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ABSTRACT. – Studying weak solutions of Burgers’ equation with finite entropy dissipa
we show the sharpness of recent results of Jabin and Perthame on velocity averaging.
arguments give bounds on the regularity of asymptotic finite-energy states for some vari
problems of Ginzburg–Landau type.

RÉSUMÉ. – Nous construisons des solutions faibles de l’équation de Burgers à dissi
finie de l’entropie et montrons que les exposants de régularité obtenus récemment pa
et Perthame pour les théorèmes de moyennes en vitesse sont optimal. Nous étudions
régularité des états asymptotiques d’un problème variationnel de type Ginzburg–Landau
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1. Introduction

It is well-known that entropy solutions of Burgers’ equation

∂tu+ 1

2
∂xu

2 = 0 onΩ := (0,1)× R (1)

are locally inBV, see [9]. This is no longer true for a general weak solution, w
can have oscillations. Thus an improved regularity can only be expected if add
assumptions are imposed. We will consider here the following class of functions

DEFINITION 1.1. – LetS be the set of functionsu ∈L∞(Ω) with
• u is a weak solution of(1),
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• the entropy dissipation−µη := ∂tη(u) + ∂xq(u) is a Radon measure for eve
convex entropy–entropy flux pair(η, q).

We stress that it is quite natural to consider this class of functions. First,S contains all
entropy solutions. For these,µη is non-negative. Second, foru ∈ S the conservation law
allows akinetic formulation, see [5]. Once we are given a kinetic formulation, we
apply velocity averaging arguments to study the regularity of weak solutionsu. Using
this remark we will show the sharpness of some recent results contained in [6].

To explain this point we recall the kinetic formulation for scalar conservation l
first introduced in [8]. Assumeu ∈ L∞(R+ × Rn) is an entropy solution of some sca
conservation law∂tu+ divx A(u)= 0 in several space dimensions. One introduces
local Maxwellian

χ(v,u)=



1 for 0< v � u,

−1 for u� v < 0,

0 otherwise.

Then there exists a non-negative Radon measurem in (t, x) ∈ R+ × Rn andv ∈ R such
thatχ(v,u(t, x)) satisfies the transport equation

∂tχ(v, u)+A′(v) · ∇xχ(v, u)= ∂vm in D′. (2)

Conversely, if there exist a bounded functionu and a non-negative measurem such that
(2) holds, thenu is the unique entropy solution of the conservation law. One can s
that even if the entropy dissipation ofu is not non-negative but a Radon measure o
then still χ(v,u) satisfies a transport equation (2), see [5]. In that case, howeve
measurem changes sign in general.

Since u = ∫
χ(v,u) dv, velocity averaging lemmas can be applied to (2). Un

certain assumptions on the non-degeneracy of the fluxA, they yield regularity result
for u, see [8,6]. We stress the fact that the velocity averaging technique as it is cu
available does not use the non-negativity ofm: one obtains exactly the same regular
if m in (2) is a Radon measure only.

For functionsu ∈ S we obtain the transport equation

∂tχ(v, u)+ v ∂xχ(v,u)= ∂vm in D′ (3)

for some Radon measurem. Then the results in [6] yieldu ∈Wα,3/2
loc for all α < 1

3. We
prove below that this gain of regularity is essentially sharp.

Let us fix some notation. For numbersα ∈ R and 1� p,q � ∞ we denote byBαp,q
the usual Besov space (see [10, Section 10]).

DEFINITION 1.2. –Letσ � 1 and consider the one-parameter family of spaces

{
B1/σ for 1 � r < σ, B1/r for r � σ

}
. (4)
r,r r,∞
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We say that a set of functionsS ⊂ L∞(Ω) is not better than(4) locally if

for every triple(α,p, q) with



α > 1/max{σ,p}
or α = 1/σ, p < σ, q < p,

or α = 1/p, p� σ, q <∞,

there existu ∈ S and a test functionψ ∈D(Ω) such thatψu /∈ Bαp,q .
We can prove the following result

PROPOSITION 1.3. –LetS be the set of Definition1.1. Then we have

S is not better than(4) locally withσ = 3.

Thanks to the embeddingWα,p ⊂ Bαp,q for q � 2 (see [10, Section 11.4]) we conclu
that u /∈ Wα,p

loc if α > 1/3, or if α � 1/3 andp � 1/α. Thus the results in [6] ar
essentially sharp in the number of derivatives, whereas the integrability could po
be improved somewhat.

