., e.g.,
[20,22], and the references there in).

2. Preliminaries, notations and previous results

This section fixes some notations and collects some of the main results of [1,3,5,6]
and [7]; those results will be used in subsequent sections.
For eachp > 1 we consider

W2 () := {u € W2(Q): B(b)u =0},

W%(b)(Q) = m Wi,%(b)(g) C H3(Q),
p>1

and use the natural product orderfip(£2) x L,(3€2),
(f.80) 2 (f2.82) = fizfa A g128g2

It will be said that( f1, g1) > (f2, g2) if (f1,81) = (f2, g2) and(f1, g1) # (f2, 82).
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Sinceb € C(I'y), it follows from [21] that, for eaclp > 1,
B(b) € LIWS(Q); W2 Y/P(Tg) x W, YP(I'p).
Moreover, for anyP e L.(2) the linear eigenvalue problem

{(S—i—P)(p =Lp INQ, 2.1)

B(b)p =0 onoag2

possesses a least real eigenvalue, denoted in the sequigl byP, 2, B(b)] and called

the principal eigenvalue of(£ + P, 2, B(b)). The principal eigenvalue is simple and
associated with it there is a positive eigenfunction, unique up to multiplicative constants;
this eigenfunction is called tharincipal eigenfunctiorof (£ + P, 2, 8(b)). Thanks to

[1, Theorem 12.1], the principal eigenfunction, subsequently denoted &stisfies

¢ € Wa,) () C HA(Q)

and it isstrongly positive inQ2 in the sense thap(x) > 0 for eachx € Q U T'; and
9,¢(x) < 0 for eachx € I'g. Moreover,o[£ + P, 2, B(b)] is the unique eigenvalue of
(2.1) possessing a positive eigenfunction, and it is dominant in the sense that

Reo > o[£+ P, Q,B()]
for any other eigenvalue of (2.1). Furthermore, setting
(S + P)p = (S + P)|Wp2,B(b)(Q),
we have that, for each > —o[£ + P, 2,B(b)] andp > N, the operator

[0+ (L+P),] T eLlL(L,(Q)

is a positive, compact and irreducible (cf. [23, V.7.7]).
Throughout this paper, given any proper subdonsagrof 2 of classC? with

dist(T'1, 92N Q) > 0, (2.2)
we shall denote b5 (b, ©¢) the boundary operator defined fraBy(b) through

) ono2y N 2,
B (b, Q) ;={ 0 (2.3)
B(b) 0noLgNaf.

WhenQy = Q we set
B(b, Q) :=B().

It should be noted that if2o ¢ 2, then 3Qy C Q and, henceB (b, Q) = D, by
definition. Also, we will denote byr[£ + P, Q0, B(b, Q)] the principal eigenvalue
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of the linear boundary value problem

{ (L4+P)y =1y inQo, (2.4)

B(b, Q)Y =0 0ndQ.

We now recall the concept gdrincipal eigenvaluefor a domain with several compo-
nents.

DEFINITION 2.1.— Supposef is an open subset ak with a finite number of
components of clag®’, sayQ}, 1< j <m, such thatQi N Q) =7 if i # j and

diSt(Fl, a2 N Q) > 0. (25)
Then, the principal eigenvalue 6f + P, Qq, B (b, Q0)) is defined through

o [L+P. Q. B(b, Q)| := min o[S+P. . B(b, )] (2.6)

1<jsm

Remark2.2. — Since& is of classcz, it follows from (2.5) that each of the principal
eigenvaluess [£ + P, ), B, 2], 1< j < m, is well defined. This shows the
consistency of Definition 2.1.

Supposep > N andP € L, (2). Then, a function: € Wg(sz) is said to be gositive
strict supersolutiorof (£ + P, 2, B(b)) if

i>0 A ((£+P)i, Bb)i) > 0.

A function u € Wg(sz) is said to bestrongly positivef u(x) > 0 for eachx € QU T,
anddgu(x) < 0 for eachx € I'p satisfyingu(x) = 0 and any outward pointing nowhere
tangent vector fieldd e CX(I'p; RY). Finally, (€ + P, Q, B (b)) is said to satisfy the
strong maximum principlé p > N, u € W3(2), and((£ + P)u, B(b)u) > 0 imply that

u is strongly positive. It should be recalled that for gny N

W2(Q) — >V (Q) (2.7

and that any functioru € W§(s2) is a.e. inQ twice differentiable (cf., e.g., [25,
Theorem VIII.1]).

The following characterization of the strong maximum principle provides us with one
of the main technical tools to make most of the comparisons of this paper. It goes back
to [17,18], thought the version given here comes from [3].

THEOREM 2.3. — For anyP € L, (R2) the following assertions are equivalent
o o[L+P,R2,B(0)]>0;

o (£+4P,Q,B(b)) possesses a positive strict supersolution

o (£+4P,Q,B(b)) satisfies the strong maximum principle.

Now, we collect some of the main propertiesadfC + P, 2, B(b)]; they are taken
from [6, Proposition 3.2, 3.3].
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PROPOSITION 2.4. — Let g be a proper subdomain &t of classC? satisfying(2.2).
Then,

o[£+P,Q,Bb)| <o[L+P, Qo B, Q).
whereB (b, Qo) is the boundary operator defined (8.3).

PROPOSITION 2.5. — Let Py, P> € Lo (R2) such thatP; < P, in a set of positive
Lebesgue measure. Then,

O'[£+P1, Q,‘B(b)} < o[£+732, Q,‘B(b)}.

A crucial result for the mathematical analysis carried out in the next sections is the
continuous dependence of the principal eigenvatii€ + P, 22, B(b)] with respect
to the perturbations of the domain around its Dirichlet boundary. To state it we need
introducing the following concepts.

DEFINITION 2.6.— Let Qo be a bounded domain dk" with boundarydQq =
Iy U Iy such thatl'd N I'; = ¥, wherel'§ satisfies the same requirementsIas and
Q,, n > 1, a sequence of bounded domainsRdf with boundariesd2, = I'g U I'; of
classC? such that

TANTy =%, n>1,

andI'j, n > 1, satisfies the same requirementsligs Then, it is said thaf2, converges
to Qo from the exterior if, for each > 1,

00
QO C Qn+l (- Qn and m ﬁn = 50.
n=1

Throughout the remaining of this paper itis said that (vy, ..., vy) is theconormal
vector fieldif

N
V; ‘= Z(X,’jl’lj, 1<Z<N, (28)
j=1

wheren = (n4, ..., ny) is the outward unit normal t® on I';y. In this cased, will be
called theconormal derivativeLet u > 0 denote the ellipticity constant @fand assume
that (2.8) is satisfied. Then,

N
(v,n) = Z aijnjn; = plnl? = >0
ij=1

and, thereforey is an outward pointing nowhere tangent vector field. It should be noted
thatv € C1(I'y; RY), sincew;; € C1(Q), 1< i, j < N, andl'y is of clasC?. Itis time for
establishing the main result about the continuous dependence of the principal eigenvalue
with respect to the perturbations of the domain around its Dirichlet boundary; it goes
back to [6, Theorem 7.1].
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THEOREM 2.7 (Exterior Continuous Dependence).Suppose(2.8) and consider
P e Lo (RQ). LetQo be a proper subdomain &t with boundary of clas§? such that

3Q=rIJur;,  ToNri=40,

whereF8 satisfies the same requirementdgsand let2, C 2, n > 1, be a sequence of
bounded domains @&" of classC? converging to€2o from the exterior. For each > 0,
let 93, () denote the boundary operator defined through

u only,
B,(b)u :={
oyu+bu only,

where
FS =08, \ Iy, n= 0,

and denote byo[L + P, Q.,B,(b)], ¢,) the principal eigen-pair associated with
£+ P, Q,,B,()), where the principal eigenfunctiap, is assumed to be normalized
so that

leall g, =1 n=0.
Then,ﬁﬂo € W&%o(l,)(go) and

lim o[£+ P, Q,, B,(b)] =0 [L+ P, Q, Bod)], n”_)moo l@nlo — ®oll H1(y = 0.

n—o00

The following result establishes that + P, 2,®) satisfies the strong maximum
principle if || is sufficiently small. It goes back to [17, Theorem 5.1] and [6,
Theorem 10.1]. Hereaftel; | will stand for the Lebesgue measureRH .

