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ABSTRACT. — We consider the flow of a strictly convex hypersurface driven by the Gaul3
curvature. For the Neumann boundary value problem and for the second boundary value problem
we show that such a flow exists for all times and converges eventually to a solution of the
prescribed Gauf3 curvature equation. We also discuss oblique boundary value problems and flows
for Hessian equations.
© 2003 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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RESUME. — Nous considérons le flot d’'une hypersurface strictement convexe piloté par la
courbure de Gaul3. Pour le probléme aux limites de Neumann et pour le deuxiéme probléme
aux limites nous montrons qu’un tel flot existe pour tout temps et converge vers une solution de
I'équation de courbure de Gaul3 prescrite. Nous étudions aussi des problémes aux limites oblique
et les flots pour des équations hessiennes.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

This paper concerns — in its first part — the deformation of convex graphs over
bounded, convex domair® C R”, n > 2, with smooth boundary<2 to convex graphs
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with prescribed Gaul3 curvature and Neumann boundary condition. More precisely, let
be a smooth strictly convex solution of

u = ®(logdetu;;) —log f (x,u, Du)) inQx[0,T),
u, = @(x,u) ona2 x [0, T), 1.1
uli=o0 =uo in €,

for a maximal time interval0, T'), where f,¢:Q x R — R are smooth functions;
denotes the inner unit normal @ andu, : @ — R, the initial value, is a smooth strictly
convex function. Hereb : R — R is a smooth strictly increasing and concave function
that vanishes at zero, i.eb, satisfies

®0)=0, & >0 @' <O0. (1.2)

In the sequel we assume for simplicity=Q2.
To guarantee shorttime existence for (1.1) and convergence to smooth graphs with
prescribed Gauf3 curvature we have to assume several structure conditions. These are

dp
0, = 8_z >c, >0, (1.3)
f>0 and f,>0. (1.4)
Moreover, we will always either assume
% >cp>0 (1.5)
or
@ (log detug);; — log f (x, ug, Dug)) > 0. (1.6)

To guarantee smoothness up #o= 0 it is necessary to assume the following
compatibility conditions to be fulfilled on the boundaif2 for anym >0

d m )
(5) =g o=0 (L.7)
where time derivatives of, u;, ... have to be substituted inductively by usitig= ®

andu|,—o = ug. Applying Theorem 5.3, p. 320 [12] and the implicit function theorem,
we obtain smooth shorttime existence up te 0, see also [7].

During the flow, the smoothness of a solution guarantees that (1.7) is satisfied for any
m > 0. So it is possible to extend a solution of the flow equation on a time intgyvAl
to [0, T'] provided there are sufficient a priori estimates and th¢Q,t@ + ¢) for a small
¢ > 0. In this way we obtain existence for ali> 0 from the a priori estimates. The same
procedure works also for the other boundary conditions considered in this paper.

The main theorem for Neumann boundary conditions states

THEOREM 1.1. — Assume thaf2 is a bounded, strictly convex domainlit, n > 2,
with smooth boundary. Lef, ¢:Q x R — R, be smooth functions that satisfy.3)-
(1.4). Let ug be a smooth, convex function that satisfies the compatibility conditions
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(1.7). Moreover, we assume that one of the conditi¢h®) or (1.6) is fulfilled. Then
a smooth solution of1.1) exists for allr > 0. Ast — oo, the functions«|, smoothly
converge to a smooth limit functiar?® such that the graph af*° satisfies the Neumann
boundary value problem

{det(u?f) = f(xu®™, Du®) ingQ, (1.8)

ul(x) =@(x, u™) onos2,

wherev is the inward pointing unit normal af$2. The rate of convergence is exponential
provided(1.5)is satisfied.

When we assume condition (1.5), we obtain — by using (1.7) onlynfce O —

a solution of (1.1) which is smooth only far> 0 and the rate of convergence is
exponential only in time intervalg, co), ¢ > 0.

In the case when condition (1.6) holds, we need only (1.7yfet 0, 1 to obtain a
solution of (1.1). Herex approachesg for r — 0 only up to its fourth derivatives, where
time derivatives have to be counted twice.

In both cases, all the other claims of Theorem 1.1 remain unchanged.

Remark1.2. — If we consider for a smooth functiow :R?2 — R the evolution
equation

u = W(logdety;;, log f)

and assume natural structure conditions, i.e., concavity,0f; > 0 and ¥ (x, x) =
0 Vx, then we prove in Lemma C.1 that there exi$tsR — R with &' >0, ®” <0
such that¥ has the following simpler form

W(x,y) =D — ).