We prove Proposition 1.3 by constructing weak solutions of (1) with low regula
The argument can be generalized to more general fluxes. It is also possible to
upper bounds for the regularity of entropy solutions. We refer to Section 3 for fu
discussion.

We mention that the starting point of our investigation was a class of variat
problems of Ginzburg–Landau type, see [2,7]. Here one considers a family of funct
Fε defined on curl free planar vector fields (see (15)), and tries to characterize po
limits w of sequences{wε}ε with lim supε Fε(wε) <∞. Combining an example of [1
with a construction of [4] one can show that there exist limits which do not be
to BV. On the other hand, the results in [6] can again be applied and givew ∈Wα,3/2 for
all α < 1/3. Using estimates similar to those in Section 2 we can show that gener
w is not better than (4) withσ = 3, see Proposition 3.3.

2. Proof of Proposition 1.3

We proceed in three steps.

Step 1. A family of weak solutions of(1). Assume that{∆k}k ∈ #1 and{ck}k ∈ #3 are
two nonincreasing sequences of positive numbers which will be determined later o

x−
1 :=

∞∑
k=1

∆k.

Inductively, we now define numbers

x−
k+1 := x−

k −∆k and x+
k := x−

k − ∆k
,

2
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and intervalsIk := [x+
k , x

−
k ] for k ∈ N. We prescribe initial data

u(0, ·)=
∞∑
k=1

ck 1Ik (5)

and construct a weak solutionu of (1) with (5), consisting of shocks only. For a jum
connecting 0 andck , the Rankine–Hugoniot condition gives a shock speedsk := 1

2ck .
Define vectorsXk := (1, sk). Then

u=
∞∑
k=1

ck 1Ak whereAk := ({0} × Ik)+ R+Xk.

This u is a weak solution of (1), but it is entropy violating. We compute∂tχ(v, u) +
v∂xχ(v,u) and show that it is thev-derivative of a Radon measurem ∈ Mloc(Rv ×
R+
t × Rx). We restrict our attention on the setΩ := (0,1)t × Rx . Define segments

J±
k := ({0} × x±

k

)+ [0,1]Xk for j ∈ N.

The unit normal toJk is given by(1+ s2
k )

−1/2(sk,−1). Then we obtain

∂tχ(v, u)+ v∂xχ(v,u)= −
∞∑
k=1

hk(v)
(
H1 J+

k −H1 J−
k

)
in D′(Ω) (6)

for everyv ∈ R, where the functionhk is defined as

hk(v) := (1, v) · (sk,−1)√
1+ s2

k

= ck/2− v√
1+ c2

k/4
for v ∈ (0, ck]

andhk(v)= 0 otherwise. We can define the measurem as

m := −
∞∑
k=1

Hk(v)
(
H1 J+

k −H1 J−
k

)
,

whereHk is av-primitive of (6). For example we can choose

Hk(v) :=
v∫

0

hk(s) ds =



1

2

ckv− v2√
1+ c2

k/4
for v ∈ [0, ck] ,

0 otherwise.

The functionHk is non-negative. ItsL1(R)-norm equals

∫
Hk(v) dv = 1

12

c3
k√

1+ c2/4
, (7)
R k
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i.e., is essentially cubic in the shock strength. Then we have

‖m‖M(R×Ω) =
∞∑
k=1

2 ·
√

1+ c2
k

4
· 1

12

c3
k√

1+ c2
k/4

= 1

6

∞∑
k=1

c3
k. (8)

Since{ck}k ∈ #3 by assumption,m is a finite measure.

Step 2. Besov norms and main estimate. We will work with Besov spacesBαp,q
defined onR2. Several equivalent norms are known for these spaces. A particu
useful one is the “local means” norm. LetΦ,ϕ ∈ D be mollifiers and assume th
ϕ satisfies a certain moment condition (we refer to [10, Section 11 for details])
ϕs(t, x) := s−2ϕ(t/s, x/s) for (t, x) ∈ R2 ands > 0. Then

