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ABSTRACT. — Studying weak solutions of Burgers’ equation with finite entropy dissipation
we show the sharpness of recent results of Jabin and Perthame on velocity averaging. Similar

arguments give bounds on the regularity of asymptotic finite-energy states for some variational
problems of Ginzburg—Landau type.
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RESUME. — Nous construisons des solutions faibles de I'équation de Burgers a dissipation
finie de I'entropie et montrons que les exposants de régularité obtenus récemment par Jabin
et Perthame pour les théoremes de moyennes en vitesse sont optimal. Nous étudions aussi la
régularité des états asymptotiques d’un probleme variationnel de type Ginzburg—Landau.
© 2003 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

It is well-known that entropy solutions of Burgers’ equation
1 2
8,u+§8Xu =0 on2:=(0,1) xR ()

are locally inBV, see [9]. This is no longer true for a general weak solution, which
can have oscillations. Thus an improved regularity can only be expected if additional
assumptions are imposed. We will consider here the following class of functions

DEerFINITION 1.1.— LetS be the set of functions € L>(£2) with
e u is aweak solution ofl),
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e the entropy dissipation-u, = d,n(u) + d,q(u) is a Radon measure for every
convex entropy—entropy flux paiy, ¢).

We stress that it is quite natural to consider this class of functions. Ficstntains all
entropy solutions. For thesg,, is non-negative. Second, fare S the conservation law
allows akinetic formulation see [5]. Once we are given a kinetic formulation, we can
apply velocity averaging arguments to study the regularity of weak solutiokksing
this remark we will show the sharpness of some recent results contained in [6].

To explain this point we recall the kinetic formulation for scalar conservation laws,
first introduced in [8]. Assume € L>®°(R™ x R") is an entropy solution of some scalar
conservation law,u + div, A(u) = 0 in several space dimensions. One introduces the

local Maxwellian
1 forO<v <u,
X(U,u)={—l foru <v <0,

0 otherwise.

Then there exists a non-negative Radon meaauire (¢, x) € Rt x R” andv € R such
that x (v, u(z, x)) satisfies the transport equation

Ox(w,u)+A W) -Vix(w,u)=9m inD. 2

Conversely, if there exist a bounded functiwand a non-negative measunesuch that
(2) holds, then: is the unique entropy solution of the conservation law. One can show
that even if the entropy dissipation nfis not non-negative but a Radon measure only,
then still x (v, u) satisfies a transport equation (2), see [5]. In that case, however, the
measuren changes sign in general.

Sinceu = [ x(v,u)dv, velocity averaging lemmas can be applied to (2). Under
certain assumptions on the non-degeneracy of the Aluthey yield regularity results
for u, see [8,6]. We stress the fact that the velocity averaging technique as it is currently
available does not use the non-negativitymafone obtains exactly the same regularity
if m in (2) is a Radon measure only.

For functionsu € S we obtain the transport equation

O x(,u)+vix(v,u)=0,m inD (3)

for some Radon measure. Then the results in [6] yield Wﬁf’/z forall @ < % We
prove below that this gain of regularity is essentially sharp.
Let us fix some notation. For numberse R and 1< p, ¢ < co we denote byBy |

the usual Besov space (see [10, Section 10]).

DEeFINITION 1.2.—-Leto > 1 and consider the one-parameter family of spaces

{BY for1<r <o, B forr>o}. 4)
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We say that a set of functiodsC L*°(£2) is not better thar(4) locally if

o > 1/maxo, p}
for every triple(«, p, g) with < ora =1/0, p<o,q<p,
ora=1/p, p=0, g <00,

there existu € S and a test functiony € D(£2) such thatyu ¢ B}
We can prove the following result

PrRopPOSITION 1.3. —Let S be the set of Definitiod.1. Then we have
S is not better thar{4) locally witho = 3.

Thanks to the embedding®? C By , for g > 2 (see [10, Section 11.4]) we conclude
thatu ¢ W' if a > 1/3, or if @ < 1/3 and p > 1/a. Thus the results in [6] are
essentially sharp in the number of derivatives, whereas the integrability could possibly
be improved somewhat.

We prove Proposition 1.3 by constructing weak solutions of (1) with low regularity.
The argument can be generalized to more general fluxes. It is also possible to derive
upper bounds for the regularity of entropy solutions. We refer to Section 3 for further
discussion.

