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ABSTRACT. – This paper analyzes the limiting behavior of the positive solutions of a ge
class of sublinear elliptic weighted mixed boundary value problems as the amplitude
positive part of the lower order terms of the differential operator blows up to infinity.
main result establishes that the positive solutions approximate zero within the support
positive part of the potential, whereas they stabilize to the positive solution of a certain e
mixed boundary value problem on its complement. Further, we use this result for de
some general principles in competing species dynamics. Precisely, we shall show tha
presence of a refuge region two competing species must coexist if their reproduction ra
sufficiently large, independently of the strength of the competition. It should be emphasiz
the abstract theory developed here allows measuring how large the reproduction rates
be for being permanent, providing us, simultaneously, with the limiting behavior of each
species separately. Basically, when the pressure from the competitor grows the tackled
concentrates within its refuge. The results of this paper are substantial extensions of some
results found by one of the authors in [16, Section 4]. The main ingredients in deriving the
results of this paper are the continuous dependence of the principal eigenvalue with resp
general class of perturbations of the domain around its Dirichlet boundary – very recen
coming from [6] – and the continuous dependence of the positive solutions of the sub
problem – coming from [7].

MSC:35B25; 35J25; 35K57

RÉSUMÉ. – On étudie le comportement asymptotique des solutions positives d’une
très générale de problèmes aux limites non linéaires elliptiques lorsque l’amplitude du po
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d’ordre zéro de l’opérateur différentiel tend vers l’infini. En particulier, on verra que la sol
tend vers zéro sur le support de la partie positive du potentiel, tandis qu’elle converg
la solution positive d’un certain problème aux limites elliptiques auxiliaires sur la régio
le potentiel est nul. De plus, on va tirer de ce résultat de convergence un postulat biol
concernant la lutte pour la vie des espèces qui s’entredévorent : indépendamment de l’i
des agressions, en présence d’un refuge pour chaque compétiteur les espèces coexiste
coefficients d’accroissement sont assez longs. Il faut préciser qu’avec la théorie dévelop
on peut mesurer le coefficient d’accroissement critique des espèces pour avoir la coex
Naturellement, l’espèce agressée va se concentrer sur les refuges correspondants si l
des agressions croît. Tous les résultats obtenus ici sont des généralisations substanti
résultats [16, Section 4]. Pour démontrer ces résultats on utilise la dépendance continu
première valeur propre, et de la solution positive même du problème aux limites non linéa
rapport aux perturbations du domaine (cf. [6] et [7]).

1. Introduction

In this paper we analyze the limiting behavior asγ ↗ ∞ of the positive solutions o
the following elliptic boundary value problem{

Lu+ γ V (x)u = λW(x)u−X (x)f (x,u)u in �,

B(b)u = 0 on ∂�,
(1.1)

whereX , V ,W ∈ L∞(�), X andV belong to a certain class of nonnegative potent
to be introduced later, and we assume the following:

(a) � is a bounded domain ofRN , N � 1, of classC2, i.e., �� is anN -dimensional
compact connectedC2-submanifold ofRN with boundary∂� of classC2.

(b) γ , λ ∈ R , and

L := −
N∑

i,j=1

αij (x)
∂2

∂xi∂xj
+

N∑
i=1

αi(x)
∂

∂xi
+ α0(x)

is an uniformly strongly elliptic second order differential operator in� with

αij = αji ∈ C1(�� ), αi ∈ C
(�� ), α0 ∈L∞(�), 1 � i, j � N.

Subsequently, we denote byµ> 0 the ellipticity constant ofL in �. Then, for any
ξ ∈ R

N \ {0} andx ∈ �� we have that

N∑
i,j=1

αij (x)ξiξj � µ|ξ |2.

(c) B(b) stands for the boundary operator

B(b)u :=
{
u on�0,

© 2003 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
∂νu+ bu on�1,
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where�0 and�1 are two disjoint open and closed subsets of∂� with

�0 ∪ �1 = ∂�,

b ∈ C(�1), and

ν = (ν1, . . . , νN) ∈ C1(�1;R
N
)

is an outward pointing nowhere tangent vector field. Necessarily,�0 and �1

possess finitely many components. Note that,B(b) is the Dirichlet boundary
operator on�0, denoted in the sequel byD, and the Neumann or a first ord
regular oblique derivative boundary operator on�1. It should be pointed out tha
either�0 or �1 might be empty.

(d) The functionf : ��× [0,∞) → R satisfies

f ∈ C1(��× [0,∞);R
)
, lim

u↗∞f (x,u) = ∞ uniformly in ��,

and

∂uf (· , u) > 0 for all u � 0. (1.2)

It should be noted that

f (· ,0) ∈ C1(��;R
)

and that there is no sign restriction onf (· ,0) in �. Moreover, (1.2) implies

f (· ,0)= inf
ξ>0

f (· , ξ ). (1.3)

As far as the weight functionsX , V ∈L∞(�) are concerned, it is assumed that

X , V ∈A�0,�1(�),

whereA�0,�1(�) is the class of nonnegative potentials introduced by the follow
definition.

DEFINITION 1.1. – Givena ∈L+∞(�) (a ∈L∞(�) such thata � 0), it is said that

a ∈A�0,�1(�)

if an open subset�0
a of � and a compact subsetKa of �� with Lebesgue measure ze

exist for which

Ka ∩ (��0
a ∪�1

)= ∅, (1.4)

�+
a := {x ∈�: a(x) > 0

}= � \ (��0
a ∪Ka

)
, (1.5)

and each of the following four conditions is satisfied:
(A1) �0

a possesses finitely many components of classC2, say�0,j
a , 1 � j � m, such

that

��0,i ∩ ��0,j = ∅ if i �= j
a a
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and

dist
(
�1, ∂�

0
a ∩�

)
> 0. (1.6)

Thus, if we denote by�i
1, 1 � i � n1, the components of�1, then for each

1 � i � n1 either �i
1 ⊂ ∂�0

a or else�i
1 ∩ ∂�0

a = ∅. Moreover, if�i
1 ⊂ ∂�0

a,
then�i

1 must be a component of∂�0
a. Indeed, if�i

1 ∩ ∂�0
a �= ∅ but �i

1 is not a
component of∂�0

a, thendist(�i
1, ∂�

0
a ∩�)= 0.

(A2) Let {i1, . . . , ip} denote the subset of{1, . . . , n1} for which

�
j
1 ∩ ∂�0

a = ∅ ⇐⇒ j ∈ {i1, . . . , ip}.

Then,a is bounded away from zero in any compact subset of

�+
a ∪

p⋃
j=1

�
ij
1 .

Note that if�1 ⊂ ∂�0
a, then we are only imposinga to be bounded away from

zero in any compact subset of�+
a .

(A3) Let �i
0, 1 � i � n0, denote the components of�0, and let {i1, . . . , iq} be the

subset of{1, . . . , n0} for which

(
∂�0

a ∪Ka

)∩ �
j
0 �= ∅ ⇐⇒ j ∈ {i1, . . . , iq}.

Then,a is bounded away from zero on any compact subset of

�+
a ∪

[
q⋃

j=1

�
ij
0 \ (∂�0

a ∪Ka

)]
.

Note that if(∂�0
a ∪Ka)∩ �0 = ∅, then we are only imposing thata is bounded

away from zero on any compact subset of�+
a .

(A4) For anyη > 0 there exist a natural number a(η) � 1 and a(η) open subsets o
R

N, G
η
j , 1� j �  a(η), with |Gη

j | < η, 1 � j �  a(η), such that

�Gη
i ∩ �Gη

j = ∅ if i �= j, Ka ⊂
 a(η)⋃
j=1

G
η
j ,

and, for each1 � j �  a(η), the open setGη
j ∩� is connected and of classC2.

Subsequently, it will be said thata ∈A+
�0,�1

(�) if a ∈A�0,�1(�) and�0
a = ∅.

Remark1.2. – Whena ∈A+
�0,�1

(�), we have that

Ka ∩�1 = ∅ ∧ �+ := {x ∈�: a(x) > 0
}= � \Ka.
a
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Moreover, if we denote by�i
0, 1� i � n0, the components of�0 and by{i1, . . . , iq} the

subset of{1, . . . , n0} for which

Ka ∩�
j
0 �= ∅ ⇐⇒ j ∈ {i1, . . . , iq},

then,(A2) and(A3) are satisfied if, and only if,a is bounded away from zero on compa
subsets of

�+
a ∪�1 ∪

(
q⋃

j=1

�
ij
0 \Ka

)
.

If, in addition,Ka ∩�0 = ∅, then(A2) and(A3) are satisfied if, and only if,a is bounded
away from zero on compact subsets of�+

a ∪ �1.

Also, this paper assumes that�0
V is connected and

�0
0 := ∂�0

V \ �1 ⊂ �, dist
(
�1,�

0
0

)
> 0. (1.7)

Note that, sinceV ∈ A�0,�1(�), the second relation of (1.7) follows from (1.6). A
an immediate consequence from (1.7), for each 1� i � n1 either�i

1 ⊂ ∂�0
V or else

�i
1 ∩ ∂�0

V = ∅. Moreover,�i
1 must be a component of∂�0

V if �i
1 ⊂ ∂�0

V . Assumption
(1.7) allow us to apply [7, Theorem 4.2] (cf. Theorem 2.19 of Section 2 here
Subsequently, for anyδ � 0 sufficiently small,�δ

V will stand for the open set

�δ
V := �0

V ∪ {x ∈�: dist
(
x,�0

0

)
< δ

}
and we assume that there is a sequenceυn, n � 1, such that limn→∞ υn = 0 for which
some of the general assumptions (a)–(d) or (e) of Theorem 2.19 of Section 2 with

(a,�0,�n) = (X ,�0
V ,�

υn
V

)
, n � 1,

are satisfied. Moreover, we also assume that, for eachδ � 0 sufficiently small,

X ∈A∂�δ
V
\�1,∂�

δ
V
∩�1

(
�δ

V

)
. (1.8)

Throughout this paper, (1.1) will be refereed to as problemP [γ,λ,�,B(b)], and
&[γ,�,B(b)] will stand for the set of values ofλ ∈ R for which P [γ,λ,�,B(b)]
possesses a positive solution. Thanks to the main result of [5],P [γ,λ,�,B(b)] has a
unique positive solution ifλ ∈ &[γ,�,B(b)]. Throughout this paper such a soluti
will be denoted by

u[L+γV ,λW,X ,�,B(b)].

To state our main result we need to introduce some notation. Given any p
subdomain�0 of � of classC2 satisfying

dist(�1, ∂�0 ∩�)> 0
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we shall denote byB(b,�0) the boundary operator defined fromB(b) through

B(b,�0) :=
{

D on∂�0 ∩�,

B(b) on∂�0 ∩ ∂�.

The main result of this paper reads as follows.

THEOREM 1.3. – Beside all previous general assumptions, suppose the follo
conditions hold:

(1) λ ∈ &[0,�0
V ,B(b,�0

V )],
(2) γ0 > 0 exists for which

λ ∈ ⋂
γ�γ0

&
[
γ,�,B(b)

]
.

(3) For each1 � i � N ,

νi :=
N∑

j=1

αijnj on�1 ∩ ∂�0
V .

Then, for eachp ∈ [1,∞),

lim
γ↗∞‖u[L+γV ,λW,X ,�,B(b)] − u[L,λW,X ,�0

V
,B(b,�0

V
)]‖Lp(�

0
V
) = 0 (1.9)

and

lim
γ↗∞‖u[L+γV ,λW,X ,�,B(b)]‖L∞(K) = 0 (1.10)

in any compact subsetK of �� \ ��0
V . In particular,

lim
γ↗∞u[L+γV ,λW,X ,�,B(b)] =

{
u[L,λW,X ,�0

V
,B(b,�0

V
)] in �0

V ,

0 in � \�0
V

a.e. in�.