‖u‖Bαp,q ≈ ‖u .Φ‖Lp +
( ε∫

0

s−αq‖u . ϕs‖qLp
ds

s

)1/q

if q <∞ (9)

for someε > 0. If q = ∞ the integral must be replaced by a sup. We also use

‖u‖Bαp,q ≈ ‖u‖Bα−1
p,q

+ ‖∂tu‖Bα−1
p,q

+ ‖∂xu‖Bα−1
p,q
,

and will concentrate on the∂xu-part withα < 1. For negative regularity the functionϕ
may be a standard mollifier (satisfying no moment conditions). Moreover, the first
in (9) can be dropped, see [11, Remark 6]. Thus we only have to consider

‖∂xu‖Bα−1
p,q

≈
( ε∫

0

s(1−α)q∥∥(∂xu) . ϕs∥∥qLp dss
)1/q

if q <∞

with the obvious modification forq = ∞. We remark in passing that

‖Du‖M ≈ sup
0<s<ε

‖Du . ϕs‖L1 for all u ∈ BV. (10)

This follows easily from the lower semi-continuity of the variation. Hence the spacBV
fits very neatly into the Besov space framework. (In fact, in his first work on Caccio
sets [3] De Giorgi defined the spaceBV as the set of allu ∈L∞ such that (10) stays finite
whereϕs is the heat kernel.)

To fix ideas, we letϕ be a non-negative, radially symmetric test function with

ϕ(t, x)=
{

1 for (t, x) ∈ B1(0),

0 for (t, x) ∈ R2 \B2(0).

We now fix some test functionψ ∈D(Ω) which equals 1 on a sufficiently large open s
say[1/4,3/4] × [−1,3]. Note that∂x(ψu)= u∂xψ +ψ∂xu. Sinceu∂xψ ∈L∞, clearly
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u∂xψ ∈ Bα−1
p,q for any α < 1. Thus to show that∂x(ψu) /∈ Bα−1

p,q for someα < 1, it is
sufficient to show thatψ∂xu /∈ Bα−1

p,q .
We proceed as follows: the partial derivative ofu is a measure

∂xu =
∞∑
k=1

ck√
1+ c2

k/4

(
H1 J+

k −H1 J−
k

)

=:
∞∑
k=1

(
µ+
k −µ−

k

)
.

By construction, the distance betweenJ±
k and its neighbors is not less than∆k/(2(1 +

s2
k )

1/2). If we chooseck � 2, then this distance is bigger than∆k/4. Hence, for allk
with 4s < ∆k/4, only one lineJ±

k contributes to the convolution(∂xu) . ϕs (sinceϕs is
supported in a ball of radius 2s). Thus

∣∣(∂xu) . ϕs∣∣(t, x)� ∑
4s<∆k/4

∣∣µ±
k . ϕs

∣∣(t, x), (11)

where the functions appearing in the sum have pairwise disjoint supports. Sinceϕs is
supported in a ball of radius 2sandψ is 1 on[1/4,3/4] × [−1,3]

∣∣(∂xu) . ϕs ∣∣(t, x)= ∣∣(ψ∂xu) . ϕs∣∣(t, x) for t ∈ [1/4+ 2s,3/4− 2s].

Moreover, sinceϕ is non-negative, each summand of (11) can be estimated from b

∣∣µ±
k . ϕs

∣∣(t, x)�



2cks
−2

√
s2 − y2√
1+ c2

k/4
for y ∈ [−s, s],

0 otherwise,

wherey := (x − (x±
k + t ck/2))/

√
1+ c2

k/4 for x ∈ R and t ∈ [s,1 − s], see Fig. 1
These remarks allow us to give the following estimate:

Fig. 1. Local means(∂xu) . ϕs .
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0

2x−
1∫

0

∣∣(ψ∂xu) . ϕs ∣∣p(t, x) dx dt

�
∑

4s<∆k/4

2pcpk

(
1+ c2

k

4

)(1−p)/2
s1−p

3/4−2s∫
1/4+2s

1∫
−1

(
1− z2)p/2dz dt

� c s1−p ∑
4s<∆k/4

c
p
k for some constantc= c(p, ε).

Then we have

∥∥(ψ∂xu) . ϕs∥∥Lp � cs1/p−1
( ∑

4s<∆k/4

c
p
k

)1/p

. (12)

Step 3. Conclusion. Now we consider three cases:
Case I: p� 3. If α > 1/p thenu /∈ Bαp,q . If q <∞ thenu /∈ B1/p

p,q .
Since#3 ↪→ #p if p � 3, we have

∑
4s<∆k/4 c

p
k = O(1) ass ↓ 0. Therefore, ifq <∞

andα � 1/p, (12) yields

‖ψ∂xu‖Bα−1
p,q

� c
( ε∫

0

s(1−α)q s(1/p−1)q ds

s

)1/q

= c
( ε∫

0

ds

s1+(α−1/p)q

)1/q

= ∞.