We mention that the starting point of our investigation was a class of variational
problems of Ginzburg—Landau type, see [2,7]. Here one considers a family of functionals
F. defined on curl free planar vector fields (see (15)), and tries to characterize possible
limits w of sequencesw,}, with limsup, F,(w.) < co. Combining an example of [1]
with a construction of [4] one can show that there exist limits which do not belong
to BV. On the other hand, the results in [6] can again be applied and.givéV*3/2 for
all @ < 1/3. Using estimates similar to those in Section 2 we can show that generically
w is not better than (4) witlkh = 3, see Proposition 3.3.

2. Proof of Proposition 1.3

We proceed in three steps.

Step 1. A family of weak solutions dfL). Assume thatA;}, € ¢* and{c.}; € €3 are
two nonincreasing sequences of positive numbers which will be determined later on. Let

Inductively, we now define numbers

Ay
2 9

- +. =
X1 =X — Ay and x i=x;
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and intervalsl; := [x;, x; ] for k € N. We prescribe initial data
M(O, ) — ch llk (5)
k=1

and construct a weak solutianof (1) with (5), consisting of shocks only. For a jump
connecting 0 andy, the Rankine—Hugoniot condition gives a shock speeg- %ck.
Define vectorsX; := (1, s;). Then

U= ch 1Ak whereA; .= ({0} X Ik) + R+Xk.
k=1

This u is a weak solution of (1), but it is entropy violating. We compatg (v, u) +
vdy x (v, u) and show that it is the-derivative of a Radon measure € Mqc(R, x
R x R,). We restrict our attention on the s@t:= (0, 1), x R . Define segments

JE = ({0} x x) +10,1]X, for j eN.
The unit normal taJ; is given by(1+ s2)~2(s;, —1). Then we obtain
dx(w,u) +vdx(w,u) ==Y @ (H'LJF—H'LJ ) inD'(R) (6)
k=1
for everyv € R, where the functiork, is defined as

o) = (L v) - (s, 1)  /2—v

for v € (0, ¢i]

andh, (v) = 0 otherwise. We can define the measuras
o
m:=—=>Y H©)(H'LJI —H'"LJ),
k=1
whereH; is av-primitive of (6). For example we can choose

1 v —v?

/ —— forvel0, ],
Hw)i= [ (s)ds =4 2\ /1y 2/a
0 0 otherwise.
The functionH, is non-negative. It€*(R)-norm equals
1 c3
/Hk(v)dvz—ik, (7)
J 12, /144
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i.e., is essentially cubic in the shock strength. Then we have

2 1 c3 1
Imllmrx2) = ZZ 145 =% o =N e (8)
4 12\/1—i—c,§/4 6k:1

Since{ci )« € £3 by assumptiony is a finite measure.

Step 2. Besov norms and main estimat@e will work with Besov spaces;
defined onR?. Several equivalent norms are known for these spaces. A particularly
useful one is the “local means” norm. Lét, ¢ € D be mollifiers and assume that
¢ satisfies a certain moment condition (we refer to [10, Section 11 for details]). Put
os(t, x) :=5"2(t/s, x/s) for (¢, x) € R? ands > 0. Then

£

1/q
_ ds .
lullsg, ~ lux @ Lo + (/s “"Iluﬂﬂsllﬂ»?) if g < oo ()
0

for somee > 0. If ¢ = oo the integral must be replaced by a sup. We also use
luellmg,, ~ Nl g3+ 19rull o1+ 1Bl g,

and will concentrate on thé u-part witha < 1. For negative regularity the functian
may be a standard mollifier (satisfying no moment conditions). Moreover, the first term
in (9) can be dropped, see [11, Remark 6]. Thus we only have to consider

&

1/q
_ ds .
[ERApe </s<1 D)/ (3eu) * 4|7, T) if g < oo

0

with the obvious modification fog = oco. We remark in passing that

|Dul| s~ sup || Du*gl2 forallu e BV. (20)

O<s<e

This follows easily from the lower semi-continuity of the variation. Hence the spate
fits very neatly into the Besov space framework. (In fact, in his first work on Caccioppoli
sets [3] De Giorgi defined the spaB¥ as the set of alk € L*° such that (10) stays finite,
whereg; is the heat kernel.)

To fix ideas, we lep be a non-negative, radially symmetric test function with

1 for(z,x) € B1(0),
(t,x) = {O ¢ 2
or (t,x) € R°\ B»(0).