Example1.3. — For® (x) = x, our ansatz yields the logarithmic GauR3 curvature flow
. n+2 2
u =logdetu;; —logg(x,u) — — log(1+ |Dul?),

more precisely, the “vertical” velocity equals the difference of the logarithms of the
actual and the prescribed Gaul3 curvature. Another interesting example is given by
®(x) =1—e*, A >0, which gives the flow equation

. <f&qum>k
n=1—("+—-=) .
detu,-j

In a second part, we consider the second boundary value problem for Hessian flow
equations, more precisely, we solve the initial value problem

i =log F(D?) —logg(x,u, Du) in x[0,T),
Du(Q) = Q*, (1.9)
uli—0 =uo in €,
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on a maximal time interval0, T), T > 0. We assume tha®, Q* Cc R”, n > 2,

are smooth strictly convex domaingg: Q — R is a smooth strictly convex function,
Duo(2) = Q* (= 0-th compatibility condition),g:Q x R x Q* — R is a smooth
positive function such thag, > 0. F is a Hessian function of the clagXx™), for a
precise definition we refer to Definition 5.1. Here we remark only, that the class of
Hessian functions considered includes especi@ilip?u) = detD?u. We will show that

a smooth strictly convex solution of (1.9) exists for all times, ifes co, and converges
smoothly to a solutiom ™ of the elliptic second boundary value problem

{ F(D%u™) = g(x,u™®, Du®) inQ, (1.10)
Du™(Q) = Q,

when some structure conditions are fulfilled. The asymptotic behavigigiven by

g(x,z,p) > 00 asz— oo, (1.11)

gx,z,p)—>0 asz— —oo,

uniformly for (x, p) € @ x Q*. Furthermore we will always assume that there holds
either
& >0 (1.12)
8
or

< 210) — i
{O\F(D uo) —logg(x, uo, Dug) in <, (1.13)

1st compatibility condition 02,

where the inequality means thap is a subsolution. We remark that the boundary
condition Du(2) = Q* is equivalent tah(Du) = 0 on 92 for smooth strictly convex
functionsu, whereh : R"” — R is a smooth strictly concave function such thilg: =0
and |[Vh| = 1 on aQ*. For the second boundary value problem the compatibility
conditions read as follows

d m
<E) h(Du)|;—0=0, meN, (1.14)

where derivatives af have to be replaced as above.
For the second boundary value problem, we obtain the following main theorem.

THEOREM 1.4. — Assume tha®, Q*, g, ug and F are as assumed above and either
() (2.12) or (ii) (1.13) are satisfied. Then there exists a smooth strictly convex function
u:Q x (0,00) — R of (1.9),i.e.,T = oo, andu converges smoothly to a solutiaf® of
(1.10)ast — oc. Furthermoreu is continuous up to it§) second(ii) fourth derivatives
at r = 0, where time derivatives have to be counted twice, @nhdjives exponential
convergencer — u® fort € [¢, 00), ¢ > 0. If (1.14)is fulfilled for all m € N, thenu is
smooth in[0, T) and (i) gives exponential convergenceut® in [0, co).

This result extends to Hessian quotient equations as follows.
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THEOREM 1.5. — Theoreml1.4 holds also forF = S, x, 1<k <n —1, wheng
happens to be independent of the gradient ofvheres, ,(D?u) is the quotient of the
n-th and thek-th elementary symmetric polynomial of the eigenvaluedaf.

Notation 1.6. — Indices denote partial derivatives or vector components and are lifted
and lowered with respect %&; except for(u"/) that denotes the inverse 6f;;). Indices
z and p; denote partial derivatives with respect to the argument used for the function
u and for its gradient, respectively, dots refer to time derivatives. We use the Einstein
summation convention and sum over repeated Latin indices fromz 1Ror a vectow
we useu, = u;v’ with obvious generalizations to other quantities. We ai$e denote
a positive and already estimated constant. Its value may change from line to line if
necessary. We point out that the inequalities remain valid whgenlarged. A function
u:Q2 x [0,T) — R is called (strictly) convex, ifu(-, ) is (strictly) convex for every
timer € [0, T). A functionu : 2 — R is called strictly convex, if the eigenvalues of its
Hessian are positive. This definition extends to hypersurfaces and sets by using their
principal curvatures. Finally, we use

A

f =log f

to denote the logarithm of a functiof.

We briefly discuss the relation of our result with the existing literature. In [6] smooth,
compact, strictly convex and rotationally symmetric hypersurfaceR3irhave been
deformed by its Gaul3 curvature to round points. The Gauf3 curvature flow

d
—F=—Kv
dt
for smooth embedding® of hyperspheres ilR"*! has been the subject in [1]. For
the n-th root of K this flow has been considered in [4]. In [3,8] the authors use flow
equations to prove existence theorems for closed hypersurfaces of prescribed curvature.
For Gaul3 curvature flows strict convexity is an essential assumption because then the
flow becomes strictly parabolic. In addition the degenerate Gaul? curvature flow with flat
sides has been investigated in [5]. There are also several papers about curvature flows
with Dirichlet boundary condition, we only mention [11]. The elliptic version of our flow
equations (1.1), (1.9) has been explored in [14,17-19] by using the continuity method,
see also [16] for a related problem. Some of the techniques used there will be applied in
our paper as well.