This theorem provides us with a substantially sharper version of [16, Theorem
where a very special case was treated. No other result of this nature seems to a
in the mathematical literature. The proof of Theorem 1.3 is based upon the constr
of an adequate supersolution of problemP [γ,λ,�,B(b)] for γ > 0 sufficiently large.
Such construction is extremely delicate, since it contains a number of very fine tec
details. In constructing these supersolutions one should slightly enlarge the vanish
�0

V of the potentialV in the domain� and it is in this precise moment when we need
use the results on continuous dependence with respect to the underlying domain
positive solutions ofP [γ,λ,�,B(b)]. Those results, coming from [7], will be collecte
in Section 2.

An outline of this paper is as follows. In Section 2 we fix the main notations
give some previous results – more or less known – that are going to be used thro
this paper. In Section 3 we prove Theorem 1.3. In Section 4 we give some suf
conditions so that Theorem 1.3 can be applied. Finally, in Section 5 we use Theor
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to show that in the presence of refuge areas two competing species will coexist pr
their reproduction rates are sufficiently large. How large those rates must be w
ascertained in terms of the principal eigenvalues of some elliptic operators suppo
the refuges of the species. Quite strikingly, the critical reproduction rates are indep
of the aggression caused by competition. Further, it will be shown that as soon
competition level grows the corresponding species must concentrate in its refug
Actually, they must segregate toward their respective refuges as the “amplitude”
competitive interaction becomes large. So, in the presence of a refuge, the stress
by competition forces the species to concentrate in its refuge area. In obtaining al
sort of biological principles we will use a general class of Lotka–Volterra comp
species models with diffusion and transports effects.

Competition, as most ecologists employ the word, means the active deman
number of individuals of the same species – intraspecific competition – or mem
of a number of species at the same trophic level – interspecific competition –
common resource or requirement that is actually, or potentially, limiting, [4,27].
commonly agreed that this definition is consistent with the assumptions of the L
Volterra equations, which still seems to conform the basis of the mathematical t
of competition. So, our results might have a significant value from the point of
of mathematical biology. Actually, the model is providing us with an idealized beha
apparently described for the first time, against which reality can be judged and mea

The weakest part of those models from the modeling perspective is the diff
term. Nevertheless, although filled with hard to justify (or even doubtful) hypoth
the competition Lotka–Volterra model does not suffer so much faults from the po
view of population dynamics.

It should be noted that theconcentration principledescribed in Section 5 cann
occur inhomogeneous models, but exclusively in heterogeneous ones. The mathe
difficulties that one must overcome to deal with degenerate spatially heteroge
problems might explain the lack of mathematical results in that direction (cf.,
[20,22], and the references there in).

2. Preliminaries, notations and previous results

This section fixes some notations and collects some of the main results of [1
and [7]; those results will be used in subsequent sections.

For eachp > 1 we consider

W 2
p,B(b)(�) := {u ∈W 2

p(�): B(b)u= 0
}
,

W 2
B(b)(�) := ⋂

p>1

W 2
p,B(b)(�)⊂ H 2(�),

and use the natural product order inLp(�)×Lp(∂�),

(f1, g1)� (f2, g2) ⇐⇒ f1 � f2 ∧ g1 � g2.

It will be said that(f1, g1) > (f2, g2) if (f1, g1) � (f2, g2) and(f1, g1) �= (f2, g2).
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Sinceb ∈ C(�1), it follows from [21] that, for eachp > 1,

B(b) ∈ L
(
W 2

p(�);W 2−1/p
p (�0)×W 1−1/p

p (�1)
)
.

Moreover, for anyP ∈ L∞(�) the linear eigenvalue problem{
(L +P)ϕ = λϕ in �,

B(b)ϕ = 0 on∂�
(2.1)

possesses a least real eigenvalue, denoted in the sequel byσ [L+P,�,B(b)] and called
the principal eigenvalue of(L + P,�,B(b)). The principal eigenvalue is simple a
associated with it there is a positive eigenfunction, unique up to multiplicative cons
this eigenfunction is called theprincipal eigenfunctionof (L + P,�,B(b)). Thanks to
[1, Theorem 12.1], the principal eigenfunction, subsequently denoted byϕ, satisfies

ϕ ∈W 2
B(b)(�) ⊂H 2(�)

and it is strongly positive in� in the sense thatϕ(x) > 0 for eachx ∈ � ∪ �1 and
∂νϕ(x) < 0 for eachx ∈ �0. Moreover,σ [L + P,�,B(b)] is the unique eigenvalue o
(2.1) possessing a positive eigenfunction, and it is dominant in the sense that

Reσ > σ
[
L +P,�,B(b)

]
for any other eigenvalueσ of (2.1). Furthermore, setting

(L +P)p := (L +P)|W2
p,B(b)

(�),

we have that, for eachω > −σ [L +P,�,B(b)] andp >N , the operator

[
ω + (L +P)p

]−1 ∈L
(
Lp(�)

)
is a positive, compact and irreducible (cf. [23, V.7.7]).

Throughout this paper, given any proper subdomain�0 of � of classC2 with

dist
(
�1, ∂�0 ∩�

)
> 0, (2.2)

we shall denote byB(b,�0) the boundary operator defined fromB(b) through

B(b,�0) :=
{

D on∂�0 ∩�,

B(b) on∂�0 ∩ ∂�.
(2.3)

When�0 =� we set

B(b,�) := B(b).

It should be noted that if��0 ⊂ �, then ∂�0 ⊂ � and, hence,B(b,�0) = D, by
definition. Also, we will denote byσ [L + P,�0,B(b,�0)] the principal eigenvalu
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of the linear boundary value problem{
(L +P)ψ = λψ in �0,

B(b,�0)ψ = 0 on∂�0.
(2.4)

We now recall the concept ofprincipal eigenvaluefor a domain with several compo
nents.

DEFINITION 2.1. – Suppose�0 is an open subset of� with a finite number o
components of classC2, say�j

0, 1 � j � m, such that��i
0 ∩ ��j

0 = ∅ if i �= j and

dist
(
�1, ∂�0 ∩�

)
> 0. (2.5)

Then, the principal eigenvalue of(L +P,�0,B(b,�0)) is defined through

σ
[
L +P,�0,B(b,�0)

] := min
1�j�m

σ
[
L +P,�

j
0,B

(
b,�

j
0

)]
. (2.6)

Remark2.2. – Since�0 is of classC2, it follows from (2.5) that each of the princip
eigenvaluesσ [L + P,�

j
0,B(b,�

j
0)], 1 � j � m, is well defined. This shows th

consistency of Definition 2.1.

Supposep >N andP ∈ L∞(�). Then, a function̄u ∈W 2
p(�) is said to be apositive

strict supersolutionof (L +P,�,B(b)) if

ū � 0 ∧ (
(L +P)ū,B(b)ū

)
> 0.

A function u ∈ W 2
p(�) is said to bestrongly positiveif u(x) > 0 for eachx ∈ � ∪ �1

and∂βu(x) < 0 for eachx ∈ �0 satisfyingu(x) = 0 and any outward pointing nowhe
tangent vector fieldβ ∈ C1(�0;R

N). Finally, (L + P,�,B(b)) is said to satisfy the
strong maximum principleif p >N , u ∈W 2

p(�), and((L+P)u,B(b)u) > 0 imply that
u is strongly positive. It should be recalled that for anyp >N

W 2
p(�) ↪→ C2−N/p

(�� ) (2.7)

and that any functionu ∈ W 2
p(�) is a.e. in � twice differentiable (cf., e.g., [25

Theorem VIII.1]).
The following characterization of the strong maximum principle provides us with

of the main technical tools to make most of the comparisons of this paper. It goe
to [17,18], thought the version given here comes from [3].

THEOREM 2.3. – For anyP ∈L∞(�) the following assertions are equivalent:
• σ [L +P,�,B(b)] > 0;
• (L +P,�,B(b)) possesses a positive strict supersolution;
• (L +P,�,B(b)) satisfies the strong maximum principle.

Now, we collect some of the main properties ofσ [L + P,�,B(b)]; they are taken
from [6, Proposition 3.2, 3.3].
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PROPOSITION 2.4. – Let�0 be a proper subdomain of� of classC2 satisfying(2.2).
Then,

σ
[
L +P,�,B(b)

]
< σ

[
L +P,�0,B(b,�0)

]
,

whereB(b,�0) is the boundary operator defined by(2.3).

PROPOSITION 2.5. – Let P1,P2 ∈ L∞(�) such thatP1 < P2 in a set of positive
Lebesgue measure. Then,

σ
[
L +P1,�,B(b)

]
< σ

[
L +P2,�,B(b)

]
.

A crucial result for the mathematical analysis carried out in the next sections
continuous dependence of the principal eigenvalueσ [L + P,�,B(b)] with respect
to the perturbations of the domain around its Dirichlet boundary. To state it we
introducing the following concepts.

DEFINITION 2.6. – Let �0 be a bounded domain ofRN with boundary∂�0 =
�0

0 ∪ �1 such that�0
0 ∩ �1 = ∅, where�0

0 satisfies the same requirements as�0, and
�n, n � 1, a sequence of bounded domains ofR

N with boundaries∂�n = �n
0 ∪ �1 of

classC2 such that

�n
0 ∩ �1 = ∅, n � 1,

and�n
0, n � 1, satisfies the same requirements as�0. Then, it is said that�n converges

to �0 from the exterior if, for eachn � 1,

�0 ⊂ �n+1 ⊂ �n and
∞⋂
n=1

��n = ��0.

Throughout the remaining of this paper it is said thatν = (ν1, . . . , νN) is theconormal
vector fieldif

νi :=
N∑

j=1

αijnj , 1� i � N, (2.8)

wheren = (n1, . . . , nN) is the outward unit normal to� on �1. In this case∂ν will be
called theconormal derivative. Letµ> 0 denote the ellipticity constant ofL and assume
that (2.8) is satisfied. Then,

〈ν, n〉 =
N∑

i,j=1

αijnjni � µ|n|2 = µ> 0

and, therefore,ν is an outward pointing nowhere tangent vector field. It should be n
thatν ∈ C1(�1;R

N), sinceαij ∈ C1(��), 1� i, j � N , and�1 is of classC2. It is time for
establishing the main result about the continuous dependence of the principal eige
with respect to the perturbations of the domain around its Dirichlet boundary; it
back to [6, Theorem 7.1].
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THEOREM 2.7 (Exterior Continuous Dependence). –Suppose(2.8) and consider
P ∈ L∞(�). Let�0 be a proper subdomain of� with boundary of classC2 such that

∂�0 = �0
0 ∪ �1, �0

0 ∩�1 = ∅,
where�0

0 satisfies the same requirements as�0, and let�n ⊂ �, n � 1, be a sequence o
bounded domains ofRN of classC2 converging to�0 from the exterior. For eachn � 0,
let Bn(b) denote the boundary operator defined through

Bn(b)u :=
{
u on�n

0 ,

∂νu+ bu on�1,

where

�n
0 := ∂�n \ �1, n � 0,

and denote by(σ [L + P,�n,Bn(b)], ϕn) the principal eigen-pair associated wi
(L + P,�n,Bn(b)), where the principal eigenfunctionϕn is assumed to be normalize
so that

‖ϕn‖H1(�n) = 1, n � 0.

Then,ϕ0 ∈ W 2
B0(b)

(�0) and

lim
n→∞σ

[
L +P,�n,Bn(b)

]= σ
[
L +P,�0,B0(b)

]
, lim

n→∞‖ϕn|�0 − ϕ0‖H1(�0)
= 0.

The following result establishes that(L + P,�,D) satisfies the strong maximu
principle if |�| is sufficiently small. It goes back to [17, Theorem 5.1] and
Theorem 10.1]. Hereafter,| · | will stand for the Lebesgue measure inR

N .

THEOREM 2.8. – SupposeP ∈L∞(�) and

αij ∈ C
(�� )∩W 1

∞(�), 1� i, j � N. (2.9)

Then

lim inf|�|↘0
σ [L +P,�,D]|�|2/N � µ01|B1|2/N,

where

B1 := {x ∈ R
N : |x| < 1}, 01 := σ [−2,B1,D], (2.10)

andµ> 0 is the ellipticity constant ofL in �.