We now fix some test functiotr € D(£2) which equals 1 on a sufficiently large open set,
say[1/4, 3/4] x [—1, 3]. Note thatd, (Y u) = ud, ¥ + Yo, u. Sinceud,yr € L, clearly
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ud,y € By for any o < 1. Thus to show thad, (yu) ¢ B¢ ! for somea < 1, it is
sufficient to show thaty d.u ¢ B .
We proceed as follows: the partial derivativeuois a measure

Ck
\/1+c,f/4

(=)

(H'L I —HILT)

0 U =

Me LM

>-
Il
N

By construction, the distance betwegf and its neighbors is not less than /(2(1 +
s,?)l/z). If we choosec; < 2, then this distance is bigger that, /4. Hence, for allk
with 4s < A /4, only one IineJki contributes to the convolutio®,«) x ¢, (sinceg is
supported in a ball of radius R2sThus

(@) * @ (1, ) = Y i > o2, ), (11)
As<Ap/4

where the functions appearing in the sum have pairwise disjoint supports. &ifce
supported in a ball of radius Zand+ is 1 on[1/4, 3/4] x [—1, 3]

‘(E)xu) *(ps|(t, x) = |(1/f8xu) *gos‘(t, x) forte[l/4+ 2s5,3/4— 2s].

Moreover, sincep is hon-negative, each summand of (11) can be estimated from below

Vo a—
N 2cks*2¥ fory € [—s, 5],
‘/’Lk *(/’s|(f,x)2 ,/l+c]%/4
0 otherwise,

wherey := (x — (xf +1¢;/2)/\/1+c2/4 for x e R andt € [s,1 — 5], see Fig. 1.
These remarks allow us to give the following estimate:

Fig. 1. Local meangd, u)  ¢;.
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/

P
=

|(Ydeu) * g5 |” (1, x) dx dt

o —__

3/4-25 1

2\ A=p)/2 12
> Z 27l <1+ Zk) sip / /(l— )P dzdt
As<Ar /4 1/4+25 ~1

WV

csi? Z cf for some constant=c(p, ¢).
As<Ai /4

Then we have
1/p
||(waxu>wsHLp>cs1/p—1( ) c,f) : (12)
4s<Ar/4

Step 3. Conclusion. Now we consider three cases:

Caset p>3.lfa>1/pthenu ¢ By . If g <oothenu ¢ B;{é’.

Sincet® — €7 if p >3, we have) >, _,, 4cf = O(1) ass | 0. Therefore, ifg < oo
anda > 1/p, (12) yields

€ d 1/q € d 1/q
s s
> (1-a)g ((I/p=Dg =~ = - - = 0.
1Y dcull o1 > c(/s s p o\ | Areima 00

0 0
Similarly, if g = oo anda > 1/ p, then

l-«a Sl/p—l —

”wax’/t“ng Zc sups Q.

O<s<e

This proves thak cannot be better thaR/2 locally for p > 3.

Caselt p <3,a>1/3. Thenu ¢ By .
We consider sequences of the form

Av=k? and ¢, =k forkeN

with suitable numberg, y. Since we assume that\; }, € ¢* and{c; ) € €3, we require
B >1andy > 1/3. Then we have

A
4s < 7k — k< (16s) Y
As a consequence, we obtain the following estimate:

if y <1/p, then Z cf =0(s~ 4P/ ass | 0.
4s<Ar /4

Sinceg > 1 and y >1/3, we have

0<

1-—
P 1 _yp<1-P_2"P
B 3~ 3
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and thus
1 1

[ 1- yp] 1
—>—|1- > —.
p r B 3
Assume now thak > 1/3. Then we can fingg > 1 and ¥p > y > 1/3 with

1 11—
—6:=(1—a)+<——1) _-ITrp
p p

<0,

and therefore (12) yields

e d 1/q € d 1/q
> (A-a)g ((1/p—Dag—qA-yp)/pp 45| _ Rl N
||1/faxu||3p’q1 /C</S s ) . c ) 00
0
A similar estimate holds in cage= occ.
Case lll: ¢ < p <3.Thenu ¢ B}/2.
To achieve this, we need a more refined estimate.g(e} := z (logz)? for some

o > 1. This ¢ is strictly monotone increasing far> 1 and unbounded. Hence, is
invertible and the inverse functiapr? is increasing and unbounded, too. We define

Avi=(p(k+2)" and ¢ = (pk+2) Y forkeN.

Then{A.}, € £* and{c ), € £3 as needed. We estimate

¢~ 1(1/(165))-2 1/(165)

_ d
o S TS S
4s <A/ 1 o3 (™)
with a substitution of variableg(z) := ¢(z + 2). Now we claim that
¢'(97*(») <c(logy)” fory large, (13)

with ¢ > 0 some constant. If (13) holds we can estimate

1/(16s)
Z cf > c(—log16s)~° / y PR dy
4s<Ai/4 (3

>c(—logle) s G P73 for0O<s<e

for suitables andc = c(¢, o). Sinceq < p we can choose > 1 small enough such that
oq/p < 1. Then (12) yields

€ ds 1/q
||W3xu||372/3 >C</(—|Og 165‘)76(1/17 —) = 00.
P.a s
0

This proves thak does not belong t@&)/2 locally.
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It remains to show (13). Sinag™! is increasing and unbounded, (13) is equivalent to
¢'(z) <c(logg(z))” for z large

To establish this, we compute
¢'(z) = (l0gz)” [1+ 0 (logz) ]

< c(logz)” < e(log(z (10g2)?))” = ¢ (log ¢ (2))°
for somec > 0 andz large. This proves our claim.