The organization of our paper is as follows: In the first part, we study flow equations
subject to prescribed Neumann boundary values. In Section 2 we prove uniform
estimates fofi|. This will be used in Section 3 to deriv&’-estimatesC*-estimates then
follow from [14]. As a consequence we will obtain a uniform positive lower bound for
detu;;. In Section 4 we deriv€?-estimates and in Section 10 we mention how to obtain
Holder regularity for the second derivativesofand prove Theorem 1.1. In a second
part we consider the second boundary value problem. In Section 5 we introduce Hessian
functions and a dual problem, next, we prove the strict obliqueness of our boundary
condition. After the estimates for andu in Section 7, we give a quantitative version
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of our obliqueness result. In Section 9 we estabtighestimates and in Section 10 we
prove Theorem 1.4. As far as the second boundary value problem is concerned, we will
use methods of [17,19] without mentioning this explicitly there. In the appendix we state
generalizations to oblique boundary value problems for Hessian equations and indicate
how to obtain the result for Hessian quotient equations. We remark that our results are
parabolic versions of [14,17,18], so our results can be considered as alternative existence
proofs using parabolic methods.

This paper has been finished as the second author visited the program “Nonlinear
Partial Differential Equations” of the Isaac Newton Institute for Mathematical Sciences,
Cambridge, in 2001. He wants to thank the organizers for their invitation to this
stimulating location. Both authors thank Claus Gerhardt for useful suggestions and
discussions. In addition, the authors are indebted to Jurgen Jost for his support at the
Max Planck Institute for Mathematics in the Sciences where part of this paper has been
written.

2. u-estimates
For a constant we define the function
ro= e ()2

An easy computation shows that (1.1) implies the following evolution equation for

F=®ulr; —2e" &' u i — ’J;’;’ <A 29’ fj) (2.1)

LEMMA 2.1.— As long as a smooth convex solution (@f1) exists we obtain the
estimate
mm{rp:lcr]lu,o} u < max{rp_aXM 0}

Proof. —If (i1)? admits a positive local maximum ine 92 for a positive time, then
we differentiate the Neumann boundary condition and obtain from (1.3)

(@?), = 2%, > 0
which contradicts the maximality @f:)? atx. Now we choose. = 0 in (2.1) and get

oI fz
f f

So we obtain from (1.2) and (1.4) that a positive increasing local maximu@a)éfon
Q x [0, 1] cannot occur at an interior point 6f for any time O< < 7. O

d- I /
J @ < @ul (@)7);; — @' (%), — 20

COROLLARY 2.2.— As long as a smooth convex solution (@f1) exists we get a
positive lower bound fo®’, 1/c¢ > &' > ce > 0.
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Proof. —This follows immediately as Lemma 2.©,(0) = 0 and the strict monotonic-
ity of ® give a bound for the argument &. O

LEMMA 2.3.— As long as a smooth convex solution (@f1) exists we obtain the
estimate

. gy )
mln{rtnzlgm, O} <ne' < max{rp:%Xu, 0}
for A < crce provided(1.5)is fulfilled.

Proof. —This statement follows from Corollary 2.2 and a proof similar to the proof of
Lemma2.1. O

LEMMA 2.4. — A solution of our flow(1.1) satisfies: > 0 or equivalently® > 0 for
t>0if0#£u>0forr=0.

Proof. —Differentiating the flow equation yields
ii = ®'uli;; — & (fur + fpi;), (2.2)

thus

d y N N

o (€)= d'u" (i e”)l.j — @' (fu€ + f, (1 e“)l.) + A€, (2.3)
We fix o > 0 and a constarit > 0 such thaik > <I>/fZ for (x,1) € Q x [0, to]. From (2.3)
and the strong parabolic maximum principle we see et has to vanish identically if
it vanishes in(xq, ) €  x (0, ), contradictingi £ 0 fort = 0. If 1 € =0 for xg € IQ
the Neumann boundary condition implies

(i€), = p:(i€") =0

but this is impossible in view of the Hopf lemma applied to (2.3) becaused’ /.. O

Remark2.5. — The constant in the previous proof depends e It can be chosen
independent ofy, if ®’f, is uniformly bounded above and this is truexifs bounded
inCL.

3. €Y% and C!-estimates

Remark3.1. — The strict convexity of and the fact thap(-, z) — oo uniformly as
z — oo imply thatu is uniformly a priori bounded from above as = ¢(x, u) on 92.

LEMMA 3.2.— Under the assumptions of Lemr@&8 we have the following lower
bound foru

. 1 . .
S 1 .
U= rtn:I(l)’lu + S mln{rtnzl(l)’lu,O}

forall 0 < < cocy.



1050 0O.C.SCHNURER, K. SMOCZYK / Ann. |. H. Poincaré — AN 20 (2003) 1043-1073

Proof. —This easily follows from Lemma 2.3

ulx,t)=u(x,0) + /L't(x, 1)dt
0

t
>u(x,0) + min{rtn_icr;zi, 0} / e dr
0

>minu+}min{minu 0}. O
t=0 A t=0

LEMMA 3.3 (Cl-estimates). For a smooth and convex solutiom of the flow
equation(1.1), the gradient of: remains bounded during the evolution.