Another fundamental result for the mathematical analysis carried out in the s
quent sections is the next one; it goes back to [17, Theorem 6.2] and [6, Theorem

THEOREM 2.9. – Assume that(2.8) is satisfied on�1 ∩ ∂�0
V . Then

lim
γ↗∞σ

[
L + γ V,�,B(b)

]= σ
[
L,�0

V ,B
(
b,�0

V

)]
.
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The proof of this result can be easily adapted to show that in the particular case
�0

V = ∅ the next theorem follows; it should be noted that condition (2.8) is not req
and that the regularity of the coefficients ofL is weaker than the regularity required
Theorem 2.9.

THEOREM 2.10. – Suppose(2.9)andV ∈A+
�0,�1

(�). Then

lim
γ↗∞σ

[
L + γ V,�,B(b)

]= ∞.

Now, we shall state the concept ofstrong solutionfor problemP [γ,λ,�,B(b)] and
collect the results of [5] that characterize the existence of positive solutions. A fun
u is said to be astrong solutionof P [γ,λ,�,B(b)] if u ∈ W 2

p(�) for somep > N and
it satisfies (1.1). A functionu is said to be apositive solutionof P [γ,λ,�,B(b)] if it
is a strong solution andu > 0 in �. The solutions ofP [γ,λ,�,B(b)] will be regarded
as couples(λ,u). Accordingly, it will be said that(λ0, u0) is a solution of (1.1) ifu0 is a
solution ofP [γ,λ0,�,B(b)]. The following result is [7, Lemma 2.12].

LEMMA 2.11. – Suppose(λ,u) is a positive solution of(1.1). Then,u is strongly
positive in� andu ∈W 2

B(b)(�). Moreover,

σ
[
L + γ V − λW +Xf (· , u),�,B(b)

]= 0. (2.11)

In particular, u ∈ C1,ϑ (��) for eachϑ ∈ (0,1), and it is a.e. in� twice differentiable.

The following result characterizes the existence of positive solutions for (1.1); it
back to [5, Theorem 4.2].

THEOREM 2.12. – Suppose(2.8)on�1 ∩ ∂�0
X . Then,P [γ,λ,�,B(b)] possesses

positive solution if, and only if,

σ
[
L + γ V +Xf (· ,0)− λW,�,B(b)

]
< 0< σ

[
L + γ V − λW,�0

X ,B
(
b,�0

X
)]
.

Moreover, the positive solution is unique if it exists. Subsequently, it will be denote

u[L+γV ,λW,X ,�,B(b)].

Furthermore, for anyu0 ∈ Lp(�), p >N/2, the evolutionary problem
∂u

∂t
+ (L + γ V )u= λWu−Xf (· , u)u in �× (0,∞),

B(b)u = 0 on ∂�× (0,∞),

u(· ,0) = u0 in �

(2.12)

possesses a unique strong solution and, if we denote it by5[L+γV ,λW,X ,�,B(b)](x, t;u0),
one has that

lim
t↗∞

∥∥5[L+γV ,λW,X ,�,B(b)](· , t;u0)− u[L+γV ,λW,X ,�,B(b)]
∥∥
C1

0(
��)

= 0.

Remark2.13. – Imposing (2.8) on�1 ∩ ∂�0 is not needed for the uniqueness.
X
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Arguing as in the proof of Theorem 2.12 (cf. [5, Theorem 4.2]) the following resu
easily obtained.

THEOREM 2.14. – SupposeX ∈ A+
�0,�1

(�). Then,P [γ,λ,�,B(b)] has a positive
solution if, and only if,

σ
[
L + γ V − λW +Xf (· ,0),�,B(b)

]
< 0.

Moreover, the positive solution is unique if it exists; subsequently denoted by

u[L+γV ,λW,X ,�,B(b)].

Furthermore, for anyu0 ∈ Lp(�), p > N
2 , the evolutionary problem(2.12)possesses

unique strong solution and, if we denote it by5[L+γV ,λW,X ,�,B(b)](x, t;u0),

lim
t↗∞

∥∥5[L+γV ,λW,X ,�,B(b)](· , t;u0)− u[L+γV ,λW,X ,�,B(b)]
∥∥
C1

0(
��)

= 0.

In Theorem 2.14 condition (2.8) on�1 ∩ ∂�0
X is not required, since�0

X = ∅. Now,
we introduce the concept ofpositive supersolution.

DEFINITION 2.15. – Given p > N , it is said that u ∈ W 2
p(�) is a positive

supersolution(resp. positive subsolution) of P [γ,λ,�,B(b)] if u > 0 and([
L + γ V − λW +Xf (· , u)]u,B(b)u

)
� 0(

resp.
([

L + γ V − λW +Xf (· , u)]u,B(b)u
)
� 0

)
.

The following comparison result is crucial in our mathematical analysis; it is
Theorem 2.15].

THEOREM 2.16. – SupposeP [γ,λ,�,B(b)] possesses a positive solution,p > N ,
and letu ∈ W 2

p(�) be a positive supersolution(resp. subsolution)of P [γ,λ,�,B(b)].
Then,

u � u[L+γV ,λW,X ,�,B(b)] (resp.u � u[L+γV ,λW,X ,�,B(b)]).

The following results are [7, Theorem 3.1] and [7, Corollary 3.2], respectively. T
collect some crucial properties of the families of potentialsA�0,�1(�) andA+

�0,�1
(�).

Subsequently, ifa ∈A�0,�1(�), �̃ ⊂ � is an open subset satisfying

dist(∂�, ∂�̃∩�) > 0

and

a ∈A
�̃0,�̃1

(
�̃
)
, �̃1 := �1 ∩ ∂�̃, �̃0 := ∂�̃ \ �̃1,

we will denote by[�̃]0a the maximal open subset of̃� where the potentiala vanishes.

THEOREM 2.17. – Supposea ∈ A�0,�1(�) and let�̃ be an open subdomain of� of
classC2 such that

dist(∂�, ∂�̃∩�)> 0. (2.13)
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[7,
Then, each of the following sets

�̃0 := ∂�̃ ∩ (�0 ∪�), �̃1 := ∂�̃ \ �̃0 = ∂�̃∩ �1,

is closed and open in∂�̃. Moreover, the following assertions are true:
(a) If �0

a ∩ �̃ �= ∅ is of classC2 and

∂�̃∩� ∩ ∂
(
�0

a ∩ �̃
)= ∂�̃∩�∩ �̄0

a, (2.14)

thena ∈A
�̃0,�̃1

(�̃) and [
�̃
]0
a
= �0

a ∩ �̃.

(b) Suppose�0
a ∩ �̃ = ∅ and

� ∩Ka �= ∅ "⇒ � \Ka ⊂ �+
a

for any component� of ∂�̃∩�. Then,a ∈ A+
�̃0,�̃1

(�̃). In particular,

a ∈A+
�0,�1

(�) "⇒ a ∈A+
�̃0,�̃1

(
�̃
)
.

COROLLARY 2.18. – Supposea, b ∈A�0,�1(�) with �0
b connected and

dist
(
�0, ∂�

0
b ∩�

)
> 0.

Then,

�̃0 := ∂�0
b ∩ (�0 ∪�) and �̃1 := ∂�0

b \ �̃0 = ∂�0
b ∩�1

are closed and open sets of classC2, and each of the following assertions is true:
(a) If �0

a ∩�0
b �= ∅ is of classC2 and

∂�0
b ∩�∩ ∂

(
�0

a ∩�0
b

)= ∂�0
b ∩� ∩ ��0

a, (2.15)

thena ∈A
�̃0,�̃1

(�0
b) and [

�0
b

]0
a
= �0

a ∩�0
b.

(b) Suppose�0
a ∩�0

b = ∅ and

� ∩Ka �= ∅ "⇒ � \Ka ⊂ �+
a

for any component� of ∂�0
b ∩�. Then,a ∈A+

�̃0,�̃1
(�0

b). In particular,

a ∈A+
�0,�1

(�) "⇒ a ∈ A+
�̃0,�̃1

(�0
b).

Another crucial result in obtaining Theorem 1.3 is the following theorem; it is
Theorem 4.2].
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THEOREM 2.19. – Supposea ∈ A�0,�1(�), let �0 be a proper subdomain of� with
boundary of classC2 such that

∂�0 = �0
0 ∪�1,

where�0
0 satisfies the same requirements as�0, and let�n ⊂ �, n � 1, be a sequenc

of bounded domains ofRN of classC2 converging to�0 from the exterior such that

dist(∂�, ∂�n ∩�)> 0, n � 0. (2.16)

For each natural numbern � 0 let Bn(b) be the boundary operator defined by

Bn(�) :=
{

D on�n
0 ,

B(b) on�1,

where

�n
0 := ∂�n \ �1.

Then, the following assertions are true:
(a) Suppose(2.8)on�1 ∩ ∂�0

a and∅ �= �0
a ⊂ �0. Then, for eachn � 0,

a ∈
∞⋂
n=0

A�n
0,�1(�n) and [�n]0a = �0

a,

where [�n]0a is the corresponding open set of the definition of the c
A�n

0,�1(�n), n � 0. Suppose, in addition, thata = X andλ ∈ &[γ,�0,B0(b)].
Then,

λ ∈
∞⋂
n=0

&
[
γ,�n,Bn(b)

]
.

(b) Suppose��0 ∩ ��0
a = ∅. Then,a ∈ A+

�0
0,�1

(�0). Moreover,n0 ∈ N exists for which

a ∈
∞⋂

n=n0

A+
�n

0,�1
(�n).

Furthermore,

λ ∈
∞⋂

n=n0

&
[
γ,�n,Bn(b)

]
if a =X andλ ∈&[γ,�0,B0(b)].

(c) Suppose��0
a ∩ ��0 �= ∅, �0 ∩ �0

a = ∅, andn0 ∈ N exists for which�n ∩ �0
a is of

classC2 and

∂�n ∩� ∩ ∂
(
�0

a ∩�n

)= ∂�n ∩�∩ ��0
a, n � n0. (2.17)

Suppose, in addition, that

� ∩Ka �= ∅ "⇒ � \Ka ⊂ �+

a
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for any component� of �0
0. Then,a ∈A+

�0
0,�1

(�0) and

a ∈
∞⋂

n=n0

A�n
0,�1(�n), [�n]0a = �0

a ∩�n, n � n0.

Suppose, in addition, thata =X andλ ∈ &[γ,�0,B0(b)]. Then,m0 ∈ N, m0 �
n0, exists for which

λ ∈
∞⋂

n=m0

&
[
γ,�n,Bn(b)

]
.

(d) Suppose(2.8)on�1 ∩ ∂[�0]0a and
(1) �0

a ∩�0 �= ∅ is of classC2,
(2) �0

a ∩ (� \�0) �= ∅,
(3) n0 ∈ N exists such that�0

a ∩ �n is a proper subdomain of� of classC2 if
n � n0,

(4) (2.14)is satisfied for anỹ� ∈ {�0,�n0+j : j � 0}.
Then,m0 � n0 exists for which

a ∈
∞⋂

n=m0

A�n
0,�1(�n) ∧ [�n]0a = �n ∩�0

a if n ∈ {0,m0 + j : j � 0}.

Moreover, if, in addition,a = X and λ ∈ &[γ,�0,B0(b)], then, for some 0 �
m0,

λ ∈
∞⋂

n= 0

&
[
γ,�n,Bn(b)

]
.

(e) Supposea ∈A+
�0,�1

(�), i.e.,�0
a = ∅. Then,

a ∈
∞⋂
n=0

A+
�n

0,�1
(�n),

i.e.,a ∈ A�n
0,�1(�n) and [�n]0a = ∅ for eachn � 0. Moreover,

a =X ∧ λ ∈&
[
γ,�0,B0(b)

] "⇒ λ ∈
∞⋂
n=0

&
[
γ,�n,Bn(b)

]
.

Furthermore, in any of the five previous cases, ifa =X , then

lim
n→∞‖u[L+γV ,λW,X ,�n,Bn(b)]|�0 − u[L+γV ,λW,X ,�0,B0(b)]‖H1(�0)

= 0 (2.18)

if

λ ∈&
[
γ,�0,B0(b)

]
.