THEOREM 2.8. — SupposeP € L,,(2) and
a;; €C(Q)NWL(Q), 1<i,j<N. (2.9)

Then
iminf o[£+ P, Q. DNQUYN > uxq| BV,

where
By :={x eR": |x| < 1}, Y1 :=0[—A, B, D], (2.10)
and . > 0is the ellipticity constant of in .

Another fundamental result for the mathematical analysis carried out in the subse-
guent sections is the next one; it goes back to [17, Theorem 6.2] and [6, Theorem 11.4].

THEOREM 2.9. — Assume thaf2.8)is satisfied orT"; N 3QY. Then

lim o[L+yV,Q,B0)] =0]L Q) B(b,QY)].
y /100



1010S. CANO-CASANOVA, J. LOPEZ-GOMEZ / Ann. I. H. Poincaré — AN 20 (2003) 999-1041

The proof of this result can be easily adapted to show that in the particular case when
Q9 = ¢ the next theorem follows; it should be noted that condition (2.8) is not required
and that the regularity of the coefficients ©fis weaker than the regularity required in
Theorem 2.9.

THEOREM 2.10. — Suppos€2.9)andV < Aﬁo,rl(Q). Then
lim o[£ V,Q,B(0b)| =occ.
lim o[S+y (b)] = o0

Now, we shall state the concept stfong solutiorfor problemP[y, A, 2, B(b)] and
collect the results of [5] that characterize the existence of positive solutions. A function
u is said to be &trong solutiorof P[y, A, 2, BD)]if u Wg(sz) for somep > N and
it satisfies (1.1). A functiom is said to be aositive solutiorof P[y, A, 2, B ()] if it
is a strong solution and > 0 in . The solutions ofP[y, A, 2, B(b)] will be regarded
as couplegi, u). Accordingly, it will be said thatig, ug) is a solution of (1.1) it is a
solution of P[y, A, 2, B(b)]. The following result is [7, Lemma 2.12].

LEMMA 2.11. — SupposgA, u) is a positive solution of1.1). Then,u is strongly
positive inQ2 andu € Wé(b)(sz). Moreover,

o[L+yV =AW+ X f(-,u), 2, B(b)] =0. (2.11)

In particular, u € C+? () for eachy € (0, 1), and it is a.e. in& twice differentiable.

The following result characterizes the existence of positive solutions for (1.1); it goes
back to [5, Theorem 4.2].

THEOREM 2.12. — Supposg2.8)onT'; N Q5. Then,P[y, A, 2, B(b)] possesses a
positive solution if, and only if,

o[CHYV+HXS(,00— AW, Q,B(})] <0<o[L+yV —aW,Q5, B(b,Q%)].
Moreover, the positive solution is unique if it exists. Subsequently, it will be denoted by

ULy V AW, X,Q,B(b)]-

Furthermore, for anyg € L,(2), p > N/2, the evolutionary problem

P .
8_1:+(Q+yV)u:kWu—Xf(-,u)u in 2 x (0, c0),

Bb)u=0 ond2 x (0, c0), (2.12)
u(-,O):MO in Q

possesses a unique strong solution and, if we denoted by, v ,w.x o, 8@ (X, t; uo),
one has that

t“/rgo @2ty viw.x.0.8m)( 15 U0) — UlgtyVaw.X.0.Bb)] ||cg(§) =0.

Remark2.13. — Imposing (2.8) oi'; N 3% is not needed for the uniqueness.
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Arguing as in the proof of Theorem 2.12 (cf. [5, Theorem 4.2]) the following result is
easily obtained.

THEOREM 2.14. — SupposeY < Aﬁo,rl(sz). Then,P[y, A, 2, 8(b)] has a positive
solution if, and only if,
o[L+yV —-AW+Xf(-,0),Q,B(0)] <0.

Moreover, the positive solution is unique if it exjsgabsequently denoted by

ULL+yV AW, X,Q,B ()]

Furthermore, for anyg € L,(2), p > % the evolutionary problernf2.12) possesses a
unique strong solution and, if we denote it®ye, v aw x, 0,80 (X, t; 4o),

t“/rgo @2ty viw.x.0.8m)( 15 o) — UletyVaw.X.0.Bb)] ||cg(§) =0.

In Theorem 2.14 condition (2.8) oy N 3RS, is not required, sinc&%, = @. Now,
we introduce the concept pbsitive supersolution.

DEFINITION 2.15.— Given p > N, it is said thatu € Wﬁ(sz) is a positive
supersolution(resp. positive subsolutigrof Py, A, 2, B(b)]if u > 0and

([C4+yV =AW+ Xf(,u)|u, Bdu) >0
(resp([L+yV =AW + X f(-,u)|u, B(b)u) <0).

The following comparison result is crucial in our mathematical analysis; it is [7,
Theorem 2.15].

THEOREM 2.16. — SupposeP[y, A, 2, B(b)] possesses a positive solutign> N,
and letu W§(Q) be a positive supersolutioftesp. subsolutiondf P[y, A, 2, B(D)].
Then,

UZUeryviw. X8k (ESP.U S Uigtyvaiw.X.Q.B0))-

The following results are [7, Theorem 3.1] and [7, Corollary 3.2], respectively. They
collect some crucial properties of the families of potentidis -, (22) and Aﬁo,rl(Q).

Subsequently, i& € Ar, r,(2), Q C Q is an open subset satisfying
dist(92, 02N Q) > 0

and
(,IG.AFOFl(fZ), fl = Flﬂaﬁ, FO = aﬁ\fl,
we will denote by[fz]g the maximal open subset & where the potential vanishes.

THEOREM 2.17. — Suppose: € Ar, r, (2) and letQ be an open subdomain ©f of
classC? such that

dist(9$2, QN ) > 0. (2.13)
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Then, each of the following sets
[o:=0QN (ToUL), [1:=0Q\To=09QNTy,

is closed and open if2. Moreover, the following assertions are ttue
(@) If QN Q #¢is of clasC? and

I2NQNILNQ) =N nQ°, (2.14)

thena AFOsFl(Q) and

(b) Suppos&2? N = ¢ and
INK,#4 = T\K,cQ

for any componenk of 9Q N Q. Thena € AL < (). In particular,
011

acAf L (Q) = ac A%O,F (2).

1

COROLLARY 2.18. —Suppose:, b € Ar, r, (£2) with 92 connected and
dist(To, 329 N Q) > 0.

Then,
To:=30Q0N(ToUR) and Ty:=3dQ\To=8Q0NT;

are closed and open sets of cla®s and each of the following assertions is true
(@) If Q2N Q2 £ ¢ is of classC? and

3 NQNIRNQY) =aQ)NnanQ’, (2.15)
thena e Aﬁ,,a@‘b and

(292 =0 Q?.
(b) Suppose’ N QY = ¢ and
a b

'NK,#¢¥ = T\K,CQf
for any component of Q9 N Q. Then,a € AL < Q). In particular,
0,11
0
a€Af,r,(Q = acAl ().

Another crucial result in obtaining Theorem 1.3 is the following theorem; it is [7,
Theorem 4.2].
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THEOREM 2.19. — Suppose: € Ar, r,(2), let ¢ be a proper subdomain & with
boundary of clasg? such that

dQ=ToUT},

whereF8 satisfies the same requirementslas and letQ2, C 2, n > 1, be a sequence
of bounded domains @" of classC? converging ta2o from the exterior such that

dist(92,9Q,N Q) >0, n>0. (2.16)

For each natural numbet > 0 let 8,,(b) be the boundary operator defined by

) onTIZ%,
B,(Q) = { 0
%(b) onI',
where
Ig:=0Q,\TI.