Proof. —This follows from the C%-estimates obtained so far and Theorem 2.2
in[14]. O

Remark 3.4. — As long as a smooth solutianof our flow equation (1.1) exists and
log detu;; remains bounded, remains strictly convex provided is strictly convex. The
quantity log detz;;, however, stays bounded as both the argumedt (fee Lemma 2.1,
Corollary 2.2) and log are estimated. Finally, log§i remains bounded ds|, is a priori
bounded.

4. C?-estimates
4.1. Preliminary results

We usev for the inner unit normal 062 andt for a direction tangential t6<2.

LEMMA 4.1 (Mixed C?-estimates at the boundary).l-etu be a solution of our flow
equation(1.1). Then the absolute value of, remains a priori bounded 0A£2 during
the evolution.

Proof. —We represend2 locally as graply over its tangent plane at a fixed point
xg € 9 such that locallyQ = {(x", X): x" > w(x)}. We differentiate the Neumann
boundary condition

Vi@ (R, 0@®) =¢((k, 0@),u(X0®@)), *eR
with respect tat/, 1< j<n—1,
v;u,- + viuij + viui,,wj =¢; +tonw;j+eu; + @ u,w;
and obtain akg = (%o, @ (xg)) € I2a bound forviu;; in view of the C*-estimates and
Dw(x0) = 0. Multiplying with 7 gives the result. We remark that it is only possible to

multiply the equation with a tangential vector as the differentiation with respett to
and so alsg correspond to tangential directionsg
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LEMMA 4.2 (Double normalC?-estimates at the boundary). For any solution of
the flow equatiorf1.1) the absolute value af,, is a priori bounded from above ait2.
(., > 0 also follows from the strict convexity of a solutipn.

Proof. —We use methods known from the Dirichlet problem [15], where more details
can be found and assume the same geometric situation as in the proof of Lemma 4.1
with xo € 9Q2. From (1.1) we obtain

=S uluy — & (fi + four + fruni)
and define therefore
Lw = — &'uw;; + &' f,,w;,

where we evaluate the terms by using the functiofrom the definition of_ it is easy
to see that for appropriate extensionsafndg

IL(Vup — @, u)| <c- (L+tru),

where — here and in the followinge-is an a priori bounded positive constant that may
change its value as necessary. We defige= Q N Bs(xg) for § > 0 sufficiently small
and set

O :=d — pd®

for u > 1 sufficiently large wher@ denotes the distance froff2. We will show that
Ly > 59 tru’/ for a small constant > 0 (depending only on a positive lower bound
for the principal curvatures &fQ2) in ;.

LY = —<I>'ui-"di.,' + 2[/L<D/Mijd,'dj + ZMq),Mijdd,’j + <D/fpi (d, - 2[/de,)
> —'ud;; + 2ud®'u did; — cud (L+tru'’) —c.

We use the strict convexity &, d; ~ §;,, [uX'| <tru'’, 1<k, <n,and the inequal-
ity for arithmetic and geometric means

LY > ed® tru’ + &' pu™ — cus(1+tru) —c
Z Cb’%(detu’j)lm g/t §8<b’ tru’ —cpd(1+tru’) —c. (4.1)
As detu”/ is a priori bounded from below by a positive constant in view of
detu'’ = (detu;;) "t = exp(— f — 1)),

we may choosew so large that the first term in (4.1) is greater thar- 1. For
§< i min{1, s} we get

1, .
Lo > Zed'tru’

and furthermore? > 0 on 3<% if we chooses smaller if necessary.
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For constantsi, B > 0 consider the function
O := A9 + Blx — xol* £ (Viu; — o(x,u)) +1,

where! is an affine linear function such th& > 0 for r = 0 and /(») = 0. We fix

B> 1, get® > 0 0ond;, and deduce foA > B thatL® > 0 as ti”/ is bounded from
below by a positive constant. The maximum principle yiehds 0 in ;. AS®(xg) =0

we have®, (xg) > 0 which in turn gives immediateli,,,| <c. O

Remark4.3. — From Section 3 and the uniform estimatesi/farve get for a fixed
positive constantg

min{detu;;, f} > po > 0.

According to [14] we obtain unique convex solutiopis € C2(Q2) for 0< p < 1 of the
boundary value problem

dety;; = 10 in Q,
vy = (x, ¥ + plx|?) — 2p(x,v) 0NIQ

such thafy, |, g < c andy;; > Ad;; for positive constants independentafFix p > 0
sufficiently small such that, = v, + p|x|? satisfies

detlz,'j < Mo in Q,

where we dropped the indgxasp is fixed now.
LEMMA 4.4. —For v as constructed above,< v is valid during the evolution.