S. CANO-CASANOVA, J. LÓPEZ-GÓMEZ / Ann. I. H. Poincaré – AN 20 (2003) 999–10411015
3. Proof of Theorem 1.3

This section proves Theorem 1.3. Subsequently, for any

a ∈A∂�0
V
\�1,∂�

0
V
∩�1

(
�0

V

)∩A�0,�1(�)

satisfying�0
a ∩�0

V �= ∅ we set

�0
a,V := [�0

V

]0
a
= [�0

a

]0
V

= �0
a ∩�0

V .

Our proof of Theorem 1.3 is based upon the following proposition.

PROPOSITION 3.1. – Suppose

λ ∈&
[
0,�0

V ,B
(
b,�0

V

)]
(3.1)

and (2.8)holds on�1 ∩ ∂�0
V .

Then,δ0 > 0 exists such that for eachδ ∈ (0, δ0) there are a real number&(δ) > 0
and a positive function̄uδ satisfying the following conditions:

(i) ūδ is a positive strict supersolution ofP [γ,λ,�,B(b)] for eachγ >&(δ).
(ii) One has that

lim
δ↘0

‖ūδ − u[L,λW,X ,�0
V
,B(b,�0

V
)]‖H1(�0

V
) = 0 (3.2)

and, for any compact subsetK ⊂ �� \ ��0
V ,

lim
δ↘0

‖ūδ‖L∞(K) = 0. (3.3)

In particular,

lim
δ↘0

ūδ =
{
u[L,λW,X ,�0

V
,B(b,�0

V
)] in �0

V ,

0 in � \�0
V

a.e. in�. (3.4)

Proof. –Firstly, we shall prove part (i) in case

�0 ∩KV = ∅. (3.5)

Then, sinceV ∈A�0,�1(�), we have that

KV ∩ (��0
V ∪�1

)= ∅
and, hence, (3.5) gives

KV ∩ ∂� = ∅.
Thus, taking into account (1.7), we have that

KV ⊂ �, KV ∩ ��0 = ∅, ��0 ⊂ � ∪�1, (3.6)
V V
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er
and, in particular,

dist
(
�0,��0

V ∪KV

)
> 0, dist(�1,KV ) > 0, dist

(
KV ,��0

V

)
> 0. (3.7)

Fix η > 0. SinceV ∈ A�0,�1(�), it follows from (A4), that there exist a natural numb
 V (η) � 1 and V (η) open sets

G
η
j ⊂ R

N, 1� j �  V (η),

such that ∣∣Gη
j

∣∣< η, 1 � j �  V (η),

KV ⊂
 V (η)⋃
j=1

G
η
j ∧ �Gη

i ∩ �Gη
j = ∅ if i �= j

and for each 1� j �  V (η) the open setGη
j ∩� is connected and of classC2. Thanks to

(3.6), theGη
j ’s can be chosen so that

KV ⊂
 V (η)⋃
j=1

�Gη
j ⊂�,

 V (η)⋃
j=1

�Gη
j ∩ ��0

V = ∅. (3.8)

Indeed, since

dist
(
KV ,��0

V ∪ �0 ∪ �1
)
> 0,

an open setG exists such that

KV ⊂ G, �G⊂ �, �G∩ ��0
V = ∅,

and, hence, in order to have (3.8), it suffices consideringG∩G
η
j instead ofGη

j , 1� j �
 V (η).

Thanks to (3.8), there existε := ε(η) > 0 and  V (η) open setsGη,ε
j , 1 � j �  V (η),

of classC2 such that

�Gη
j ⊂ G

η,ε
j ⊂G

η
j +Bε,

∣∣Gη,ε
j

∣∣< 2η, 1 � j �  V (η), (3.9)

and

KV ⊂
 V (η)⋃
j=1

�Gη
j ⊂

 V (η)⋃
j=1

G
η,ε
j ⊂�,

 V (η)⋃
j=1

�Gη,ε
j ∩ ��0

V = ∅, (3.10)

where, for any8 > 0, B8 stands for the ball of radius8 centered at zero. Since

lim
η↘0

∣∣Gη,ε
j

∣∣= 0, 1 � j �  V (η),

it follows from Theorem 2.8 thatη0 > 0 exists such that for eachη ∈ (0, η0) and
1� j �  V (η) we have that

min σ
[
L +Xf (· ,0)− λW,G

η,ε(η)
j ,D

]
> 0. (3.11)
1�j� V (η)
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Subsequently we considerη ∈ (0, η0) fixed. For eachk ∈ {0,1}, let �j
k , 1 � j � nk,

denote the components of�k . Let {i1, . . . , ip} denote the subset of{1, . . . , n1} for which

�
j
1 ∩ ∂�0

V = ∅ ⇐⇒ j ∈ {i1, . . . , ip}.

SinceV ∈ A�0,�1(�), we find from (A1), that �j
1 is a component of∂�0

V for each
j ∈ {1, . . . , n1} \ {i1, . . . , ip}. Then,

�1 ∩ ∂�0
V = ⋃

j∈{1,...,n1}\{i1,...,ip}
�

j
1 ∧

p⋃
j=1

�
ij
1 ∩ ∂�0

V = ∅. (3.12)

In particular,

dist

(
p⋃

j=1

�
ij
1 , ∂�0

V

)
> 0. (3.13)

Subsequently, for each

δ ∈ (0,dist
(
�0

0, ∂�
))

we consider the openδ-neighborhood

�δ
V := �0

V ∪ {x ∈�: dist
(
x,�0

0

)
< δ

}
.

By definition, for any sequenceδn, n � 1, such that

lim
n→∞ δn = 0,

we have that the sequence

�n := �
δn
V , n � 1,

converges to�0
V from the exterior asn→ ∞; it will be simply said that

lim
δ↘0

�δ
V = �0

V from the exterior.

By construction, for eachδ > 0 sufficiently small, we have

�0
0 ∪�0

V ⊂ �δ
V ⊂ � (3.14)

and

∂�0
V ∩ �1 = ∂�δ

V ∩�1 = ⋃
j∈{1,...,n1}\{i1,...,ip}

�
j
1. (3.15)

Now, for eachδ > 0 sufficiently small, we consider theδ-neighborhoods

N 0,j
δ := (�j

0 +Bδ

)∩�, 1� j � n0,

N 1,j
δ := (�j

1 +Bδ

)∩�, j ∈ {i1, . . . , ip}.
(3.16)
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2.19

s

Since

KV ∩ (��0
V ∪ �1

)= ∅, �+
V = � \ (��0

V ∪KV

)
,

it follows from (1.7), (3.5), (3.10) and (3.12) thatδ1 > 0 exists such that, for an
δ ∈ (0, δ1),

 V (η)⋃
j=1

�Gη,ε
j ∩ ��δ

V = ∅, ∂�δ
V \ �1 ⊂�+

V ,

n0⋃
j=1

�N 0,j
δ \ �0 ⊂ �+

V (3.17)

and (
p⋃

j=1

�N 1,ij
δ ∪

n0⋃
j=1

�N 0,j
δ

)
∩
(

��δ
V ∪

 V (η)⋃
j=1

�Gη,ε
j

)
= ∅. (3.18)

Moreover, since�j
k ∩ �i

 = ∅ if (i,  ) �= (j, k), δ2 ∈ (0, δ1) exists such that for eac
0< δ < δ2

�N k,j
δ ∩ �N  ,i

δ = ∅ if (i,  ) �= (j, k), k,  ∈ {0,1}. (3.19)

Furthermore, since

lim
δ↘0

∣∣N 0,j
δ

∣∣= 0, 1 � j � n0,

it follows from Theorem 2.8 thatδ3 ∈ (0, δ2) exists such that for each 0< δ < δ3

σ
[
L +Xf (· ,0)− λW,N 0,j

δ ,D
]
> 0, 1 � j � n0. (3.20)

Since

λ ∈&
[
0,�0

V ,B
(
b,�0

V

)]
,

taking into account the general assumptions in Section 1, it follows from Theorem
that there existsδ4 ∈ (0, δ3) such that

λ ∈&
[
0,�δ4

V ,B
(
b,�

δ4
V

)]
. (3.21)

For eachδ � 0 sufficiently small let

uδ := u[L,λW,X ,�δ
V
,B(b,�δ

V
)]

denote the unique positive solution ofP [0, λ,�δ
V ,B(b,�δ

V )], if it exists; the uniquenes
is a consequence from Theorem 2.12, since we are assuming that (2.8) holds on�1∩∂�0

V

and, by construction, we have (1.8) and

�1 ∩ ∂
[
�δ

V

]0
X ⊂ �1 ∩ ∂�0

V .

It is easy to see thatuδ4 is a positive supersolution ofP [0, λ,�δ
V ,B(b,�δ

V )] if δ ∈
(0, δ4). In fact, thanks to the monotone structure of the nonlinearity, for anyκ � 1, κuδ
4
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s

is a positive supersolution ofP [0, λ,�δ
V ,B(b,�δ

V )]. On the other hand, it is easy to s
that, for anyδ ∈ (0, δ4),

vδ :=
{
u0 in �0

V ,

0 in �δ
V \�0

V

is a subsolution ofP [0, λ,�δ
V ,B(b,�δ

V )] such that

vδ � κuδ

for eachκ > 1 sufficiently large. Therefore,

λ ∈ ⋂
0<δ<δ4

&
[
0,�δ

V ,B
(
b,�δ

V

)]
. (3.22)

In other words,uδ exists – and it is unique – for anyδ ∈ (0, δ4).
Subsequently, we fixδ ∈ (0, δ4) and set

H
η
δ/2 :=

 V (η)⋃
j=1

�Gη
j ∪

p⋃
j=1

�N 1,ij
δ/2 ∪

n0⋃
j=1

�N 0,j
δ/2 .

Let ψi
δ , i ∈ {i1, . . . , ip}, and ξ

j
δ , 1 � j � n0, denote the principal eigenfunction

associated with

σ
[
L +Xf (· ,0)− λW,N 1,i

δ ,B
(
b,N 1,i

δ

)]
, i ∈ {i1, . . . , ip},

and

σ
[
L +Xf (· ,0)− λW,N 0,j

δ ,D
]
, 1� j � n0,

respectively, normalized so that

∥∥ψi
δ

∥∥
L∞(N 1,i

δ
)
= 1,

∥∥ξ j
δ

∥∥
L∞(N 0,j

δ
)
= 1, i ∈ {i1, . . . , ip}, 1� j � n0, (3.23)

and letϑj
δ , 1� j �  V (η), denote the principal eigenfunctions associated with

σ
[
L +Xf (· ,0)− λW,G

η,ε
j ,D

]
normalized so that ∥∥ϑj

δ

∥∥
L∞(G

η,ε

j
)
= 1, 1� j �  V (η). (3.24)

Now, consider the positive function

ūδ : �� → [0,∞)
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7),
defined by

ūδ :=



uδ in ��δ/2
V ,

δϑ
j
δ in �Gη

j , 1� j �  V (η),

δψ
ij
δ in �N 1,ij

δ/2 , 1� j � p,

δξ
j
δ in �N 0,j

δ/2 , 1� j � n0,

ζδ in �� \ (��δ/2
V ∪H

η
δ/2

)
,

(3.25)

whereζδ is any positive regular extension of the function

uδ ∪
 V (η)⋃
j=1

δϑ
j
δ ∪

p⋃
j=1

δψ
ij
δ ∪

n0⋃
j=1

δξ
j
δ

from ��δ/2
V ∪H

η
δ/2 to �� with the property of being bounded away from zero in��\ (��δ/2

V ∪
H

η
δ/2); ζδ exists since each of the functions

uδ

∣∣
∂�

δ/2
V

\�1
, ϑ

j
δ

∣∣
∂G

η

j
, 1� j �  V (η),

ψ
ij
δ

∣∣
∂N

1,ij
δ/2 \�1

, ξ i
δ

∣∣
∂N 0,i

δ/2\�0
, 1 � j � p, 1 � i � n0,

is positive and bounded away from zero. When�1 ⊂ ∂�0
V , one should remove th

ψ
ij
δ ’s, 1 � j � p, from the definition ofūδ . It should be noted that, thanks to (3.1

(3.18) and (3.19), the function̄uδ is well defined. Moreover,

ūδ(x) > 0 for eachx ∈�.