Then, the following assertions are true
(a) Supposg2.8)onT'; N2 and? # QP C Qo. Then, for each > 0,

o
ae () Arr, () and [,]) =<,
n=0

where [2,1° is the corresponding open set of the definition of the class
Apg,rl(sz,,), n > 0. Suppose, in addition, that= X and A € A[y, Qq, Bo(b)].
Then,

re ([ Aly, Q. Bub)].
n=0

(b) Suppos&2oN Q) =. Thena € Af, -, (S20). Moreoverno € N exists for which
0’

oo
ace ﬂ Altg,rl(ﬂn)-

n=ng

Furthermore,

re () Aly, Q. Bub)]

n=ng
fa=X gndk_e Aly, Qo, Bo(b)].
(c) Suppose? N Qg # ¥, 2o N Q2 =0, andng € N exists for which2, N Q2 is of
classC? and

32,N2NIR0NQ,) =02,N2NQ°,  n>no. (2.17)
Suppose, in addition, that

'NK,#¢¥ = T\K,CQf
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for any component of I'§. Then,a € A, r,(§20) and
O)

o
ae () Arr (@), [Q10=0)NQ,. n>no.

n=ng

Suppose, in addition, that= X andi € Aly, Qo, Bo(b)]. Thenng e N, mg >
ng, exists for which

re () Aly. Q. Bub)].

n=mo

(d) Supposé2.8)onT'; N 3[2]° and
(1) Q2N Qo #0is of classC?,
(2) Q0N (Q\ Qo) #Y,
(3) no € N exists such thaR? N Q, is a proper subdomain o of classC? if
n = no,
(4) (2.14)is satisfied for any2 € {Q0, Ry4,: j = 0}.
Then,mq > ng exists for which

o
ac () Arnr () A [Q0=Q,NQ%ifn e {0, mo+ j: j >0

n=mo

Moreover, if, in additiona = X and A € A[y, Qq, Bo(b)], then, for somey >
mo,

re () Aly. Q. B, (D).

n=»~{g

(e) Suppose: € Af, - (), i.e.,Q0 =0. Then,
ae (_]0 A, (@),
i.e.,a € Arz r,(2,) and [£2,]1° = ¢ for eachn > 0. Moreover,
a=X A LeA[y, Q0. Bo)] = re()Aly, Q. B.0)].

n=0

Furthermore, in any of the five previous caseg, # X, then

Jim Ny vaw.x.0,m, o0l = Uity v.aw.x. 008000 100 =0 (2.18)

reA [)/, Qo, %O(b)} .
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3. Proof of Theorem 1.3

This section proves Theorem 1.3. Subsequently, for any
ae Aagg\rl,aggmrl(g?/) N Aro.r, (§2)
satisfying2° N QY # @ we set
0 010 010 0 0
Sza,V = [QV}(; = [Qa} v = Sza N S2V'
Our proof of Theorem 1.3 is based upon the following proposition.
PROPOSITION 3.1. — Suppose
re A0, 2, B(b, QY)] (3.1)

and (2.8) holds onl"; N 329,

Then,8y > 0 exists such that for eache (0, §g) there are a real numben (§) > 0
and a positive functioms satisfying the following conditions

() s is a positive strict supersolution df[y, A, 2, B(b)] for eachy > A(S).

(i) One has that

L'{po llas — U aw,x,29 .98 1,29)] ||H1(QQ,) =0 (3.2)

and, for any compact subsg&tc Q \ Q9,

(Isi{np sl Locky = 0. (3.3)
In particular,
lim ity = { Ui xa)meagn MR o (3.4)
N 0 inQ\ QY
Proof. —Firstly, we shall prove part (i) in case
FoN Ky =40. (3.5)

Then, sinc&V € Ar, r,(£2), we have that
KyN(QYUly) =90

and, hence, (3.5) gives

Thus, taking into account (1.7), we have that

KyCcQ, KynQy=9, QlcQurly, (3.6)
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and, in particular,
dist(lo, QY UKy) >0,  dist(Ty, Ky) >0,  dist(Ky, 29) > 0. (3.7)

Fix n > 0. SinceV € Ar, r, (), it follows from (A4), that there exist a natural number
Ly (n) = 1 andéy (n) open sets

G? CRY, 1<j<ey(n),

such that
|G <n, 1<j<ty(n),
ey (n) o
Kvc|JG! A GINGl=0 ifi#j
j=1
and for each X j < £y (n) the open seGj. N Q is connected and of clagg. Thanks to
(3.6), theG;?’s can be chosen so that

by v
Kyc |JGlce, U Gin@) =0 (3.8)
j=1 j=1

Indeed, since
dist(Ky, QY UToUT;) >0,
an open se@ exists such that

Ky C G, GcCQ, GNQY =0,

and, hence, in order to have (3.8), it suffices consideﬂmng} instead ofo}, 1< <

Ly(m).
Thanks to (3.8), there exist:= ¢(n) > 0 and 4 (n) open setsG"*, 1< j <Ly (n),

of classC? such that

G'CGT*CGl+B., |GIf|<2ny, 1<j<ty(n). (3.9)
and
by Ly vy
kyc | Gjc | Gifca, U G nay =y, (3.10)
j=1 j=1 j=1

where, for anyp > 0, B, stands for the ball of radius centered at zero. Since
i e — <j <K
LI{np‘G] | 0, 1\] \ZV(n)v
it follows from Theorem 2.8 thatjg > 0 exists such that for each € (0, n9) and

1< j <42y (n) we have that

min o[C+Xf(-,0)— AW, G D] >0. (3.11)

INAS A0
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Subsequently we considere (0, o) fixed. For eachk € {0, 1}, let F,{, 1<) < ny,
denote the components Bf. Let {i, ..., i,} denote the subset ¢1, ..., n,} for which

r{nid =0 «— jelin....i,).
SinceV € Ar, r,(2), we find from (A,), that F{ is a component obQY, for each
j € {l,...,l’l]_}\{i]_,...,ip}.Then,

riNaQy = U ri ~ |Jrynoe)=a. (3.12)
j=1

In particular,

po
dist< Jry, asz%) > 0. (3.13)
j=1
Subsequently, for each
8 € (0,dist(I9, 9Q2))
we consider the opestneighborhood
Q8 = Q(‘), U {x € Q: dist(x, Fg) <38},
By definition, for any sequencg, n > 1, such that

lim 6, =0,

n—oo
we have that the sequence
Q=% n>1,

converges t®Y from the exterior az — oo; it will be simply said that

lim Q) =QY from the exterior

By construction, for each > 0 sufficiently small, we have
rpuel cQl ca (3.14)

and
9Qy NI =99} NIy = U ry. (3.15)
Je(l..oni\i1,....ip}
Now, for eachd > 0 sufficiently small, we consider thieneighborhoods

N7 = Ty + Bs) N, 1< j <no,
. (‘? ) (3.16)
= (T 4+ Bs)NQ,  jelin....ip).
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Since
KyNn(QYUT) =0, QF=\(QOUKy),

it follows from (1.7), (3.5), (3.10) and (3.12) that > O exists such that, for any
8 €(0,61),

£y (n) no ,
U Grn@) =0 8Q)\IicQy, UN2\Toc @ (3.17)
j=1 j=1

and
P . no . tvm
(U U UMO”> N <S2‘SV v G?"g) =0 (3.18)
. i j=1

Moreover, sinceF,{ NI =@ if (i,0) # (j, k), 82 € (0,87) exists such that for each
0<d<dy

N TONE =0 i (1,0 # (k). k. £€{0,1). (3.19)
Furthermore, since
' 0J| = <i<
llsl\rg\/\/; |=0, 1< j<no,
it follows from Theorem 2.8 that; € (0, §5) exists such that for each045 < 83

o[E+Xf(.00 =AW, N> D] >0, 1<j<no (3.20)

Since
reA[0,Q),B(b,Q9)],

taking into account the general assumptions in Section 1, it follows from Theorem 2.19
that there exist8, € (0, §3) such that

A e A0, %, B (b, 23%)]. (3.21)
For eachs > O sufficiently small let

Us = Upe )w, X2, B(b.2))]
denote the unique positive solution BfO, 1, 25, B (b, 23], if it exists; the uniqueness

is a consequence from Theorem 2.12, since we are assuming that (2.8) hBid3am?®,
and, by construction, we have (1.8) and

I Na[ed]% cTinaQd.