Proof. —The functiony satisfies the elliptic differential inequality

detll_fij < Mo in Q,
Yy =@(x, %) 0onaQ

and the parabolic differential inequality

{ 1} > ®(logdety;; —logue) in 2 x [0, T),
Uy = @(x, %) ondQ x [0, T)

as ¥ is independent of, so 1} = 0. Furthermore we have the following elliptic
differential inequality

{ det(up);j > pno  IN 2,
(uo)y = ¢(x,ug) 0ONIQ
and the parabolic differential inequality

i = ®(logdetu;; — f) < ®(logdetu;; —logug) in Q x [0, T),
u, =(x,u) onaQ x [0, 7).
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We combine the elliptic differential inequalities and obtain by the mean value theorem
with a positive definite matrix”/ and a positive functiol”
{a"j(uo—xﬁ)ij >0 in ,
(wo— ), =C-(ug—v¥) 0ndLY,

thus we obtain: = ug < ¢ for t = 0 in view of the elliptic maximum principle. From
the parabolic differential inequalities we get
{u —y<aiu—vy);  inQx[0,T),
w—9)=C-w—9) ondQx[0,T),
so the parabolic maximum principle gives< v forallt > 0. O

COROLLARY 4.5. — For ¢ as constructed above there exists a positive congiant
such that

(W—M)u>50>0-

Proof. —As u < ¥ we deduce from the Neumann boundary condition
1
lzzv — Uy :(P(x, 1}) - QD()C, M) = /(pz(x, T& + (l_ T)u) dr - (I;Z - M),
0

so (¥ —u), >0, and furthermore

W —uw)y = (¥ — plx|* —u), > —2p(x,v) >8>0
asQ is strictly convex and @ 2. O
4.2. Interior estimates

To establish a priorC?-estimates everywhere, we proceed as in [14]. For the reader’s
convenience, however, we repeat the argument given there modified for the parabolic
case. We may takg slightly smaller than the maximal time interval for which a solution
exists. We define fo¢x, &,1) € @ x $" 1 x [0, T]

W(x, & 1) :=logw + B(u'u; + My —u)),

where

w(x, &, 1) =uge — 28, v) (" — (£, v)V') - (@1 + @u; — ugvy)
= Ugs +akuk + b,

andv is a smooth extension of the inner unit normad e that vanishes outside a tubular
neighborhood 06%2; * andb depend only o andu.
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LEMMA 4.6 (Interior C?-estimates). —For a solution of the flow equatiol.1), W
attains its maximum ove® x $"~! x [0, T] at a boundary point, i.e., IdQ x "1 x
[0, 7], providedp >> M >> 1 are chosen large enough ¢P?u| is a priori bounded by
a constant determined by ti@&-norm ofuy and known or estimated quantities.

Remark4.7. — More precisely we assume for the maximumWfw > 1, ¢ <
'Ztru'/, see (4.7), and furthermore (4.10), (4.11), wheris determined just above
(4.13) ands is determined directly below (4.13). This gives a possibility to calculate an
upper bound of D?«| in view of the above a priori estimates, if the maximumvgfis
attained inQ2 x §"~* x (0, T'].

Proof of Lemma4.6. —-We assume thatW attains its maximum in the point
(x0, &0, t0) € Q x "1 x (0, T] (but later on we write agai§ for simplicity) andw
is positive in a neighborhood af, so we calculate there

Wi

Wi = " + 2Bt ug; + BM (Y — u);,
Wi w;w;

Wj=—L— —21 + zﬂ”];”ki + Zﬂukuki,/ +BM (Y —u);j,

w w
. . S
W= —+ 2Buki + BM(y — 1b).
We differentiate the flow equation twice

i = O'utuy; — d'D; f, (4.2)

tee = D'u ujee — <D’uiku-/luijguklg - <I>’Dggf
+ qD"(uijuijg)z - 2<I>"ui-/u,~ng§f + q)"(Dgf)z
<O uuijer — OuFulujeuge — CD’Dggf, (4.3)
where we have used the concavity®f D. indicates that the chain rule has not yet been

applied to the respective terms.
As |u*uy,| is bounded o2 we may fix M such that

M(S() 2 2‘ukukv (44)

s

where we uség as introduced in Corollary 4.5.
Now we restrict our attention to the point where the maximum is attained. We have

therew; =0, W;; <0, W >0 and®’ > 0, so we get

. . i 1 . 1 .