Similarly, if q = ∞ andα > 1/p, then

‖ψ∂xu‖Bα−1
p,∞ � c sup

0<s<ε
s1−α s1/p−1 = ∞.

This proves thatu cannot be better thanB1/p
p,∞ locally for p � 3.

Case II: p < 3, α > 1/3. Thenu /∈ Bαp,q .
We consider sequences of the form

∆k = k−β and ck = k−γ for k ∈ N

with suitable numbersβ, γ . Since we assume that{∆k}k ∈ #1 and{ck}k ∈ #3, we require
β > 1 andγ > 1/3. Then we have

4s <
∆k

2
⇐⇒ k < (16s)−1/β .

As a consequence, we obtain the following estimate:

if γ < 1/p, then
∑

4s<∆k/4

c
p
k =O

(
s−(1−γp)/β) ass ↓ 0.

Sinceβ > 1 and γ >1/3, we have

0<
1− γp

< 1− γp < 1− p = 3− p
,

β 3 3
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and thus

1

p
>

1

p

[
1− 1− γp

β

]
>

1

3
.

Assume now thatα > 1/3. Then we can findβ > 1 and 1/p > γ > 1/3 with

−δ := (1− α)+
(

1

p
− 1

)
− 1

p

1− γp
β

< 0,

and therefore (12) yields

‖ψ∂xu‖Bα−1
p,q

� c
( ε∫

0

s(1−α)q s(1/p−1)qs−q(1−γp)/pβ ds
s

)1/q

= c
( ε∫

0

s−δq
ds

s

)1/q

= ∞.

A similar estimate holds in caseq = ∞.
Case III: q < p < 3. Thenu /∈ B1/3

p,q .
To achieve this, we need a more refined estimate. Letϕ(z) := z (logz)σ for some

σ > 1. This ϕ is strictly monotone increasing forz � 1 and unbounded. Hence,ϕ is
invertible and the inverse functionϕ−1 is increasing and unbounded, too. We define

∆k := (
ϕ(k+ 2)

)−1
and ck := (

ϕ(k+ 2)
)−1/3

for k ∈ N.

Then{∆k}k ∈ #1 and{ck}k ∈ #3 as needed. We estimate

∑
4s<∆k/4

c
p
k �

ϕ−1(1/(16s))−2∫
1

(
ϕ(z+ 2)

)−p/3
dz=

1/(16s)∫
ϕ(3)

y−p/3 dy

ϕ′(ϕ−1(y))

with a substitution of variablesy(z) := ϕ(z+ 2). Now we claim that

ϕ′(ϕ−1(y)
)
� c(logy)σ for y large, (13)

with c > 0 some constant. If (13) holds we can estimate

∑
4s<∆k/4

c
p
k � c(− log16s)−σ

1/(16s)∫
ϕ(3)

y−p/3 dy

� c(− log16s)−σ s−(3−p)/3 for 0< s < ε

for suitableε andc= c(ε, σ ). Sinceq < p we can chooseσ > 1 small enough such tha
σq/p� 1. Then (12) yields

‖ψ∂xu‖B−2/3
p,q

� c
( ε∫

0

(− log16s)−σq/p
ds

s

)1/q

= ∞.

This proves thatu does not belong toB1/3 locally.
p,q
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It remains to show (13). Sinceϕ−1 is increasing and unbounded, (13) is equivalen

ϕ′(z)� c
(
logϕ(z)

)σ
for z large.

To establish this, we compute

ϕ′(z)= (logz)σ
[
1+ σ (logz)−1]

� c(logz)σ � c
(
log
(
z (logz)σ

))σ = c (logϕ(z)
)σ

for somec > 0 andz large. This proves our claim.

3. Concluding remarks

3.1. Weak solutions

If we have better regularity in the right-hand side of (3), thenu can be smoothe
Refining the calculations of Section 2 we can prove

PROPOSITION 3.1. – Let σ ∈ [1,3], and consider the familyS of bounded wea
solutions of(1) for which the distribution

∂2−σ
v

{
∂tχ(v, u)+ v ∂xχ(v,u)} is a Radon measure.