It is easy to see thats, is a positive supersolution aP[0, A, Q3,, B(b, )] if § €
(0, 84). In fact, thanks to the monotone structure of the nonlinearity, foanyl, xus,
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is a positive supersolution @f[0, A, Q3,, B(b, 23)]. On the other hand, it is easy to see
that, for anys < (0, 84),

Uuop in Q(‘)/,
Us = o8\ OO
0 InQj\Qy

is a subsolution of[0, A, ©25,, B (b, Q3,)] such that
Vs < Kis
for eachx > 1 sufficiently large. Therefore,

re [ A0}, B(b. Q). (3.22)

0<d8<é4

In other wordsy; exists —and it is unique — for ardye (0, §4).
Subsequently, we fi& € (0, §4) and set

Ly () p

no

p— —1!1 —0’ :

Hyp=J GTUUN;z U U Ny
j=1 j=1

j=1

Let wg, i €f{ig,...,i,}, and s({, 1 < j < ng, denote the principal eigenfunctions
associated with

O[LHXF(,0 =AW, N B (b, N, i elit,....ip),

and
G[E+Xf(.0) =AW N D], 1< <no,

respectively, normalized so that
||W§HLOO(/\@1J) =1, Hsaj.HLw(/\/sO’f) =1 iefig..., ip}, 1< j <no, (3-23)

and Ietz?({, 1< j < ¢y (n), denote the principal eigenfunctions associated with
o[L+Xf(-,00—AW,GT", D]

normalized so that

1951l gy =1 1< < v, (3.24)

Now, consider the positive function

iis: Q2 — [0, 00)
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defined by
Us in 5‘2,/2,
89y inGl, 1<j<bvn),
i =1 syy in Nﬁ/éh 1<j<p, (3.25)
s&] i Ny, 1< j <no,
& InQ\ (QYPUH]),),

where¢; is any positive regular extension of the function

Ly (m)

no
us U 505UU<3¢ u | s/
j=1

Jj=1 Jj=1

=5/2 8/2

from Qy“U H5/2 to & with the property of being bounded away from zer@an (Q;
Hj 72); 85 exists since each of the functions

”5‘39@/2\&’ 1’8"30’?’ 1<j<ev(n),

lj . . .
s ‘BA/:;j;;j\rl’ §8|3N°’\r ., 1< j<p, 1<i<no,

is positive and bounded away from zero. Whenc 9%, one should remove the

:/xé" 's, 1< j < p, from the definition ofizs. It should be noted that, thanks to (3.17),
(3.18) and (3.19), the functiags is well defined. Moreover,

is(x) >0 foreachr € Q.

To complete the proof of part (i) when (3.5) occurs it remains to showAhatA (§) > 0
exists such thais provides us with a strict supersolution Bfy, A, @, B(b)] for each
y > A(J). Indeed, since

>0 A Q%cal?

8/2

we find that, in2},“, the following estimate is satisfied for agy> 0

[E+yV =AW+ Xf(,u5)|us=[L4+yV =AW+ Xf(,us)|us=yVus >0,
by construction. Also, sinc&?({ >0in G’} for each 1< j < £y (), it follows from (1.2)
that

f(.80)) > f(-.0) inG,
and, hence, for eachd j < ¢y (n) andy > 0 the following estimate holds iG’}
[C4+yV =AW + X f(,i5)]is =8[S+yV — AW + X f(-,80])]9]
=8{o[C+Xf(.0) =AW, GT* D] +yV +X[f(-.89]) — f(-.0)]}¥]
>80 [+ Xf(-,0) =AW, G, D]v].
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Thus, it follows from (3.11) that, for any > 0,
[E+yV =AW+ X f(.is)is >0 inGl, 1< j<by(n).
Similarly, sincesg; > 0in N3 for each 1< j < ng, (1.2) implies
FL8E) > FC.0 In N 1< j <o,

and, hence, for eachd j < ng andy > 0 the following estimate is satisfied M;/)zf

[CH+yV =AW+ X (-, ii5)]is =8[S+yV —AW + X f(-,88])]&]

=5{o[L— AW+ XF(,0,N, D] +yV +X[f(-,88]) — f(-,0] &}

>80 [C— AW+ X f(-,0, N/ D]E].
Thus, thanks to (3.20), for eagh> 0 the following estimate is satisfied

[S+yV =AW + X f(-,as)]ids >0 inNy)3, 1< j <no.

Summarizing, up to now we have shown that, for e&eh(0, §4) andy > 0,

£y (n) no ‘
[E+yV =AW+ Xf(.ap]as>0 inQy?u |J GIulJNps. (3.26)
j=1 j=1

Now, sinceV € Ar, r, (€2), due to(A,) a constant» > 0 exists such that

p 7.
V>w>0 inanycompact subset 6f U | JI'Y (3.27)
j=1
and, hence,
p— p— p l i p 7.
V>0>0 in[Q\(QVuH)UJN,Z caeiulry. (3.28)
j=t j=1

Thus, sinceswéf >0in /\/Sl/’éj for each 1< j < p, we find from (1.2) that
FE805) > £(.0) iInNGY, 1</ <p.
Hence, thanks to (3.28), the following estimate is satisfieﬁfjjis’ foreach 1< j < p
[S+yV =AW+ X (-, iig)]iis =[S+ yV — AW + X £ (-, 895" ) |y’
—§{o[S+ X [(, 00— AW, N B (b, N;)]

YV +X[f(.89) = .0y
> 8{o[S+Xf(.0) =AW N7 B(b. ;)] +yolyy
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and, therefore,

p .
[E+yV =AW+ Xf(-,i5)]us >0 in U/\/sl/éj

j=1

y > A1) =0t max {|o[S+ X1, 0) =AW N, B (b, AT)] [} >0
IJ/IXRP

Moreover, since
Q\ (Q/?UH]),) cQf,
it follows from (3.28) that there exists

A(8) > max{A1(3), 0}

such that for eaclr > A(8) the following estimates are satisfieddn\ (2%/%U Hj),)
[L4+yV —2AWHXf(C up)lis=[E+yV —AW + X f(-, )]s
>[£—AW+Xf(-, %)+ yow]ts >0,

becausev > 0, ; is bounded away from zero @ \ (@ U Hj),) and the function

[L=AW + X f(, 8|8
is independent of .
On the other hand, by construction, we have that
B(b)iis =D& =0 only, 1< j <no,
B(biis =53, + b)Yy =0 only, 1< j < p,
and, thanks to (3.15),

B(b)its = (3, +bus; =0 0ondQy NIy

Therefore,
Bb)us=0 0no

and, for eachs € (0,684) andy > A(d), the functioni; provides us with a positive
strict supersolution ofP[y, A, 2,B(b)]. This completes the proof of part (i) under
condition (3.5).

Now, suppose

FoNKy #0, (3.29)
instead of (3.5), and Iy, ..., i,} be the subset dft, ..., ng} for which

T{NKy #0 < jelin.... i)
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Subsequently, for any > 0 sufficiently small we will consider the new support domain
D,:=QU < Urs )

&; =&, €CHD,), @ eC(D,), anWeLy®,), 1<i,j<N,

Fix o1 > 0, let

be any regular extensions frafto 59 of each of the coefficients
aij=aj, o, o, W, 1<i,j<N,
respectively, and consider the auxiliary differential operator

2

N N 3
= z::“’ax, gaiaxi+a0 inO,,.