O< W — CI),MU Wij < E — CID'—u”w,-j + CD’—zu”wiwj
w w w

+ 2Bu* iy — 2D Au — 28D ukul u;j — MM O tru’ + M (4.5)
with A > 0 as in Remark 4.3. We remark thaglso depends o®’. From (4.2) and (4.3)
we get

W — d'u W < l/'tgg + Clklx'tk — d),uijuggij — d),akuijukij +c- (1+ trui./)

<= u*ulujjeupe — &' D f +c- (1+|D%u| +tru). (4.6)
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We assume now tha¥ is large in its maximum, more precisaty< cb’% tru’/, combine
(4.5) and (4.6) and take (4.2) into account

1 N
0< —@u*ul! uijsupe — D Dggf—i- ol —u Jw; w; — 28w’ u* Dy f
— 28w Au — EﬁMwCID/trui-/ +c- (1+|D%| +tru). 4.7)

We consider the quantity”’ w;w; separately and use Young's inequality foxG < 1
to be fixed later

uwiw; = u" (ugs; + D;d*uy + D;b + akuk,-) (ugej + Djalul + Db+ alulj)
= u" (uge; + B +a"up) (uee; + B +a'uy)

. 2 .. 2 .. - . o
< A+ e)uuggiugsj + —u BiBj + ~uuy;a*uja’ +u’ B;B; 4+ 2B;a’ +ad'alu;;
e e
.. c ..
< (l+ S)MI'/M&—&—,'M&—EJ' + g(l-i- ‘Dzu‘ + tru’-’). (48)
On the other hand we get in view 8f; =0
uwiw; < cBPw?(1+ |D?ul +tru'l), (4.9)

wherec depends on the constaMt fixed above.
We assume that;; and the greatest eigenvalue:of at xo, u,,, are nearly as large
asw, more precisely

<, (4.10)
w

and for later use

1<us,  1<| %|Dzu|<w<2\

(4.11)

so we get for O< ¢ « 1 in view of (4.8) and (4.9)
. 1 .. 1 ..
—u’wiw; =(1-3e)—u’w;w; + 3e—u’ w;w;
w ’ w ’ w
<u"uuggiuge; + L(14— |D%u| +tru) + cep?w (14 |D?u| +tru”). (4.12)
W
We calculate for-Dg: f — 28wu* Dy f in view of W; =0
—®'Dge f — 280" wu Dy f
< =0 fpunse — 289 witt f,ui + cp(1+ | D%u]) +¢(1+|D%ul?)
<cB(l+ |D2u|) +c(1+ |D2u| )

where it is important to notice that the Zgawu"uk,--terms cancel. We plug this estimate
and (4.12) in (4.7)
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ik gl l ij / A / ij
0< = u" u' ujjeupe + Pu"u uggiugej — 2w Au — EwﬂMQD trut
c . .
+ — (1 + | D%u| + tru) + cef?w (14 | D%u| +tru)
gw

+cB(1+|D%u|) +c(1+ |D2u|2+truij).

The sum of the first two terms is known to be nonpositive, see, e.g., [14]. We choose
e =1/82, so we obtain

0< ~20'8| D%’ ~ 5 D[t
+ P Du| + ) 4 Dl (D2 +rT). (413

If we fix 8 sufficiently large, it is easy to see tH#&%u|(xo, 1p) has to be a priori bounded
by a constant. O

4.3. Remaining boundary estimates

The proof of the tangential’?-estimates at the boundary can be carried out as in [14].
There, however, the authors only mention that this estimate can be obtained similar as
at the beginning of Section 3 there. So we repeat the argument for readers not familiar
with [14].

Before stating the lemma we wish to point out that it is in general not truetghat
a direction tangential t6Q2 whenW attains its maximum atxo, &, fo) € 92 x "% x
(O, T].

LEMMA 4.8. —The second derivatives of a solutierof our flow equatior(1.1) are
a priori bounded inQ x [0, T].

Proof. —In view of Lemmas 4.2 and 4.6 we may assume without loss of generality
that W attains its maximum at a poirtk, £, 1) € 9Q x §"1 x (0, T) with £ # v and
distinguish two cases.

(i) tangential If £ is tangential td <2, we differentiate

viug = p(x, u)

with respect to tangential directions under the assumptions stated in the proof of
Lemma 4.1 and get in view ddw (Xg) =0

vésui + 2véu,-g + viul-gg + viuina)gg
= Qge + Puee + 20U + @ UsUs + QUss + P U,
SO we obtain

Uuge = —2ViUie + Q,llge — € > Qllge — C (4.14)
asa is strictly convex. On the other hand the maximalityWofat x gives 0> W,,,

0> ugey — ¢+ wh(2u' upy, + M —u),)
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and furthermore using (4.4) and Corollary 4.5
0 2 Uggy — C,

S0 we obtain in view of (4.14) ang, > ¢, > 0 the desired estimatg; < c.
(i) non-tangential If £ is neither tangential nor normal we need the tricky choice of
w in [14]. We find O< @ < 1 and a tangential directionsuch that

E=at+V1—a?v.

We rewritew as
w(x, &) =ug: — 20/ 1—a27’ (@i + pou; — ukv{‘) =ugs — 20V 1— a?uy,
in view of the differentiated Neumann boundary condition, so we see that
Uss =o%u,, + (1- az)uw + 201 — @?u,,

=%y + (L= a®)uy, — w(x, &) + uge
and obtain in view of the maximality % and the fact thaW — logw is independent
of ¢ andw(x, t) = u¢r, w(x,v) =u,,
w(x, 1) Sw(x, §),
w(x, &) = d?ur, + (1—a?)u,, = ?w(x, 7) + (1 - @) w(x,v)
<a?w(x, &) + (1 —a®)w(x, v).
Thereforew (x, £) < w(x, v) gives the upper boung:: < ¢ proving the statement. O

In the following sections we consider the second boundary value problem. In
Section 10 we will come back to Neumann boundary conditions. Sections 5 to 9 will
not be used for the proof of Theorem 1.1.