ThenS is not better than(4) locally.

Assume for example that∂vm in (3) itself is a measure (henceσ = 2). Then, instead
of estimating the norm ofHk in (7) and (8), we consider

‖∂vm‖M(R×Ω) =
∞∑
k=1

2 ·
√

1+ c2
k/4 ·

∫
R

∣∣hk(v)∣∣dv = 1

2

∞∑
k=1

c2
k .

Then the arguments in Section 2 can be repeated in a straightforward way and th
the result above, i.e., thatu can have up to 1/2 derivatives. When even∂2

vm is a measure
thenu can have a full derivative. We conjecture that in this caseu is in BV locally.

Our construction can be adapted for different fluxes.

PROPOSITION 3.2. – Let σ � 3, and consider the familyS of bounded wea
solutions of∂tu+ 1

σ−1 ∂xu
σ−1 = 0 on (0,1)× R such that

∂tχ(v, u)+ vσ−2 ∂xχ(v,u)= ∂vm in D′, (14)

for some Radon measurem. ThenS is not better than(4) locally.

This suggests that the regularity ofu depends on the non-degeneracy of the flux. T
is what we expect from the velocity averaging arguments, see [8].

We conclude by giving an exact statement of what examples can be construc
the variational problems cited in the introduction. LetΩ ⊂ R2 be bounded and define

Fε(w) :=
∫
(1− |w|2)2

ε
+ ε|∇w|2 for w ∈H 1(Ω,R2). (15)
Ω
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PROPOSITION 3.3. – There exists{wε}ε↓0 ⊂ L∞(Ω,R2) such that
• ∇ ×wε = 0 and lim supε Fε(wε) <∞;
• wε converges(strongly inLp for everyp <∞) to aw which locally is not bette

than(4) with σ = 3.

3.2. Entropy solutions

Similar arguments can also be applied for entropy solutions. Let us consider th
f (u) := 1

σ+1u
σ+1 for σ � 1. Sincef is convex foru non-negative, only decreasin

jumps satisfy the entropy condition. Increasing jumps must be replaced by raref
waves.

We want to use a construction as in Step 1 of Section 2, i.e., we define su
piecewise constant initial data. We start with sequences{∆k}k ∈ #1 and{ck}k of positive
numbers, and put inductively

x+
1 :=

∞∑
k=1

∆k and x+
k+1 := x+

k −∆k+1

for k ∈ N. An initial jump connecting 0 tock evolves into a rarefaction wave who
leading edge moves with speeds′k := f ′(ck) = cσk . We want to ensure that waves
not interact in the time interval[0,1]. Then∆k andck cannot be chosen independen
Instead, we are forced to assumes′k � ∆k for k ∈ N, i.e., {ck}k ∈ #σ . We emphasize
that {ck}k ∈ #σ+2 would be sufficient to makem in the kinetic equation (16) a bounde
measure. But since rarefaction waves need more space, better summability of{ck}k is
required. To have the densest possible packing of shocks, we put∆k := cσk . We define

x−
k+1 := x+

k − sk+1 with sk := f (ck)− f (0)
ck − 0

= 1

σ + 1
cσk

for k ∈ N. Then the shock starting atx−
k and connectingck to 0 hits the rarefaction wav

at time t = 1, see Fig. 2. As in Section 2 we can write down a kinetic equation
We observe that only the jumps contribute to the non-negative measurem which again
is bounded. We note that for allk with

√|lk|2 − |l′k|2 � 4s, only one jump (and no

Fig. 2. Entropy solutions.
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rarefaction wave) is involved in the convolution(∂xu) . ϕs(t, x) if t � 1
2, see Fig. 2

This amounts to

16s� σ

σ + 1

cσk√
1+ c2σ

k

= σ

σ + 1

∆k√
1+∆2

k

.

Arguing as in Step 3 of Section 2, we can then prove

PROPOSITION 3.4. – Let σ � 1, and consider the familyS of bounded entrop
solutions of∂tu+ 1

σ+1 ∂xu
σ+1 = 0 on (0,1)× R such that

∂tχ(v, u)+ vσ ∂xχ(v,u)= ∂vm in D′, (16)

for some Radon measurem. ThenS is not better than(4) locally.

This corresponds to the regularity conjectured in [8].
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