0x;j

Since £ is strongly uniformly elliptic in<2 with ellipticity constantu > 0, o € (0, 01)
exists for which the correspondingis strongly uniformly elliptic in

Q= O,
with ellipticity constant/2. Now, we will consider the auxiliary potentials

¥ 1 ImQ\sz, Vo 1 'msz\sz,
X inQ, V inQ,

the boundary operator

%(b) . ) ona2\ I'y,
d,+b only,

and any regular extension g¢f, say
F e %[0, 00), R),
from Q x [0, 0o0) to S x [0, 00), such that
uli/rr;o F(x,u) =00 uniformly in .
SinceX, V € Ar, r, (), itis easy to see that
X, VeA-

A\, (Q)
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Moreover, by construction,
Urd ce,
j=1
and, since¥ =V =1inQ\ Q,
Q% =%, Q=) cq, Ky =Ky CQ. (3.30)
Thus, thanks to (1.7),
(0Q\T1) N (0QL UKy) = (9Q\T1) N (0QY UKy) = (9Q\ T'1) N Ky
and, hence, it follows from the constructionldf, 1<j<gq, and< that
(0Q\T1) N (0QL U Ky) =0. (3.31)
Moreover, thanks to (3.30), condition (2.8) is satisfied on
rNoQY =T1NaQ)

and, due to (1.7),
B(b, Q%) =B (b, QY) =B(b, Q).
Thus,
e A[0,Q),B(b,2))] =A[0,Q%, B(b, Q%))
and, thanks to (3.31), condition (3.5) is satisfied for the new problem Fherefore, we

can apply the result of part (i) in the special case when (3.5) is satisfied to the extended
problem

{ Sii + v V()i = AW )i — X(x) f(x, )i in 2, (3.32)

B(b)ii =0 onaQ.
As aresult, for each > 0 sufficiently small there exisk (§) > 0 and a positive function
l/:t(g :5 — [O, 00)
such that
is(x) >0 foreachr €,
and
{[f:ﬂ_/?—xﬁjt)?f(-,ﬁa)]ﬁpo infz,~ (3.33)
Bb)us=0 ono2
for eachy > A(8). Now, set
Us 1= I/th - (334)
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Then, thanks to (3.33) and (3.34), for eaeh A(8) we have that
[C4yV =AW+ X[ is))is=[E+yV — AW+ XF(-,i5)]i; >0 inQ. (3.35)

Moreover, sincé J!_; I'y C @,

- q .
iis(x) =us(x) >0 foreachr e | JIy. (3.36)
j=1
Also,
_ q
iiy=us=0 onTo\ | Ty
j=1
and
(8, +b)its = (8, + b)iis=0 onTy.

Thus,

Bh)us >0 0noL

and, therefore, thanks to (3.35), for eaéh> 0 sufficiently small the functioni;
defined by (3.34), provides us with a positive strict supersolutioR[ef A, 2, B(b)] if
y > A(8) > 0. This completes the proof of Part (i).

Now, we shall prove part (ii). As in proving part (i) we will proceed separately
distinguishing between the cases when (3.5) or (3.29) is satisfied.

Suppose (3.5). Then, (3.22) is satisfied. For eh€el0, é4), let

Us = Ure aw, X298 (b.2))]

denote the unique positive solution &f[0, 1, Q3,, B(b, 23)]. Since (2.8) holds on
;N aQY, it follows from Theorem 2.19 that

Him llus — ol 309, =0. (3.37)
Moreover, the positive strict supersolutiag defined through (3.25) satisfies
Us|go = uslqo
by definition, and, therefore, (3.37) implies
!Si{np llits — uoll 109 = 0.
This shows (3.2).

We now prove (3.3). By definition ais, it follows from (3.23) and (3.24) that, for
eachs > 0 sufficiently small,

”’/_tSHLOO(Hg/Z) < 4. (3-38)
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Let K be a compact subset &\ Q0. By construction, there exists
85 :=385(K) € (0, 84)

such that, for each e (0, §5),
K cQ\ QY2 (3.39)
Thus, it follows from (3.38) and (3.39) that

) = ||§8||LOO(K\H§

llus ”LOC(KOH"/Z) <4, s ”Loc(K\Hg’ /2)’

s /2

since, by definitioniis = ¢; on K \ Hy),, and, hence,

llits |l Lo (k) < Max{s, H;ﬁHLw(K\H{g/Z)}' (3.40)
Finally, sincez; is an arbitrary regular positive extension of

by p .m0
us U | J 80y ulJoys ul e/
j=1

Jj=1 Jj=1
from
572 Ly (n) p 1 no 0.
_ _ 1, —o.
Qviu U GIulUNys U U Ny
j=1

j=1 j=1
to ©, and (3.23), (3.24) imply

i 1993 .ccany = B 83, pte, = 185, arey) = O,

passing to the limit ag N\ 0 in (3.40) it is rather clear that can be adjusted so that
(3.3) holds; (3.4) is easily obtained from (3.2) and (3.3). This completes the proof of
part (ii) under (3.5).

Now, suppose (3.29), instead of (3.5). Then, arguing as in the proof of part (i) under
condition (3.29), we have that the positive strict supersolufiphuilt up in 2 satisfies
=0. (3.41)

(Isi{‘% ||1/~t§ — M[E,AVT/,)?ﬁ%,%(bﬁ%)] ||H1(5c‘)7)

On the other hand, by construction, we have that
~0 0 =
and

) =B(b. Q) =B(b. Q).

fslgo =its,  B(b, QY
Vv
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whereis; is the positive strict supersolution defined by (3.25). Moreover,
Lo =L  Wigp=W, Xgp=42.
1% 1% Vv
Thus, (3.41) becomes into
(Isi{n‘o llits — ure x99 8.0 Hr@o) =0,

so proving (3.2) under condition (3.29).
Similarly, adapting the argument given in the case when condition (3.5) is satisfied,
we have that

lim

S\OH”:‘SHLOO(I?) =0 (3.42)

in any compact subset
~ = =0
K CcQ\Qy.
In particular, (3.42) holds in any compact sub&ebf Q \ Q0, since
— . =0 _ =0 = =0
Q\ QY =0\ Qy cQ\ Q.
Therefore, since
ﬁslﬁ\ﬁg = s,

(3.42) implies (3.3); (3.4) follows readily from (3.2) and (3.3). This completes the proof
of part (ii) and concludes the proof of the propositiorna

Now, we are ready to prove Theorem 1.3.
Proof of Theoren..3. —Suppose, > 0 exists such that

reA[0,Q%,B(b, Q)] NA[y, 2, B(b)]
for eachy > yo, and (2.8) holds oiir; N 329, For eachy > yy, let
UL+yVaw, X QBB N Ure w,x,00 80,991
denote the unique positive solutions of probled®py, 1, 2, B(b)] and P[0, A, 29,

B (b, Q9)], respectively. Since et vaw,x.0,30) IS Strongly positive ing2, we have
that

B (b, Q) uperyvawx.0mm) =Uicryvawrosen >0 ondQ)NQ.  (3.43)

Thus,upet,v.aw.x.0 8@ IS @ positive strict supersolution &0, 1, Q5, B (b, 29)] for
eachy > yg, and, hence, thanks to Theorem 2.16,

H 0
u[Q,AW,X,Q?,,‘B(h,Q?,)] < ULL+y VAW, X,Q,B(b)] N QV for eachy > 0. (344)
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Therefore, the auxiliary function
i 0
U = {M[Q,)\W,X,Q?/,%(b)gg)] n QV’
0 in G\ Q0
satisfies

Usy <UIL+YV AW, X,Q,B(b)] in Q for eachy > 0. (345)

On the other hand, since we are working under the assumptions of Propositién-3Q,
exists such that for eache (0, §p) there are a real numbex(s) > 0 and a positive
function iz; such thatis is a positive strict supersolution @f[y, A, 2, B(b)] for each
y > A(d),

IS'LnO lits — e aw.x.00 8.0 Hr@o) =0

and, for any compact subsgtc €\ Q9,

lim ||z =0.
5\0” 5| Loo(K)