5. Legendretransformation and Hessian functions

We introduce some classes of Hessian functions similar to [8,15]. A slightly different
class of Hessian functions is considered in [17].

Let I'. C R” be the open positive cone afde C>*(I';) N C%(T,) a symmetric
function satisfying the condition

oF

Fi=—>
!

0;

then, F can also be viewed as a function defined on the space of symmetric, positive
definite matriceSSyn (n), for, let (u;;) € Sym¥ (n) with eigenvalues.;, 1<i < n, then
defineF on SynT (n) by

F(uij) = F(A).
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We haveF e C*(SynT) N C°(SynT). If we define

_9F

FY =
9
8MU

then we get in an appropriate coordinate system

oF

el e

FlUg; =
and F'/ is diagonal, ifu;; is diagonal. We define furthermore

92F

Fij,kl —
8uU8uH

DEFINITION 5.1.— A Hessian functior is said to be of the clasX), if

FeC®I)NCoTy), (5.1)
F is symmetric, (5.2)
F is positive homogeneous of degike> 0,

oF .
Fi= e >0 inTy, (5.3)
F|3r+ = Oa (54)

and
N 1 i N2 o~
Firping < F7H(FYn;)" — F*a/'n;my  ¥ne Sym

where(iz'/) denotes the inverse 6f;;), or, equivalently, if we sef =logF,
ﬁij’klﬂi,/ N < —ﬁikﬁjlmj . Yn € Sym

whereF is evaluated atu;;).
If F satisfies
Jeo > 0:  eoF tru] < Fluyut

for any (u;;) € Sy, where the index is lifted by means of the Kronecker-delta, then we
indicate this by using an additional staf,c (K*).

The class of Hessian functios which fulfill, instead of the homogeneity condition,
the following weaker assumption

1
150>0: O<—F < Fihi <6oF
0> < &) 2: 0

is denoted by an additional tild&, € (K) or F € (K*).
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A Hessian functionF which satisfies for any > 0
F(e,...,e, R) > 400, asR — +oo,

or equivalently
F@,...,1,R) > +00, asRk— +oo,

in the homogeneous case, a condition similar to an assumption in [2], is said to be of the
class(CNS.

Example5.2. — We mention examples of Hessian functions of the ¢l&s3 as given
in [8,15].
Let H, be thek-th elementary symmetric polynomials,

H(A)i= > Ak, 1<k<n, (5.5)
1<ip<-<ig<n
o = (H)Y*

the respective Hessian functions homogeneous of degree 1 and define furthermore

&k()\i) = (Sn,n—k)l/k-

oY)

The functionsS,, ; belong to the claséX) for 1 < k <n — 1 andH, belongs to the class
(K™).
Furthermore, see [8],

N
F:=H" [[Fi. a >0, (5.6)
i=1

belongs to the clas&k*) provided Fy;, € (K), and we may even allo;, # 0 onaT; .
An additional construction gives inhomogeneous examples [15]FLet as in (5.6),
n € C*(Rxo) andc, > 0 such that

1
0<—<n<¢, 1 <0,
Cy

then
A

F(L) ::F<exp< /@dr))

1
belongs to the clas&k*).

Important properties of the clagsk*) for the a priori estimates of the second
derivatives ofu at the boundary are stated in the following lemmata.

LEMMA 5.3.—LetF e (K*), then for fixeck > 0

F(e,...,e,R)—>00 asR— oo,
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i.e.,(K*) C (K) N (CNS), moreover, whetF € (K) N (CNS),0< 1 < F <c,and
O<ti< - <Ay,
then the following three conditions are equivalent
M—0, i,—o00, trFY— co.

Proof. —We refer to [15]. O
For the dual functions we have a similar lemma.

LEMMA 5.4.— LetF e (K*),
O< iy <o <Ay,

and0<%

< F < ¢. Then the following three conditions are equivalent
Mm—0, A&, —o00, trF* — o0,
whereF* is defined by

F*(,) =

F(1/x)
Proof. -We haveF; > --- > F, > 0, see [9,17], so we get in view of the definition
of F*

F@/x) 1
F}*()\,l,...,)\,n)IM

F2 7
Thus Fj — oo as A; — 0 gives the result and,, — oo forcesi; — 0 in view of
Lemma 5.3. To get tF*/ — oo, A has to leave any compact subsefof. O

LEMMA 5.5.—LetF € (K) N (CNS. ThenF* as defined above satisfigs1)—(5.4)
and F* € (CNS. For F = (S, )Y"™®, 1<k <n —1, and obviously, see Lemn5e3,
also for F € (K) N (CNS we have for anyg > 0

1

D FAE< (cle) +e-lAl)- Y F (5.7)
provided0 < £ < F <.
Proof. —See [17]. O

Instead of Lemma 5.4 we get the following weaker resultspy_, .