To complete the proof of part (i) when (3.5) occurs it remains to show that& =&(δ) > 0
exists such that̄uδ provides us with a strict supersolution ofP [γ,λ,�,B(b)] for each
γ >&(δ). Indeed, since

V � 0 ∧ �0
V ⊂ �

δ/2
V ,

we find that, in�δ/2
V , the following estimate is satisfied for anyγ > 0[

L + γ V − λW +Xf (· , ūδ)
]
ūδ = [L + γ V − λW +Xf (· , uδ)

]
uδ = γ V uδ > 0,

by construction. Also, sinceδϑj
δ > 0 inG

η
j for each 1� j �  V (η), it follows from (1.2)

that

f
(· , δϑj

δ

)
> f (· ,0) in G

η
j ,

and, hence, for each 1� j �  V (η) andγ > 0 the following estimate holds inGη
j[

L + γ V − λW +Xf (· , ūδ)
]
ūδ = δ

[
L + γ V − λW +Xf

(· , δϑj
δ

)]
ϑ

j
δ

= δ
{
σ
[
L +Xf (· ,0)− λW,G

η,ε
j ,D

]+ γ V +X
[
f
(· , δϑj

δ

)− f
(· ,0

)]}
ϑ

j
δ

� δσ
[
L +Xf (· ,0)− λW,G

η,ε
j ,D

]
ϑ

j
δ .
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Thus, it follows from (3.11) that, for anyγ > 0,[
L + γ V − λW +Xf (· , ūδ)

]
ūδ > 0 in G

η
j , 1� j �  V (η).

Similarly, sinceδξ j
δ > 0 in N 0,j

δ/2 for each 1� j � n0, (1.2) implies

f
(· , δξ j

δ

)
> f (· ,0) in N 0,j

δ/2 , 1 � j � n0,

and, hence, for each 1� j � n0 andγ > 0 the following estimate is satisfied inN 0,j
δ/2 ,[

L + γ V − λW +Xf (· , ūδ)
]
ūδ = δ

[
L + γ V − λW +Xf

(· , δξ j
δ

)]
ξ
j
δ

= δ
{
σ
[
L − λW +Xf (· ,0),N 0,j

δ ,D
]+ γ V +X

[
f
(· , δξ j

δ

)− f (· ,0)
]}
ξ
j
δ

� δσ
[
L − λW +Xf (· ,0),N 0,j

δ ,D
]
ξ
j
δ .

Thus, thanks to (3.20), for eachγ > 0 the following estimate is satisfied[
L + γ V − λW +Xf (· , ūδ)

]
ūδ > 0 inN 0,j

δ/2 , 1� j � n0.

Summarizing, up to now we have shown that, for eachδ ∈ (0, δ4) andγ > 0,

[
L + γ V − λW +Xf (· , ūδ)

]
ūδ > 0 in ��δ/2

V ∪
 V (η)⋃
j=1

�Gη
j ∪

n0⋃
j=1

�N 0,j
δ/2 . (3.26)

Now, sinceV ∈A�0,�1(�), due to(A2) a constantω > 0 exists such that

V > ω > 0 in any compact subset of�+
V ∪

p⋃
j=1

�
ij
1 (3.27)

and, hence,

V > ω > 0 in
[�� \ (��δ/2

V ∪H
η
δ/2

)] ∪ p⋃
j=1

N 1,ij
δ/2 ⊂ �+

V ∪
p⋃

j=1

�
ij
1 . (3.28)

Thus, sinceδψ
ij
δ > 0 in N1,ij

δ/2 for each 1� j � p, we find from (1.2) that

f
(· , δψij

δ

)
> f (· ,0) in N 1,ij

δ/2 , 1� j � p.

Hence, thanks to (3.28), the following estimate is satisfied inN 1,ij
δ/2 for each 1� j � p[

L + γ V − λW +Xf (· , ūδ)
]
ūδ = δ

[
L + γ V − λW +Xf

(· , δψij
δ

)]
ψ

ij
δ

= δ
{
σ
[
L +Xf (· ,0)− λW,N 1,ij

δ ,B
(
b,N 1,ij

δ

)]
+ γ V +X

[
f
(· , δψij

δ

)− f (· ,0)
]}
ψ

ij
δ

> δ
{
σ
[
L +Xf (· ,0)− λW,N 1,ij

δ ,B
(
b,N 1,ij

δ

)]+ γω
}
ψ

ij
δ
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er
and, therefore,

[
L + γ V − λW +Xf (· , ūδ)

]
ūδ > 0 in

p⋃
j=1

N 1,ij
δ/2

if

γ >&1(δ) := ω−1 max
1�j�p

{∣∣σ [L +Xf (· ,0)− λW,N 1,ij
δ ,B

(
b,N 1,ij

δ

)]∣∣}� 0.

Moreover, since

�� \ (��δ/2
V ∪H

η
δ/2

)⊂ �+
V ,

it follows from (3.28) that there exists

&(δ) > max
{
&1(δ),0

}
such that for eachγ >&(δ) the following estimates are satisfied in�� \ (��δ/2

V ∪H
η
δ/2)[

L + γ V − λW +Xf (· , ūδ)
]
ūδ = [L + γ V − λW +Xf (· , ζδ)]ζδ

>
[
L − λW +Xf (· , ζδ)+ γω

]
ζδ > 0,

becauseω > 0, ζδ is bounded away from zero in�� \ (��δ/2
V ∪H

η
δ/2) and the function[

L − λW +Xf (· , ζδ)]ζδ
is independent ofγ .

On the other hand, by construction, we have that

B(b)ūδ = δDξ
j
δ = 0 on�j

0, 1 � j � n0,

B(b)ūδ = δ(∂ν + b)ψ
ij
δ = 0 on�

ij
1 , 1� j � p,

and, thanks to (3.15),

B(b)ūδ = (∂ν + b)uδ = 0 on∂�0
V ∩�1.

Therefore,

B(b)ūδ = 0 on∂�

and, for eachδ ∈ (0, δ4) and γ > &(δ), the functionūδ provides us with a positiv
strict supersolution ofP [γ,λ,�,B(b)]. This completes the proof of part (i) und
condition (3.5).

Now, suppose

�0 ∩KV �= ∅, (3.29)

instead of (3.5), and let{i1, . . . , iq} be the subset of{1, . . . , n0} for which

�
j
0 ∩KV �= ∅ ⇐⇒ j ∈ {i1, . . . , iq}.
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Subsequently, for any8 > 0 sufficiently small we will consider the new support dom

O8 := �∪
(

q⋃
j=1

�
ij
0 +B8

)
.

Fix 81 > 0, let

α̃ij = α̃ji ∈ C1(�O8

)
, α̃i ∈ C

(�O8

)
, α̃0, W̃ ∈L∞(O8), 1� i, j � N,

be any regular extensions from�� to �O8 of each of the coefficients

αij = αji, αi, α0, W, 1� i, j � N,

respectively, and consider the auxiliary differential operator

L̃ := −
N∑

i,j=1

α̃ij

∂2

∂xi∂xj
+

N∑
i=1

α̃i

∂

∂xi
+ α̃0 in O81.

SinceL is strongly uniformly elliptic in� with ellipticity constantµ > 0, 8 ∈ (0, 81)

exists for which the corresponding̃L is strongly uniformly elliptic in

�̃ := O8

with ellipticity constantµ/2. Now, we will consider the auxiliary potentials

X̃ :=
{

1 in �̃ \�,

X in �,
Ṽ :=

{
1 in �̃ \�,

V in �,

the boundary operator

B̃(b) :=
{

D on ∂�̃ \ �1,

∂ν + b on�1,

and any regular extension off , say

f̃ ∈ C1(�̃�× [0,∞),R
)
,

from ��× [0,∞) to �̃
�× [0,∞), such that

lim
u↗∞ f̃ (x, u) = ∞ uniformly in �̃

�.

SinceX , V ∈A�0,�1(�), it is easy to see that

X̃ , Ṽ ∈A
(
�̃
)
.

∂�̃\�1,�1
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Moreover, by construction,
q⋃

j=1

�
ij
0 ⊂ �̃,

and, sinceX̃ = Ṽ = 1 in �̃ \�,

�̃0
X̃ =�0

X , �̃0
Ṽ

=�0
V ⊂ ��, K̃

Ṽ
=KV ⊂ �̃. (3.30)

Thus, thanks to (1.7),(
∂�̃ \ �1

)∩ (∂�̃0
Ṽ

∪ K̃
Ṽ

)= (∂�̃ \�1
)∩ (∂�0

V ∪KV

)= (∂�̃ \ �1
)∩KV

and, hence, it follows from the construction of�
ij
0 , 1� j � q, and�̃ that(

∂�̃ \�1
)∩ (∂�̃0

Ṽ
∪ K̃

Ṽ

)= ∅. (3.31)

Moreover, thanks to (3.30), condition (2.8) is satisfied on

�1 ∩ ∂�̃0
Ṽ

= �1 ∩ ∂�0
V

and, due to (1.7),

B̃
(
b, �̃0

Ṽ

)= B̃
(
b,�0

V

)= B
(
b,�0

V

)
.

Thus,

λ ∈&
[
0,�0

V ,B
(
b,�0

V

)]=&
[
0, �̃0

Ṽ
, B̃
(
b, �̃0

Ṽ

)]
and, thanks to (3.31), condition (3.5) is satisfied for the new problem in�̃. Therefore, we
can apply the result of part (i) in the special case when (3.5) is satisfied to the ex
problem {

L̃ũ+ γ Ṽ (x)ũ = λW̃(x)ũ− X̃ (x)f̃ (x, ũ)ũ in �̃,

B̃(b)ũ= 0 on∂�̃.
(3.32)

As a result, for eachδ > 0 sufficiently small there exist̃&(δ) > 0 and a positive function

¯̃uδ : �̃� → [0,∞)

such that

¯̃uδ(x) > 0 for eachx ∈ �̃,

and {[
L̃ + γ Ṽ − λW̃ + X̃ f̃

(· , ¯̃uδ

)] ¯̃uδ > 0 in �̃,

B̃(b) ¯̃uδ = 0 on∂�̃
(3.33)

for eachγ > &̃(δ). Now, set

ūδ := ¯̃uδ|�̄. (3.34)
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Then, thanks to (3.33) and (3.34), for eachγ > &̃(δ) we have that[
L+ γ V − λW +Xf (· , ūδ)

]
ūδ = [L̃+ γ Ṽ − λW̃ + X̃ f̃

(· , ¯̃uδ

)] ¯̃uδ � 0 in �. (3.35)

Moreover, since
⋃q

j=1�
ij
0 ⊂ �̃,

ūδ(x) = ¯̃uδ(x) > 0 for eachx ∈
q⋃

j=1

�
ij
0 . (3.36)

Also,

ūδ = ¯̃uδ = 0 on�0 \
q⋃

j=1

�
ij
0

and

(∂ν + b)ūδ = (∂ν + b) ¯̃uδ = 0 on�1.

Thus,

B(b)ūδ > 0 on∂�

and, therefore, thanks to (3.35), for eachδ > 0 sufficiently small the functionūδ

defined by (3.34), provides us with a positive strict supersolution ofP [γ,λ,�,B(b)] if
γ > &̃(δ) > 0. This completes the proof of Part (i).

Now, we shall prove part (ii). As in proving part (i) we will proceed separa
distinguishing between the cases when (3.5) or (3.29) is satisfied.