In particular,
lim s = {””’AW’X’Q%’%(”’Q%” N ein.
8N\0 0 inQ\ Q9,
Thanks to Theorem 2.16,
Ule+yvaw, X080 <is  in Qforeachs e (0, §p) andy > A(9). (3.46)
Therefore, it follows from (3.45) and (3.46) that
Uy < Ulgryvaw,X,0.80)] <is 1IN Qforeachs € (0,80) andy > ys, (3.47)

where
¥s = max{ A (), yo}-
Thanks to (3.47), for eache (0, §p) andy > ys, we have that
Uilg0 = Upe aw x.00 Bb.0%)) S UIL+yV.AW.X.2.B(b)] S Us in QY (3.48)
and, hence,

luretyviw,.x.0 8001 — M[E,AW,X,QQ,,%(b,QQ/)]”LZ(QQ,)
< lus — u[g,xw,x,g("/,%(b,gz("/)]||L2(sz“’/)~ (3.49)

Thus, for eachd € (0, §p), we have that
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lim sup||u —u
y/oop” [L+y VAW, X.Q,B ()] [S,AW,X,Q?,,%(b,QQ,)]”LZ(QQ,)

< s — u[g,,\w,x,gg,%(b,gg)]||L2(sz§’/)- (3.50)

On the other hand, thanks to Proposition 3.1, we already know that
!si\% lits = wpe w.x.00 B0l =0 (3.51)

and, therefore, combining (3.50) and (3.51) gives

]Ji/moo ety vawx.o 80 — Upe aw,x,Q9,%8(b,.29)] ||L2(s23) =0 (3.52)
Now, fix § € (0, 8g). Then, thanks to (3.48),

luresyvawxesenllig@) < sl qo) foreachy > ys
and, hence, there exists a const@nt 0 such that

e syvawx.emen — Uieawx.a se.allia@o) <€ foreachy > y;.

Thus, (3.52) implies

ylgnoo ety vowx.emen = teaw.x.o0 se.o0 L, =0 foreachp (2, c0).

(3.53)
On the other hand, sinde;(Q9) < L (%) if p €[1, 2), (3.52) gives

J@OO e syvaw.x.emen = Ueaw.x.ol se.onlL,c =0 foreachp €[1,2).

This concludes the proof of (1.9).
Let K be a compact subset &\ 2. Then, thanks to (3.47),

O=u.lx Sureryvawx.osenlk <iuslx foreachs e (0, 5p) andy > ys,
and, hence,
luresyviowx.o8milliek) < lislliok) foreachs € (0,80) andy > ys.  (3.54)
Thus, passing to the limit as oo in (3.54) gives

O<Ilimsuplluieyvaw.x.e8millLek < llisllok foreachs € (0,80). (3.55)
y /100

On the other hand, thanks to Proposition 3.1, we have that

lim || =0
11 2.
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and, therefore, (3.55) implies

lim luresyviwx.os8williex) =0.

y /100

This completes the proof of (1.10) and concludes the proof of the theorem.

4. Some sufficient conditions so that == 2 in Theorem 1.3

The following results provide us with some sufficient conditions ensuring ttat
Aly, 2, B(b)] for any y sufficiently large whenever € A[0, QF, B(b, Q9)].

THEOREM 4.1. — Supposer € A[0, 2%, B(b, Q9)], (2.8) holds onI'; N (3QY U
9Q%) and

0 0 0 ~O0 -2
X € Ayo0\ry.rynied (Qy) A Ve AsQ0 \ry.r;n090, (Qx) A QynQyec,
if Q% NQ% #¢, or

X e A (2% A Vved! (%),

999\, 1N, 993, \I'1.I'1n9 08,
whenQ) N QS = @. Then, there existg, > 0 such that
re [ Aly. Q. B0)] (4.)
Y20
and, therefore, Theoreth3can be applied.
Proof. —Suppose
0 0
([QV]x = [2%]y =) @) Ny #4.
Then, since? N QY% is of classC?, (2.8) holds o™y N (3QY U 3Q%), and
(29 NQ%) caed uay,
necessarily (2.8) holds diy N 3(2Y N Q%). Thus, thanks to Theorem 2.12,
re A0, 2, B(b, QY)]
¢ 4.2)
oL =AW + X f(-,0),Q%, B(b. Q2] <0<o[e—AW, [Q9]%. B(b, [22]%)].
Similarly, for anyy > 0,

reAy, 2, B0)]

¢ (4.3)
O[L4+yV —AW+Xf(-,0,Q,B0B)] <0<o[L+yV —rW, Q5% B(b,Q%)].
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On the other hand, since (2.8) holds bpN 8[528(]?/, it follows from Theorem 2.9 that
lim o [&+yV —iW. Q% B(b. Q%) =o[E—iW. (%10, B(b, [Q%]})]. (4.4)
y /100

Similarly,
Ii/m o[L4+yV—-AW+Xf(-,0),2,B(0)]
y /100

=0 [L—AW+Xf(-,0),2),B(b, Q)] (4.5)

Therefore, thanks to (4.2)—(4.4) and (4.5), condition (4.1) is satisfied for ggme if
A € A[O, Q% B (b, Q%)]. This completes the proof of the theorem in this special case.
Now, suppose

0 0
([QV]x=[2%]y =) @) NS =0.
Since
0
Q)] =0 A Xe A;Q(& \r sl (29),

it follows from Theorem 2.14 that
reA[0,Q0,B(b,QY)] <= o[L-AW+XF(,0),Q), B0, Q)] <0. (4.6)

Similarly, thanks to Theorem 2.12, the equivalence (4.3) holds.
SinceV € Ar, r,(2) and (2.8) is satisfied o, N 999, it follows from Theorem 2.9
that (4.5) holds. Thus, sincec A[0, Q9, B (b, 29)], it follows from (4.5) and (4.6) that

im o[+ yV —AW+Xf(-,0),Q, Bb)] <O. 4.7)
y /100

Similarly, since

0
Ve Ayao\ry.rynacd, Q%) A [Q%], =4,

it follows from Theorem 2.10 that

Ii/m o[L+yV —aW,Q5%, B(b,Q%)] = oco. (4.8)
y /00

Then, combining (4.7) and (4.8), we find that, for apy> 0 sufficiently large, the
following estimate is satisfied

o[L+yV - AW+ Xf(-,0,Q,B0b)] <0<o[L+yV—aW, Q% B(b, Q%)].
(4.9)

Therefore, it follows from (4.3) and (4.9) that (4.1) must be satisfied for sgmeO0.
This completes the proof of the theoren

It should be noted that Corollary 2.18 provides us some sufficient conditions for
having

0 0
Xe Aagg\rl,rlmagg (Qy) A Ve Aaa%\rl,rlmaszg( ()
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in caseQ? N QY # ¢, and

+ 0 + 0
X e Aasz‘&\rl,rlmaszg (QV) A Ve Aaszg(\rl,rlmasz‘}( (QX)

whenQ9 N Q% = .

THEOREM 4.2. — Assume. € A[0, @9, B(b, Q9)], X € Af . (), and(2.8) holds
on I'; N 3RY. Then,y, > 0 exists for which conditior(4.1) is satisfied. Therefore,
Theoreml.3 can be applied.

Proof. —SinceX € Af, 1, (2), Corollary 2.18 implies

e Agﬂg\rl,aggmrl(ﬂ(‘)/)
and, hence, thanks to Theorem 2.14,
Af0,Q9,B(b, Q)] ={reR: a[L— AW+ X f(-,0), 25, B(b,Q%)] <0}. (4.10)
Similarly, for eachy > 0, we have that
Ay, 2, BD)]={reRio[L+yV —AW+Xf(-,0,Q,B0b)] <0}. (4.11)
On the other hand, sindé € Ar, r, () and (2.8) holds oi'; N 99, Theorem 2.9 gives
yli/mooa[il—i— YV =W+ Xf(-,0),Q,B(0b)]

=0 [L—AW+Xf(-,0), 2, B(b, Q)] (4.12)
Thus, since. € A[0, 9, B (b, 29)]1, we find from (4.10) and (4.12) that

o[+ yV —AW+X[f(-,0),Q,B(b)] <0 (4.13)

for eachy sufficiently large. Therefore, thanks to (4.11) A[y, 2, B(b)] for y large.
This completes the proof. O

It should be noted that it/ € A}, -, (), then it does not make sense analyzing the
limiting behavior asy oo of the positive solution of (1.1). Indeed, in such case,
Theorem 2.10 implies

yli/mooa[il—i-yv — AW+ X f(-,0),Q,B()] =00
and, thanks to Theorem 2.12 and Theorem 2.14, for gasli0,
Aly,Q,B®)] C{reR: o[L+yV —AW + X f(-,0),Q,B(b)] <0}.
Therefore, there exist® := y5(1) > 0 such that

re | Aly, Q. B0).