3. Concludingremarks
3.1. Weak solutions
If we have better regularity in the right-hand side of (3), theoan be smoother.
Refining the calculations of Section 2 we can prove
ProPOSITION 3.1. — Let o € [1, 3], and consider the famil\s of bounded weak
solutions of(1) for which the distribution
32713, x (v,u) + vd, x(v,u)} is a Radon measure

ThenS is not better thar(4) locally.

Assume for example that,m in (3) itself is a measure (henee= 2). Then, instead
of estimating the norm off, in (7) and (8), we consider

o 1 o0
10l s =32+ \/1+c2/4- / ) dv=3"c2
k=1 R k=1

Then the arguments in Section 2 can be repeated in a straightforward way and they give
the result above, i.e., thatcan have up to A2 derivatives. When eve‘ifm iS a measure,
thenu can have a full derivative. We conjecture that in this casein BV locally.

Our construction can be adapted for different fluxes.

PROPOSITION 3.2. — Let o > 3, and consider the familys of bounded weak
solutions ofg,u + -1 9,u°~*=00n (0, 1) x R such that
x(,u) +v° 29, x(v,u) =0,m inD, (14)

for some Radon measuse Thens is not better thar{4) locally.

This suggests that the regularityflepends on the non-degeneracy of the flux. That
is what we expect from the velocity averaging arguments, see [8].

We conclude by giving an exact statement of what examples can be constructed for
the variational problems cited in the introduction. I2tc R? be bounded and define

1— 232
Fg(w):=/w+8|Vw|2 forw e H'(2, R?). (15)
&
2
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PROPOSITION 3.3. — There existgw, }. ;0 C L>(£2, R?) such that

e V xw,=0andlimsup, F,(w,) < o0;

e w, convergegqstrongly inL? for everyp < oo) to a w which locally is not better
than(4) witho = 3.

3.2. Entropy solutions

Similar arguments can also be applied for entropy solutions. Let us consider the flux
fu) = ﬁlu"“ for o > 1. Since f is convex foru non-negative, only decreasing
jumps satisfy the entropy condition. Increasing jumps must be replaced by rarefaction
waves.

We want to use a construction as in Step 1 of Section 2, i.e., we define suitable
piecewise constant initial data. We start with sequeriggs$; € ¢* and{c,} of positive
numbers, and put inductively

)

+ . + . .t

X = E Ay and Xyl =X — Aps1
k=1

for k € N. An initial jump connecting O ta;, evolves into a rarefaction wave whose
leading edge moves with speef:= f'(cx) = c¢f. We want to ensure that waves do
not interact in the time intervdD, 1]. ThenA, andc¢, cannot be chosen independently.
Instead, we are forced to assunje< A; for k € N, i.e., {c ) € £°. We emphasize
that {c;}x € £°72 would be sufficient to make: in the kinetic equation (16) a bounded
measure. But since rarefaction waves need more space, better summakljidity; a6
required. To have the densest possible packing of shocks, wé;put cf . We define

_fle—-fO 1

_ n .
X=X, —spye1 With s = = c
k+1 k Cr — o o + l k

for k € N. Then the shock starting af and connecting; to O hits the rarefaction wave

at timer = 1, see Fig. 2. As in Section 2 we can write down a kinetic equation (16).
We observe that only the jumps contribute to the non-negative measwtgich again

is bounded. We note that for all with +/|/;|?> — |I;|?> > 4s, only one jump (and no

t

1

DO

Fig. 2. Entropy solutions.
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rarefaction wave) is involved in the convolutig@,u) x ¢,(z, x) if ¢ < % see Fig. 2.
This amounts to
o cy o Ay

o+l it o+l /itaz

Arguing as in Step 3 of Section 2, we can then prove

16s <

PrOPOSITION 3.4.— Let o > 1, and consider the familys of bounded entropy
solutions ofd,u + —5 3,.u°** =00n (0, 1) x R such that

O x (v, u) +v° 3 x(v,u)=0,m inD, (16)

for some Radon measure ThensS is not better thar(4) locally.

This corresponds to the regularity conjectured in [8].
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