Suppose (3.5). Then, (3.22) is satisfied. For eachδ ∈ [0, δ4), let

uδ := u[L,λW,X ,�δ
V
,B(b,�δ

V
)]

denote the unique positive solution ofP [0, λ,�δ
V ,B(b,�δ

V )]. Since (2.8) holds on
�1 ∩ ∂�0

V , it follows from Theorem 2.19 that

lim
δ↘0

‖uδ − u0‖H1(�0
V
) = 0. (3.37)

Moreover, the positive strict supersolutionūδ defined through (3.25) satisfies

ūδ|�0
V

= uδ|�0
V
,

by definition, and, therefore, (3.37) implies

lim
δ↘0

‖ūδ − u0‖H1(�0
V
) = 0.

This shows (3.2).
We now prove (3.3). By definition of̄uδ , it follows from (3.23) and (3.24) that, fo

eachδ > 0 sufficiently small,

‖ūδ‖L∞(H
η

) � δ. (3.38)

δ/2
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under
Let K be a compact subset of�� \ ��0
V . By construction, there exists

δ5 := δ5(K) ∈ (0, δ4)

such that, for eachδ ∈ (0, δ5),

K ⊂ �� \ ��δ/2
V . (3.39)

Thus, it follows from (3.38) and (3.39) that

‖ūδ‖L∞(K∩Hη

δ/2)
� δ, ‖ūδ‖L∞(K\Hη

δ/2)
= ‖ζδ‖L∞(K\Hη

δ/2)
,

since, by definition,̄uδ = ζδ onK \H
η
δ/2, and, hence,

‖ūδ‖L∞(K) � max
{
δ,‖ζδ‖L∞(K\Hη

δ/2)

}
. (3.40)

Finally, sinceζδ is an arbitrary regular positive extension of

uδ ∪
 V (η)⋃
j=1

δϑ
j
δ ∪

p⋃
j=1

δψ
ij
δ ∪

n0⋃
j=1

δξ
j
δ

from

��δ/2
V ∪

 V (η)⋃
j=1

�Gη
j ∪

p⋃
j=1

�N 1,ij
δ/2 ∪

n0⋃
j=1

�N 0,j
δ/2

to ��, and (3.23), (3.24) imply

lim
δ↘0

∥∥δϑj
δ

∥∥
L∞(G

η

j
)
= lim

δ↘0

∥∥δψij
δ

∥∥
L∞(N

1,ij
δ/2 )

= lim
δ↘0

∥∥δξ j
δ

∥∥
L∞(N 0,j

δ/2 )
= 0,

passing to the limit asδ ↘ 0 in (3.40) it is rather clear thatζδ can be adjusted so th
(3.3) holds; (3.4) is easily obtained from (3.2) and (3.3). This completes the pro
part (ii) under (3.5).

Now, suppose (3.29), instead of (3.5). Then, arguing as in the proof of part (i)
condition (3.29), we have that the positive strict supersolution¯̃uδ built up in �̃ satisfies

lim
δ↘0

∥∥ ¯̃uδ − u[L̃,λW̃,X̃ ,�̃0
Ṽ
,B̃(b,�̃0

Ṽ
)]
∥∥
H1(�̃0

Ṽ
)
= 0. (3.41)

On the other hand, by construction, we have that

�̃0
Ṽ

= �0
V ⊂ ��

and

¯̃uδ|�̃0 = ūδ, B̃
(
b, �̃0

Ṽ

)= B̃
(
b,�0

V

)= B
(
b,�0

V

)
,

Ṽ



S. CANO-CASANOVA, J. LÓPEZ-GÓMEZ / Ann. I. H. Poincaré – AN 20 (2003) 999–10411027

isfied,

roof
whereūδ is the positive strict supersolution defined by (3.25). Moreover,

L̃|
�̃0

Ṽ

= L, W̃ |
�̃0

Ṽ

= W, X̃ |
�̃0

Ṽ

=X .

Thus, (3.41) becomes into

lim
δ↘0

‖ūδ − u[L,λW,X ,�0
V
,B(b,�0

V
)]‖H1(�0

V
) = 0,

so proving (3.2) under condition (3.29).
Similarly, adapting the argument given in the case when condition (3.5) is sat

we have that

lim
δ↘0

∥∥ ¯̃uδ

∥∥
L∞(K̃)

= 0 (3.42)

in any compact subset

K̃ ⊂ �̃
� \ �̃

�
0

Ṽ .

In particular, (3.42) holds in any compact subsetK of �� \ ��0
V , since

�� \ ��0
V = �� \ �̃

�
0

Ṽ ⊂ �̃
� \ �̃

�
0

Ṽ .

Therefore, since

¯̃uδ|��\��0
V
= ūδ,

(3.42) implies (3.3); (3.4) follows readily from (3.2) and (3.3). This completes the p
of part (ii) and concludes the proof of the proposition.✷

Now, we are ready to prove Theorem 1.3.

Proof of Theorem1.3. –Supposeγ0 > 0 exists such that

λ ∈&
[
0,�0

V ,B
(
b,�0

V

)]∩&
[
γ,�,B(b)

]
for eachγ > γ0, and (2.8) holds on�1 ∩ ∂�0

V . For eachγ > γ0, let

u[L+γV ,λW,X ,�,B(b)] ∧ u[L,λW,X ,�0
V
,B(b,�0

V
)]

denote the unique positive solutions of problemsP [γ,λ,�,B(b)] and P [0, λ,�0
V ,

B(b,�0
V )], respectively. Sinceu[L+γV ,λW,X ,�,B(b)] is strongly positive in�, we have

that

B
(
b,�0

V

)
u[L+γV ,λW,X ,�,B(b)] = u[L+γV ,λW,X ,�,B(b)] > 0 on∂�0

V ∩�. (3.43)

Thus,u[L+γV ,λW,X ,�,B(b)] is a positive strict supersolution ofP [0, λ,�0
V ,B(b,�0

V )] for
eachγ > γ0, and, hence, thanks to Theorem 2.16,

u[L,λW,X ,�0 ,B(b,�0 )] < u[L+γV ,λW,X ,�,B(b)] in �0
V for eachγ > γ0. (3.44)
V V
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Therefore, the auxiliary function

u∗ :=
{
u[L,λW,X ,�0

V
,B(b,�0

V
)] in ��0

V ,

0 in �� \ ��0
V

satisfies

u∗ < u[L+γV ,λW,X ,�,B(b)] in � for eachγ > γ0. (3.45)

On the other hand, since we are working under the assumptions of Proposition 3.1,δ0 > 0
exists such that for eachδ ∈ (0, δ0) there are a real number&(δ) > 0 and a positive
function ūδ such thatūδ is a positive strict supersolution ofP [γ,λ,�,B(b)] for each
γ >&(δ),

lim
δ↘0

‖ūδ − u[L,λW,X ,�0
V
,B(b,�0

V
)]‖H1(�0

V
) = 0

and, for any compact subsetK ⊂ �� \ ��0
V ,

lim
δ↘0

‖ūδ‖L∞(K) = 0.

In particular,

lim
δ↘0

ūδ =
{
u[L,λW,X ,�0

V
,B(b,�0

V
)] in �0

V ,

0 in � \�0
V ,

a.e. in�.

Thanks to Theorem 2.16,

u[L+γV ,λW,X ,�,B(b)] � ūδ in � for eachδ ∈ (0, δ0) andγ >&(δ). (3.46)

Therefore, it follows from (3.45) and (3.46) that

u∗ < u[L+γV ,λW,X ,�,B(b)] � ūδ in � for eachδ ∈ (0, δ0) andγ > γδ, (3.47)

where

γδ := max
{
&(δ), γ0

}
.

Thanks to (3.47), for eachδ ∈ (0, δ0) andγ > γδ , we have that

u∗|�0
V

= u[L,λW,X ,�0
V
,B(b,�0

V
)] � u[L+γV ,λW,X ,�,B(b)] � ūδ in �0

V (3.48)

and, hence,

‖u[L+γV ,λW,X ,�,B(b)] − u[L,λW,X ,�0
V
,B(b,�0

V
)]‖L2(�

0
V
)

� ‖ūδ − u[L,λW,X ,�0
V
,B(b,�0

V
)]‖L2(�

0
V
). (3.49)

Thus, for eachδ ∈ (0, δ0), we have that
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lim sup
γ↗∞

‖u[L+γV ,λW,X ,�,B(b)] − u[L,λW,X ,�0
V
,B(b,�0

V
)]‖L2(�

0
V
)

� ‖ūδ − u[L,λW,X ,�0
V
,B(b,�0

V
)]‖L2(�

0
V
). (3.50)

On the other hand, thanks to Proposition 3.1, we already know that

lim
δ↘0

‖ūδ − u[L,λW,X ,�0
V
,B(b,�0

V
)]‖L2(�

0
V
) = 0, (3.51)

and, therefore, combining (3.50) and (3.51) gives

lim
γ↗∞‖u[L+γV ,λW,X ,�,B(b)] − u[L,λW,X ,�0

V
,B(b,�0

V
)]‖L2(�

0
V
) = 0. (3.52)

Now, fix δ ∈ (0, δ0). Then, thanks to (3.48),

‖u[L+γV ,λW,X ,�,B(b)]‖L∞(�0
V
) � ‖ūδ‖L∞(�0

V
) for eachγ > γδ

and, hence, there exists a constantC > 0 such that

‖u[L+γV ,λW,X ,�,B(b)] − u[L,λW,X ,�0
V
,B(b,�0

V
)]‖L∞(�0

V
) � C for eachγ > γδ.

Thus, (3.52) implies

lim
γ↗∞‖u[L+γV ,λW,X ,�,B(b)] − u[L,λW,X ,�0

V
,B(b,�0

V
)]‖Lp(�

0
V
) = 0 for eachp ∈ [2,∞).

(3.53)
On the other hand, sinceL2(�

0
V ) ↪→ Lp(�

0
V ) if p ∈ [1,2), (3.52) gives

lim
γ↗∞‖u[L+γV ,λW,X ,�,B(b)] − u[L,λW,X ,�0

V
,B(b,�0

V
)]‖Lp(�

0
V
) = 0 for eachp ∈ [1,2).

This concludes the proof of (1.9).
Let K be a compact subset of�� \ ��0

V . Then, thanks to (3.47),

0= u∗|K � u[L+γV ,λW,X ,�,B(b)]|K � ūδ|K for eachδ ∈ (0, δ0) andγ > γδ,

and, hence,

‖u[L+γV ,λW,X ,�,B(b)]‖L∞(K) � ‖ūδ‖L∞(K) for eachδ ∈ (0, δ0) andγ > γδ. (3.54)

Thus, passing to the limit asγ ↗ ∞ in (3.54) gives

0� lim sup
γ↗∞

‖u[L+γV ,λW,X ,�,B(b)]‖L∞(K) � ‖ūδ‖L∞(K) for eachδ ∈ (0, δ0). (3.55)

On the other hand, thanks to Proposition 3.1, we have that

lim ‖ūδ‖L∞(K) = 0

δ↘0
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t

and, therefore, (3.55) implies

lim
γ↗∞‖u[L+γV ,λW,X ,�,B(b)]‖L∞(K) = 0.

This completes the proof of (1.10) and concludes the proof of the theorem.✷
4. Some sufficient conditions so that 1⇒ 2 in Theorem 1.3

The following results provide us with some sufficient conditions ensuring thaλ ∈
&[γ,�,B(b)] for anyγ sufficiently large wheneverλ ∈&[0,�0

V ,B(b,�0
V )].

THEOREM 4.1. – Supposeλ ∈ &[0,�0
V ,B(b,�0

V )], (2.8) holds on�1 ∩ (∂�0
V ∪

∂�0
X ) and

X ∈ A∂�0
V
\�1,�1∩∂�0

V

(
�0

V

) ∧ V ∈A∂�0
X \�1,�1∩∂�0

X

(
�0

X
) ∧ �0

V ∩�0
X ∈ C2,

if �0
V ∩�0

X �= ∅, or

X ∈A+
∂�0

V
\�1,�1∩∂�0

V

(
�0

V

) ∧ V ∈A+
∂�0

X \�1,�1∩∂�0
X

(
�0

X
)
,

when�0
V ∩�0

X = ∅. Then, there existsγ0 > 0 such that

λ ∈ ⋂
γ�γ0

&
[
γ,�,B(b)

]
(4.1)

and, therefore, Theorem1.3can be applied.