Y270
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It turns out that the positive solution of problem (1.1) for small valueg becomes the
zero solution at the unique value pffor which

o[E+yV —AW+X[(-,0),Q, Bb)] =0.

Therefore, it is consistent saying that the limiting profile of the maximal nonnegative
solution is zero.

5. Permanence under unlimited aggression is possible

This section applies Theorem 1.3 for obtaining the following biological principle:
no species can be driven to extinction by a competitor if it possesses a refuge and its
birth rate in the overall habitat is sufficiently large. Moreover, it will be shown how
the species concentrates within the refuge when it suffers high level aggressions. For
establishing these principles we adopt as a model for competing species the following
spatially heterogeneous evolutionary model of Lotka—Volterra type with diffusion and
transport effects

9 .

8—’: F = hu— X ()P — i Vi@uw  in Q x (0, 00),

9 .

o+ Sov = 1 = B(0v? = e Va(x)uw i 2 x (0,00), (5.1)
Biu=PBrv=0 on a2 x (0, 00),

(u('vo)v U(’O)) = (MO’ UO) in

under the following assumptions:
(1) Qis a bounded domain iR", N > 1, of classC?.
(2) 1, neR and, for eacly € {1, 2}, y; € Rand£; is an uniformly strongly elliptic
second order differential operator §hof the same type aS.
(3) Foreachj (1,2}, B, :=,(b;) stands for the boundary operator

D onTy,
SB]. = i
8v_,+bj only,

wherel'j andI'] are two disjoint open and closed subsets@fwith [ UT] =
02, b; € C(I']), andv; = (v;1,...,v;y) € CH('{; RY) is an outward pointing
nowhere tangent vector field.

(4) Each of the functiond/; and X;, j € {1,2}, is non-negative measurable and
bounded in2. Moreover,

X] EA?:éI,:]L(Q)y Vj EAI‘(;,F:{(Q)’ .] E{l, 2}
(5) Foreachj € {1, 2}, Q?,j is connected and

0Qy \T{cQ,  dis(r{,00Q) \T{)>0.
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Moreover, setting
Q) = Q) U{xe: dist(x,0Q) \IY) <6}

we assume that there is a sequeu,{:en > 1, such that lim_, U,{ = 0 for which
the general assumptions of Theorem 2.19(e) of Section 2 with

v/
(a, 0, Q) = (¥, 20, QV), n=1,

is satisfied (note that’; e A;, L (2)). Furthermore, there existg > 0 such that,
for eachs € [0, &), o

Xj€A+ (Qf//), .]6{1’2}

98 \TY 90 Ard
99} \I'{,99), ry

(6) (uo. vo) € X§ WhereXy := L} () for somep > 2.
Under these assumptions, for each initial datg vo) € X3, (5.1) has a unique global
strict solution (u(x, t; uo, vo), v(x, t; ug, vg)) (cf. [2]). In fact, thanks to the parabolic
maximum principle, for any > 0 we have that

0<u(-,t;up,v0) <Ti(Hug A O0<v(-,1;ug, vo) < T2(f)vo,

where,T;(t) andT»(¢) stand for thel ,-evolution operators associated with — 1 and

£, — u, respectively. It is well known that most of the limiting profiles of the positive
solutions of (5.1) as " co are given by the strong non-negative steady states of (5.1)
(cf. [14] and the further developments of [11-13,24,26], and the references therein). The
steady-states of (5.1) are the non-negative strong solutions of

Lo =ru — X1(0)u? — »Vi(xuv  in Q,
£ov = puv — Xo(x)v2 — paVo(x)uv  in Q, (5.2)
%1”2%21):0 on 0f2.

As we consider (5.1) to model competition between populations, we shall pay attention
only to the component-wise non-negative steady states. Beél6s, the problem

(5.2) admits three types of component-wise non-negative solution couples. Namely, the
solutions having one component vanishirig, 0) or (0, v), known as thesemi-trivial
positive solutionsand the solutions having both component positive, known as the
coexistence states (5.2). Due to Theorem 2.14, (5.2) possesses a semi-trivial positive
solution of the form(u, 0) if, and only if,

A > 0’[21, Q, sBl]
Moreover, in this cas€,2,, 0) is the unique of these semi-trivial states, wherestands

for the unique positive solution of

{ Lau=ru — X1(x0)u? inQ, (5.3)

Bu=0 onog2.
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Similarly, (5.2) possesses a semi-trivial positive solution of the f@mmw) if, and only
if,
m > G[SZa Q’ %2],

and, in such cas€0, Y,,) is the unique of these semi-trivial states, wh#estands for
the unique positive solution of

{ Lov = pv — Xo(0)v? N Q, (5.4)

%21):0 on 9<2.

The following result characterizes the stability of each of the semi-trivial positive
solutions of (5.2).

PROPOSITION 5.1. — Suppose. > o[£1, 2, B1]. Then,(E;, 0) is linearly asymptot-
ically stable(l.a.s) if, and only if,

u <olLa+y2V2E;, @, Bal,
linearly neutrally stablgl.n.s) if, and only if,

n=olLz+ y2V2E;, 2, B3],
and linearly unstabl€l.u.) if, and only if,

u>olLs+ 2 VaEy, 2, Bs].

By symmetry, in case > o [£,, 2, B>], the statg0, 1) isl.a.s. ifA < o[£1+ 1 Vi,
Q,B4], l.ns.ifA=0[L1+ ]/1V1TM, Q,B1]and L.u. ifA > o[£+ VlvlTM, Q,B4].

Proof. —Supposer > o[£4, 2, 2B1]. By definition, the linear stability ofE;, 0) is
given by the sign of the real parts of the eigenvalues of the linearizations of (5.2) at
(8;,0), i.e., by the signs of the real parts of thé for which the following linear
problem possesses a solution v) # (0, 0):

L= —2X1E))u —y1ViByv+tu  inQ,
L£ov=(u—y2VoE;)v+ 1tV in Q, (5.5)
Bu =Bu=0 on ax.

If v=0, then (5.5) becomes

{ Liu = A — 2‘)(18)\)14 +7u in Q, (56)

Bu=0 onoag.

Moreover, thanks to Proposition 2.5 and Lemma 2.11, we have that

o[L1+ 2X1E) — A, Q, Bi] > o[L1 + X1 E) — A, Q, By] =0. (5.7)
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Thus, since the principal eigenvalue is dominant, we find that
Ret > o[£, + 2,8, — 1, Q2,B1]>0

and, therefore, the linear stability afg;,0) is determined from the signs of the
eigenvalues of (5.5) possessing an eigenfunction of the farm) with v # 0, i.e.,
by the sign of

Sui=pn—0o[La+1aVaEy, 2, Bs] = —0[Lo+ V2B, — 1, Q,B3].
Indeed, if§,, < O, then
Sy =0[Lo+y2VoB) —u, 2,B2] >0
and, since the principal eigenvalue is dominant, any eigenvalue of (5.5) satisfies
Ret > o[£+ 12 VoEy — i, 2,B,] > 0.

Therefore, in this cas€g;, 0) is linearly asymptotically stable.
Now, supposé, = 0. Then,

=8, =0[Lo+y2VoEy —u, 2,B2]=0

and, hence, the paifr, v) = (0, ¢,), where ¢, > 0 is the principal eigenfunction
associated with £, + Vo8, — u, 2, B,), solves thev-equation of (5.5). Moreover,
thanks to (5.7), thet-equation of (5.5) possesses a unique solution - ir for
(r,v) = (0, ¢,). Namely,

u=—y1(€1+2X1E; — 1) H(V1E,0,).