Proof. –Suppose ([
�0

V

]0
X = [�0

X
]0
V

=) �0
V ∩�0

X �= ∅.
Then, since�0

V ∩�0
X is of classC2, (2.8) holds on�1 ∩ (∂�0

V ∪ ∂�0
X ), and

∂
(
�0

V ∩�0
X
)⊂ ∂�0

V ∪ ∂�0
X ,

necessarily (2.8) holds on�1 ∩ ∂(�0
V ∩�0

X ). Thus, thanks to Theorem 2.12,

λ ∈&
[
0,�0

V ,B
(
b,�0

V

)]
$ (4.2)

σ
[
L − λW +Xf (· ,0),�0

V ,B
(
b,�0

V

)]
< 0< σ

[
L − λW,

[
�0

V

]0
X ,B

(
b,
[
�0

V

]0
X
)]
.

Similarly, for anyγ > 0,

λ ∈&
[
γ,�,B(b)

]
$ (4.3)

σ
[
L + γ V − λW +Xf (· ,0),�,B(b)

]
< 0< σ

[
L + γ V − λW,�0 ,B

(
b,�0 )].
X X
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se.

t

s for
On the other hand, since (2.8) holds on�1 ∩ ∂[�0
X ]0V , it follows from Theorem 2.9 that

lim
γ↗∞σ

[
L + γ V − λW,�0

X ,B
(
b,�0

X
)]= σ

[
L − λW,

[
�0

X
]0
V
,B
(
b,
[
�0

X
]0
V

)]
. (4.4)

Similarly,

lim
γ↗∞σ

[
L + γ V − λW +Xf (· ,0),�,B(b)

]
= σ

[
L − λW +Xf (· ,0),�0

V ,B
(
b,�0

V

)]
. (4.5)

Therefore, thanks to (4.2)–(4.4) and (4.5), condition (4.1) is satisfied for someγ0 > 0 if
λ ∈&[0,�0

V ,B(b,�0
V )]. This completes the proof of the theorem in this special ca

Now, suppose ([
�0

V

]0
X = [�0

X
]0
V

=) �0
V ∩�0

X = ∅.
Since [

�0
V

]0
X = ∅ ∧ X ∈ A+

∂�0
V
\�1,�1∩∂�0

V

(
�0

V

)
,

it follows from Theorem 2.14 that

λ ∈&
[
0,�0

V ,B
(
b,�0

V

)] ⇐⇒ σ
[
L−λW +Xf (· ,0),�0

V ,B
(
b,�0

V

)]
< 0. (4.6)

Similarly, thanks to Theorem 2.12, the equivalence (4.3) holds.
SinceV ∈A�0,�1(�) and (2.8) is satisfied on�1 ∩ ∂�0

V , it follows from Theorem 2.9
that (4.5) holds. Thus, sinceλ ∈ &[0,�0

V ,B(b,�0
V )], it follows from (4.5) and (4.6) tha

lim
γ↗∞σ

[
L + γ V − λW +Xf (· ,0),�,B(b)

]
< 0. (4.7)

Similarly, since

V ∈A∂�0
X \�1,�1∩∂�0

X

(
�0

X
) ∧ [

�0
X
]0
V

= ∅,
it follows from Theorem 2.10 that

lim
γ↗∞σ

[
L + γ V − λW,�0

X ,B
(
b,�0

X
)]= ∞. (4.8)

Then, combining (4.7) and (4.8), we find that, for anyγ > 0 sufficiently large, the
following estimate is satisfied

σ
[
L + γ V − λW +Xf (· ,0),�,B(b)

]
< 0< σ

[
L + γ V − λW,�0

X ,B
(
b,�0

X
)]
.

(4.9)

Therefore, it follows from (4.3) and (4.9) that (4.1) must be satisfied for someγ0 > 0.
This completes the proof of the theorem.✷

It should be noted that Corollary 2.18 provides us some sufficient condition
having

X ∈A∂�0 \� ,� ∩∂�0

(
�0

V

) ∧ V ∈A∂�0 \� ,� ∩∂�0

(
�0

X
)

V 1 1 V X 1 1 X
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s

the
se,
in case�0
V ∩�0

X �= ∅, and

X ∈A+
∂�0

V
\�1,�1∩∂�0

V

(
�0

V

) ∧ V ∈A+
∂�0

X \�1,�1∩∂�0
X

(
�0

X
)

when�0
V ∩�0

X = ∅.

THEOREM 4.2. – Assumeλ ∈ &[0,�0
V ,B(b,�0

V )], X ∈ A+
�0,�1

(�), and (2.8) holds
on �1 ∩ ∂�0

V . Then,γ0 > 0 exists for which condition(4.1) is satisfied. Therefore
Theorem1.3can be applied.

Proof. –SinceX ∈A+
�0,�1

(�), Corollary 2.18 implies

X ∈A+
∂�0

V
\�1,∂�

0
V
∩�1

(
�0

V

)
and, hence, thanks to Theorem 2.14,

&
[
0,�0

V ,B
(
b,�0

V

)]= {λ ∈ R: σ
[
L − λW +Xf (· ,0),�0

V ,B
(
b,�0

V

)]
< 0

}
. (4.10)

Similarly, for eachγ > 0, we have that

&
[
γ,�,B(b)

]= {λ ∈ R: σ
[
L + γ V − λW +Xf (· ,0),�,B(b)

]
< 0

}
. (4.11)

On the other hand, sinceV ∈A�0,�1(�) and (2.8) holds on�1 ∩∂�0
V , Theorem 2.9 give

lim
γ↗∞σ

[
L + γ V − λW +Xf (· ,0),�,B(b)

]
= σ

[
L − λW +Xf (· ,0),�0

V ,B
(
b,�0

V

)]
. (4.12)

Thus, sinceλ ∈&[0,�0
V ,B(b,�0

V )], we find from (4.10) and (4.12) that

σ
[
L + γ V − λW +Xf (· ,0),�,B(b)

]
< 0 (4.13)

for eachγ sufficiently large. Therefore, thanks to (4.11),λ ∈&[γ,�,B(b)] for γ large.
This completes the proof.✷

It should be noted that ifV ∈ A+
�0,�1

(�), then it does not make sense analyzing
limiting behavior asγ ↗ ∞ of the positive solution of (1.1). Indeed, in such ca
Theorem 2.10 implies

lim
γ↗∞σ

[
L + γ V − λW +Xf (· ,0),�,B(b)

]= ∞

and, thanks to Theorem 2.12 and Theorem 2.14, for eachγ > 0,

&
[
γ,�,B(b)

]⊆ {λ ∈ R: σ
[
L + γ V − λW +Xf (· ,0),�,B(b)

]
< 0

}
.

Therefore, there existsγ0 := γ0(λ) > 0 such that

λ /∈ ⋃
&
[
γ,�,B(b)

]
.

γ�γ0
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iple:
and its
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s. For

lowing
and

nd
It turns out that the positive solution of problem (1.1) for small values ofγ becomes the
zero solution at the unique value ofγ for which

σ
[
L + γ V − λW +Xf (· ,0),�,B(b)

]= 0.

Therefore, it is consistent saying that the limiting profile of the maximal nonneg
solution is zero.

5. Permanence under unlimited aggression is possible

This section applies Theorem 1.3 for obtaining the following biological princ
no species can be driven to extinction by a competitor if it possesses a refuge
birth rate in the overall habitat is sufficiently large. Moreover, it will be shown h
the species concentrates within the refuge when it suffers high level aggression
establishing these principles we adopt as a model for competing species the fol
spatially heterogeneous evolutionary model of Lotka–Volterra type with diffusion
transport effects

∂u

∂t
+ L1u = λu−X1(x)u

2 − γ1V1(x)uv in �× (0,∞),

∂v

∂t
+ L2v = µv −X2(x)v

2 − γ2V2(x)uv in �× (0,∞),

B1u= B2v = 0 on ∂�× (0,∞),(
u(· ,0), v(· ,0)

)= (u0, v0) in �

(5.1)

under the following assumptions:
(1) � is a bounded domain inRN , N � 1, of classC2.
(2) λ, µ ∈ R and, for eachj ∈ {1,2}, γj ∈ R andLj is an uniformly strongly elliptic

second order differential operator in� of the same type asL.
(3) For eachj ∈ {1,2}, Bj := Bj (bj ) stands for the boundary operator

Bj :=
{

D on�
j
0,

∂νj + bj on�
j
1,

where�j
0 and�j

1 are two disjoint open and closed subsets of∂� with �
j
0 ∪�

j
1 =

∂�, bj ∈ C(�j
1), andνj = (νj,1, . . . , νj,N ) ∈ C1(�

j
1;R

N) is an outward pointing
nowhere tangent vector field.

(4) Each of the functionsVj and Xj , j ∈ {1,2}, is non-negative measurable a
bounded in�. Moreover,

Xj ∈A+
�
j

0,�
j

1

(�), Vj ∈A
�
j

0,�
j

1
(�), j ∈ {1,2}.

(5) For eachj ∈ {1,2}, �0
Vj

is connected and

∂�0 \ �
j
1 ⊂ �, dist

(
�

j
1, ∂�

0 \ �
j
1

)
> 0.
Vj Vj
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l
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tive
(5.1)
). The

ention

ly, the

the
sitive
Moreover, setting

�δ
Vj

:= �0
Vj

∪ {x ∈�: dist
(
x, ∂�0

Vj
\ �

j
1

)
< δ

}
we assume that there is a sequenceυj

n , n � 1, such that limn→∞ υj
n = 0 for which

the general assumptions of Theorem 2.19(e) of Section 2 with

(a,�0,�n) = (Xj ,�
0
Vj
,�

υ
j
n

Vj

)
, n � 1,

is satisfied (note thatXj ∈A+
�
j

0,�
j

1

(�)). Furthermore, there existsδ0 > 0 such that

for eachδ ∈ [0, δ0),

Xj ∈A+
∂�δ

Vj
\�j

1,∂�
δ
Vj

∩�j

1

(
�δ

Vj

)
, j ∈ {1,2}.

(6) (u0, v0) ∈X2
0 whereX0 := L+

p (�) for somep > N
2 .

Under these assumptions, for each initial data(u0, v0) ∈ X2
0, (5.1) has a unique globa

strict solution(u(x, t;u0, v0), v(x, t;u0, v0)) (cf. [2]). In fact, thanks to the parabol
maximum principle, for anyt > 0 we have that

0� u(· , t;u0, v0) � T1(t)u0 ∧ 0 � v(· , t;u0, v0) � T2(t)v0,

where,T1(t) andT2(t) stand for theLp-evolution operators associated withL1 − λ and
L2 − µ, respectively. It is well known that most of the limiting profiles of the posi
solutions of (5.1) ast ↗ ∞ are given by the strong non-negative steady states of
(cf. [14] and the further developments of [11–13,24,26], and the references therein
steady-states of (5.1) are the non-negative strong solutions of

L1u= λu−X1(x)u
2 − γ1V1(x)uv in �,

L2v = µv −X2(x)v
2 − γ2V2(x)uv in �,

B1u = B2v = 0 on ∂�.

(5.2)

As we consider (5.1) to model competition between populations, we shall pay att
only to the component-wise non-negative steady states. Besides(0,0), the problem
(5.2) admits three types of component-wise non-negative solution couples. Name
solutions having one component vanishing,(u,0) or (0, v), known as thesemi-trivial
positive solutions, and the solutions having both component positive, known as
coexistence statesof (5.2). Due to Theorem 2.14, (5.2) possesses a semi-trivial po
solution of the form(u,0) if, and only if,

λ > σ [L1,�,B1].
Moreover, in this case,(?λ,0) is the unique of these semi-trivial states, where?λ stands
for the unique positive solution of{

L1u= λu−X1(x)u
2 in �,

B u= 0 on∂�.
(5.3)
1
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itive

.2) at
Similarly, (5.2) possesses a semi-trivial positive solution of the form(0, v) if, and only
if,

µ> σ [L2,�,B2],
and, in such case,(0,ϒµ) is the unique of these semi-trivial states, whereϒµ stands for
the unique positive solution of{

L2v = µv −X2(x)v
2 in �,

B2v = 0 on ∂�.
(5.4)

The following result characterizes the stability of each of the semi-trivial pos
solutions of (5.2).

PROPOSITION 5.1. – Supposeλ > σ [L1,�,B1]. Then,(?λ,0) is linearly asymptot-
ically stable(l.a.s.) if, and only if,

µ< σ [L2 + γ2V2?λ,�,B2],

linearly neutrally stable(l.n.s.) if, and only if,

µ = σ [L2 + γ2V2?λ,�,B2],

and linearly unstable(l.u.) if, and only if,

µ> σ [L2 + γ2V2?λ,�,B2].

By symmetry, in caseµ> σ [L2,�,B2], the state(0,ϒµ) is l.a.s. ifλ < σ [L1 + γ1V1ϒµ,
�,B1], l.n.s. ifλ= σ [L1 + γ1V1ϒµ,�,B1] and l.u. ifλ > σ [L1 + γ1V1ϒµ,�,B1].

Proof. –Supposeλ > σ [L1,�,B1]. By definition, the linear stability of(?λ,0) is
given by the sign of the real parts of the eigenvalues of the linearizations of (5
(?λ,0), i.e., by the signs of the real parts of theτ ’s for which the following linear
problem possesses a solution(u, v) �= (0,0):

L1u= (λ− 2X1?λ)u− γ1V1?λv + τu in �,

L2v = (µ− γ2V2?λ)v + τv in �,

B1u= B2v = 0 on ∂�.

(5.5)

If v = 0, then (5.5) becomes{
L1u= (λ− 2X1?λ)u+ τu in �,

B1u= 0 on∂�.
(5.6)

Moreover, thanks to Proposition 2.5 and Lemma 2.11, we have that

σ [L1 + 2X1?λ − λ,�,B1]> σ [L1 +X1?λ − λ,�,B1] = 0. (5.7)
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Thus, since the principal eigenvalue is dominant, we find that

Reτ > σ [L1 + 2X1?λ − λ,�,B1] > 0

and, therefore, the linear stability of(?λ,0) is determined from the signs of th
eigenvalues of (5.5) possessing an eigenfunction of the form(u, v) with v �= 0, i.e.,
by the sign of

δµ := µ− σ [L2 + γ2V2?λ,�,B2] = −σ [L2 + γ2V2?λ −µ,�,B2].
Indeed, ifδµ < 0, then

−δµ = σ [L2 + γ2V2?λ −µ,�,B2]> 0

and, since the principal eigenvalue is dominant, any eigenvalue of (5.5) satisfies

Reτ � σ [L2 + γ2V2?λ −µ,�,B2] > 0.

Therefore, in this case(?λ,0) is linearly asymptotically stable.
Now, supposeδµ = 0. Then,

−δµ = σ [L2 + γ2V2?λ −µ,�,B2] = 0

and, hence, the pair(τ, v) = (0, ϕv), where ϕv > 0 is the principal eigenfunctio
associated with(L2 + γ2V2?λ − µ,�,B2), solves thev-equation of (5.5). Moreove
thanks to (5.7), theu-equation of (5.5) possesses a unique solution – inu – for
(τ, v)= (0, ϕv). Namely,

u= −γ1(L1 + 2X1?λ − λ)−1(V1?λϕv).

Thus,τ = 0 is an eigenvalue of (5.5). As any other value ofτ for which thev-equation
of (5.5) can be solved must be positive, we obtain that(?λ,0) is linearly neutrally stable

Finally, supposeδµ > 0. Then, adapting the argument of the previous case, one re
gets that−δµ < 0 is an eigenvalue of (5.5) and, therefore,(?λ,0) is linearly unstable.

By symmetry, one obtains the corresponding characterizations for(0,ϒµ). ✷
Thanks to the linearized stability principle,(?λ,0) (resp.(0,ϒµ)) is exponentially

asymptotically stable if it is linearly asymptotically stable, and it is unstable if
linearly unstable – as steady states of (5.1). The following concept is very imp
in mathematical biology. Subsequently,PC1

0(
��) stands for the cone of positive functio

of C1
0(

��).

DEFINITION 5.2. – The problem(5.1) is permanent – or, equivalently, compress
– if there is a subdomain

R ⊂ (IntPC1
0(

��))
2

such that (
u(· , t;u0, v0), v(· , t;u0, v0)

) ∈ R
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for each(u0, v0) ∈X2
0, u0 > 0, v0 > 0, after some timet0 := t (u0, v0).

The abstract theory developed in [13] and the results of [10] and [19] are e
adapted to show that global extinction of some of the species occurs if (5.2) do
admit a coexistence state (cf. [15] for a further general version of that result).

Thus, (5.2) must possess a coexistence state if (5.1) is permanent. Let(u0, v0) be a
coexistence state of (5.2). Then, thanks to Proposition 2.5, we have

σ [L1 − λ,�,B1]< σ [L1 − λ+X1u0 + γ1V1v0,�,B1] = 0

and

σ [L2 −µ,�,B2]< σ [L2 −µ+X2v0 + γ2V2u0,�,B2] = 0.

Thus,

λ > σ [L1,�,B1] ∧ µ> σ [L2,�,B2]. (5.8)

In particular, (5.2) exhibits the two possible semi-trivial positive solutions,(?λ,0)
and(0,ϒµ). Obviously, (5.1) cannot be permanent if some of these semi-trivial s
is linearly asymptotically stable. Therefore, thanks to Proposition 5.1, the follo
estimates are necessary for permanence

λ � σ [L1 + γ1V1ϒµ,�,B1] ∧ µ � σ [L2 + γ2V2?λ,�,B2].
Conversely, the following result is satisfied (cf. [13,16] and [8] for some previous re
in this direction).

THEOREM 5.3. – Suppose(5.8) and (?λ,0), (0,ϒµ) are linearly unstable, i.e.
thanks to Proposition5.1,

λ > σ [L1 + γ1V1ϒµ,�,B1] ∧ µ> σ [L2 + γ2V2?λ,�,B2]. (5.9)

Then,(5.1)possesses a coexistence state and it is compressive.

Proof. –We shall use a practical persistence argument based upon the argum
[16] and [9]. The existence of the coexistence state can be obtained by using the
of [13]. The permanence can be obtained arguing as follows. Picku0, v0 ∈X0 such that
u0 > 0 andv0 > 0. Then, thanks to the parabolic maximum principle,

0<u(· , t;u0, v0) < 5[L1,λ,X1,B1](· , t;u0),

0< v(· , t;u0, v0) < 5[L2,µ,X2,B2](· , t;v0),
(5.10)

where5[L,γ ,X ,B](x, t;w0) stands for the unique solution of the parabolic problem
∂w

∂t
+ Lw = γw −Xw2 in �× (0,∞),

Bw = 0 on ∂�× (0,∞), (5.11)
w(· ,0)= w0 in �.
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On the other hand, thanks to Theorem 2.14, we have

lim
t↗∞

∥∥5[L1,λ,X1,B1](· , t;u0)−?λ

∥∥
C1

0(
��)

= 0,

lim
t↗∞

∥∥5[L2,µ,X2,B2](· , t;v0)−ϒµ

∥∥
C1

0(
��)

= 0,

and, hence, for anyε > 0 there existstε > 0 such that{
0<u(· , t;u0, v0) < ?λ + ε,

0< v(· , t;u0, v0) < ϒµ + ε
in � for eacht � tε. (5.12)

Chooseε > 0 sufficiently small so that

λ > σ
[
L1 + γ1V1(ϒµ + ε),�,B1

] ∧ µ> σ
[
L2 + γ2V2(?λ + ε),�,B2

]
. (5.13)

Substituting the second estimate of (5.12) into theu-equation of (5.1), gives

∂u

∂t
+ L1u = λu−X1u

2 − γ1V1uv > λu−X1u
2 − γ1V1(ϒµ + ε)u

for eacht � tε, and, hence, thanks to the parabolic maximum principle,

u(· , t;u0, v0) � 5[L1+γ1V1(ϒµ+ε),λ,X1,B1]
(· , t;u(· , tε;u0, v0)

)
in � for eacht � tε.

On the other hand, thanks to Theorem 2.14,

lim
t↗∞5[L1+γ1V1(ϒµ+ε),λ,X1,B1]

(· , t;u(· , tε;u0, v0)
)= u[L1+γ1V1(ϒµ+ε),λ,X1,�,B1]

uniformly in ��, whereu[L1+γ1V1(ϒµ+ε),λ,X1,�,B1] stands for the unique positive solutio
of {[

L1 + γ1V1(ϒµ + ε)
]
u= λu−X1u

2 in �,

B1u= 0 on∂�

whose existence is guaranteed from the first inequality of (5.13). Thus, for eachε > 0
sufficiently small

lim inf
t↗∞ u(· , t;u0, v0)� u[L1+γ1V1(ϒµ+ε),λ,X1,�,B1]

and, therefore,

lim inf
t↗∞ u(· , t;u0, v0) � u[L1+γ1V1ϒµ,λ,X1,�;B1].

Similarly,

lim inf
t↗∞ v(· , t;u0, v0) � v[L2+γ2V2?λ,µ,X2,�,B2],

wherev[L2+γ2V2?λ,µ,X2,�,B2] stands for the unique positive solution of{[
L2 + γ2V2?λ

]
v = µv −X2v

2 in �,

B v = 0 on ∂�.
2
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This completes the proof of the theorem.✷
Now, combining Theorem 5.3 together with Proposition 2.4 and Theorem 2.9

obtain the following result.

COROLLARY 5.4. – Suppose that

λ > σ
[
L1,�

0
V1
,B1

(
b1,�

0
V1

)] ∧ µ> σ
[
L2 + γ2V2?λ,�,B2

]
. (5.14)

Then,(5.1)possesses a coexistence state and it is permanent for anyγ1 � 0. Similarly, if

λ > σ [L1 + γ1V1ϒµ,�,B1] ∧ µ> σ
[
L2,�

0
V2
,B2

(
b2,�

0
V2

)]
, (5.15)

then(5.1)possesses a coexistence state and it is permanent for anyγ2 � 0.

It should be noted that Corollary 5.4 is optimal. Moreover, thanks to Theorem 1
obtain the following

THEOREM 5.5. – Suppose(2.8)on�1
1 ∩ ∂�0

V1
and (5.14), fix γ2 and regard toγ1 as

a parameter. Then, theu-component of any coexistence state(u, v) = (u(γ1), v(γ1)) of
(5.2)must satisfy

lim
γ1↗∞u(γ1) =

u[L1,λ,X1,�
0
V1

,B1(b1,�
0
V1

)] in �0
V1

,

0 in � \�0
V1

.
(5.16)

Similarly, when(5.15)is satisfied and(2.8)holds on�2
1 ∩ ∂�0

V2
, fixingγ1 and regarding

to γ2 as a parameter gives

lim
γ2↗∞v(γ2) =

v[L2,µ,X2,�
0
V2

,B2(b2,�
0
V2

)] in �0
V2

,

0 in � \�0
V2

.
(5.17)

These convergences must be understood in the sense of Theorem1.3.

Proof. –Suppose (5.14) and let(u, v) be a coexistence state of (5.2). Then, thank
Theorem 2.16, it is easily shown that

u[L1+γ1V1ϒµ,λ,X1,�,B1] < u< u[L1,λ,X1,�,B1]

and

v[L2+γ2V2?λ,µ,X2,�,B2] < v < v[L2,µ,X2,�,B2].

Therefore, thanks again to Theorem 2.16, we have

u[L1+γ1V1ϒµ,λ,X1,�,B1] < u< u[L1+γ1V1v[L2,µ,X2,�,B2],λ,X1,�,B1].

Thanks to Theorem 1.3, passing to the limit asγ1 ↗ ∞ completes the proof o
(5.16). The same argument can be easily adapted to prove the validity of (5.17)
condition (5.15). ✷
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