Thus,7 =0 is an eigenvalue of (5.5). As any other valuerdbr which thev-equation
of (5.5) can be solved must be positive, we obtain &t 0) is linearly neutrally stable.
Finally, supposé,, > 0. Then, adapting the argument of the previous case, one readily
gets that-§,, < 0 is an eigenvalue of (5.5) and, therefofg; , 0) is linearly unstable.
By symmetry, one obtains the corresponding characterization®far,). O

Thanks to the linearized stability principléz;, 0) (resp. (0, Y,,)) is exponentially
asymptotically stable if it is linearly asymptotically stable, and it is unstable if it is
linearly unstable — as steady states of (5.1). The following concept is very important
in mathematical biology. Subsequentﬁ'/@é@ stands for the cone of positive functions

of C3(Q).

DEFINITION 5.2. — The problem(5.1) is permanent — or, equivalently, compressive
— if there is a subdomain

2
R C (Int PCé(ﬁ))
such that

(u(-, 13 u0, vo), v(-, 1: ug, o)) € R
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for each(uo, vo) € X2, uo > 0, vo > 0, after some timey := ¢ (uo, vo).

The abstract theory developed in [13] and the results of [10] and [19] are easily
adapted to show that global extinction of some of the species occurs if (5.2) does not
admit a coexistence state (cf. [15] for a further general version of that result).

Thus, (5.2) must possess a coexistence state if (5.1) is permaneritolef) be a
coexistence state of (5.2). Then, thanks to Proposition 2.5, we have

o[L1—A,RQ,B1] <o[L1 — A+ Xiug+ y1Vive, 2,B1] =0

and
0.

oL —u, 2,Br] <o[Ls— pu+ Xovg + y2Voug, 2, Bs]
Thus,
A > 0[21, Q, %1] AN > 0[22, Q, %2] (58)

In particular, (5.2) exhibits the two possible semi-trivial positive solutiof,, 0)

and (0, 1,,). Obviously, (5.1) cannot be permanent if some of these semi-trivial states
is linearly asymptotically stable. Therefore, thanks to Proposition 5.1, the following
estimates are necessary for permanence

Azoll1+nViY,, Q,B1] A u=o[La+y2V2E,, @, Bal.
Conversely, the following result is satisfied (cf. [13,16] and [8] for some previous results
in this direction).
THEOREM 5.3. — Suppose(5.8) and (E;,0), (0, Y,) are linearly unstable, i.e.,
thanks to Propositio.1,
A>o[L1+ViY,, Q2,B1] A u>o[La+y2V2E;, @, By (5.9

Then,(5.1) possesses a coexistence state and it is compressive.

Proof. —~We shall use a practical persistence argument based upon the arguments of
[16] and [9]. The existence of the coexistence state can be obtained by using the theory
of [13]. The permanence can be obtained arguing as follows.:Rickp € X, such that
ug > 0 andvg > 0. Then, thanks to the parabolic maximum principle,

O<u(-,t;ug,vg) <® -, 1 uo),
( 0, Vo) (€., 40,981]( 0) (5.10)

0 <v(-,t;u0,v0) < Ppe, 1 25,3, 15 Vo),

where® ¢, x 9(x, t; wp) Stands for the unique solution of the parabolic problem

ow 2 .

— +Lw=yw—Xw" InQ x (0, c0),

01 (5.11)
Bw =0 on o2 x (0, 00), )

w(-,0) =wg in Q.



1038s. CANO-CASANOVA, J. LOPEZ-GOMEZ / Ann. I. H. Poincaré — AN 20 (2003) 999-1041

On the other hand, thanks to Theorem 2.14, we have
tII/'no]o ||<D[21,A,X1,%1](' , 1 l/t()) - EAHC‘%(Q) = Oa
Jim |tz 221 1 v0) = Tl e = O,

and, hence, for any > 0 there exists, > 0 such that

{O <ultuo,v0) < Brd & ot eachr > te. (5.12)

O<wv(-,t;up,v0) <Y, +e
Chooses > 0 sufficiently small so that
A>o[Li+yiVi(Yu+6),Q2,B1] A wu>o0[Lr+yVa(Er+¢),Q,B,]. (5.13)
Substituting the second estimate of (5.12) intodhequation of (5.1), gives

Rl
B—L; + Lau = hu — Xou? — 1 Vauv > du — X — yiVi(Y, +&)u

for eachr > ., and, hence, thanks to the parabolic maximum principle,
u(-, 1510, 0) = Py vi(ruse)ndn 81 (-5 15 (-, 13 o, vo))  in  for eachr > ¢

On the other hand, thanks to Theorem 2.14,

tli/n;lo D14 Vi(Tpte) X B1] (- 15 U (s Be5 U0, V0)) = U2 491 V(T pte) 2, Xy, 2, B ]

uniformly in Q, whereu e, 4, v, (v, +e).5. 11,2, Stands for the unique positive solution
of

[£1+nVi(Y, +&)]u=ru— Xu? ing,
Biu=0 onos2

whose existence is guaranteed from the first inequality of (5.13). Thus, foreeadh
sufficiently small

Iip}Lrgf u(-, 1, U, Vo) 2 UL 4y Vi(Yyte)h X1.Q.B1]

and, therefore,
iminfu(-, 5 uo, vo) 2 ies4avim, 2.4, 280
oo
Similarly,
||tn}!2f V(- 15 U0, V0) 2 Vg1 VoEs 10, X5,2, B
Wherevi g, .,v,z,.1.4,.9,%,1 Stands for the unique positive solution of

[22 + szzE,\]v = uv — Xov? inQ,
Bov=0 on og2.
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This completes the proof of the theoren

Now, combining Theorem 5.3 together with Proposition 2.4 and Theorem 2.9, we
obtain the following result.

COROLLARY 5.4. — Suppose that
A>0[2, Q0 B1(b1, Q))] A w>0[La+12V2Ei QB (5.14)
Then,(5.1) possesses a coexistence state and it is permanent foran. Similarly, if
A>0[€1+1ViY, Q. B1l A p>0[L2 Q). Ba(bo, Q),)]. (5.15)

then(5.1) possesses a coexistence state and it is permanent foran.

It should be noted that Corollary 5.4 is optimal. Moreover, thanks to Theorem 1.3 we
obtain the following

THEOREM 5.5. — Supposé2.8)onT'} N 899,1 and (5.14) fix y» and regard toy; as
a parameter. Then, the-component of any coexistence statev) = (u(y1), v(y1)) of
(5.2) must satisfy
in Q?,l,

lim u(y) = (5.16)

{ Uig1 220,90 B (01.99,)]
y1,/'00

in 2\ QY.

Similarly, Wher(5.15)i§ satisfied and2.8) holds onI2 N 852?/2, fixing 1 and regarding
to y, as a parameter gives

H 0
in Q9

{ VL2, X2, 9, B2 (52,251 (5.17)

lim v(y2) =
v2/10 inQ\ QY.

These convergences must be understood in the sense of THe8rem

Proof. —Suppose (5.14) and €&, v) be a coexistence state of (5.2). Then, thanks to
Theorem 2.16, it is easily shown that

ULL1+y1ViTu A X0,Q,81] < U <UL 0, X,Q,B1]
and
ULLo+yaVaBia 1, X2,2,B2] < U < VU[Ly, 1, X5,Q2,B5]-
Therefore, thanks again to Theorem 2.16, we have
ULL1+ V1T hX1,Q, 8] < U < u[21+V1V1v[£2,M,X2,Q,%2],A,Xl,Q,‘Bﬂ'

Thanks to Theorem 1.3, passing to the limit as 7 oo completes the proof of
(5.16). The same argument can be easily adapted to prove the validity of (5.17) under
condition (5.15). O
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