LEMMA 5.6.— Let F =(S,,—x)*=H, 1<k<n-—1,and assum@ <2 < F <c
and

O<hi<- <Ay,



0.C. SCHNURER, K. SMOCZYK / Ann. |. H. Poincaré — AN 20 (2003) 1043-10731061

then
Fz--2F,>0.
Moreover, at least one of the following conditions is fulfilled

1
Fn 2 ->0 (58)
c

or
tr F/ — oo.
Proof. —The first inequality and the case= 1 are obviously true. If O< = <
Miks1 <o < Ay, thenF, > 1> 0.1f &,j41 — 0, theni, — 00 @Sh,_kr1-+- Ay =
I.Hi>1>0, 50

1
c

1

(Hk)l Ze 2 (Hk)n—k+1 = )\n—k+2 t )\n = ' )\n—k-i-l co )\n
)‘nfk+l
1 1 1 1
= = Hy > - — — 0. O
An—kt1 € An—ks1 €

By direct calculations we obtain the following
LEMMA 5.7.—If u is a strictly convexC?-solution of (1.9), then the Legendre
transform ofu, u*: Q* x [0, T) — R, defined by
Wy, ) i=x'ui(x, ) —ulx,)=x"yi —u, y =u'(x,1)
satisfies the evolution equation
iw* = F*(D%*) —logg*(y, u*, Du*) in Q* x [0, T),
Du*(2*) = Q,
u*|, =ug in Q%
whereu is defined similarly ag*,

1

F*()\i) = m,

and

1
glg*, y'qi —z*,y)
and the time derivative of* is taken withy fixed.

g (v, 2" q") =

6. Strict obliqueness

LEMMA 6.1.— As long as a solution as in Theorefn4 exists, our boundary
condition is strictly oblique, i.e.,

(v(x),v*(Du(x,1))) >0, xe€d, (6.1)
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wherev andv* denote the inner unit normals 6f and Q*, respectively.

Proof. —To prove (6.1) we use
v (x) v (Du(x,t)) =v' - hy, (Du(x,1)).
As h(Du) is positive inQ2 and vanishes 082, we get oo 2 for T orthogonal tov
hputie =0, hp iy = 0. (6.2)

Thus we see from
h,,kvk = h,,kuk,»ui-/ Vi =hp g, -u"’ >0 (6.3)
that the quantity whose positivity we wish to show is at least nonnegative.
We compute in view of (6.2) and (6.3) @®

k)2 vy vy vy ij vy
(hpv )" =u""hpougou”™ uyh = u’ hpugut wjh, = u" ughphy,,

so we deduce the positivity of the quantity considered.

7. u- and C%-estimates

Remark7.1 (z-estimatels — The results of Section 2 hold also for the flow (1.9), asin
both cases, the flow equation is parabolic and the boundary condition is strictly oblique.

If condition (1.12) is fulfilled, uniformC®-a priori estimates follow immediately by
integrating the estimate in Lemma 2.3, see also Lemma 3.2. In the case of condition
(1.13), the positivity ofi, Lemma 2.4, gives a lower bound far So it remains to
establish an upper bound ferin the case: > 0.

LEMMA 7.2.—A solutionu of our flow equatior{1.9)is uniformly bounded.

Proof. —The concavity ofF (-) gives the estimate
F(D%) < FU(L,...,0u; —8;)+F@L...,))<c-Au+c.

For 0< 1, < 1, we integrate the flow equation and estimate in view of the inequality
above, the divergence theorem diitli| < ¢ (Du(2) = Q%)

7] 7]

/ |Ogg(x,u,Du)<C/ Au+€(tz—t1)—/(ult2—u|rl)
1 Q 11 Q Q
2
<c//|Du|+c<rz—a>—/(u|,2—u|,l)
1102 Q
<C(f2—l‘1)—/(u|tg—u|t1)- (71)

Q



0.C. SCHNURER, K. SMOCZYK / Ann. I. H. Poincaré — AN 20 (2003) 1043-10731063
The boundedness @u and the convexity of2 yield the estimate
‘u(xl, 1) —u(xo, t)| <ceqar Vx1,x2€Q Ve>0. (7.2)
So we obtain from (7.1) for any €

|§2| /Iogg(x u,Du) <c+c(to—t) —ulx, ) +u(x,ty). (7.3)

Now we fix T > 0 and assume that

uxg, T)y= max u=:M > max{z maXMO,O}.
Qx[0,T]

We choose € (0, T) maximal such thai (xg, t) = % From the monotonicity of and
(7.3) we get the estimate

M
5= u(xo, T') — u(xo, 1)

L M
<c+ce-(T—1)— (T —rx)-inf inf Iogg(x, — —Cq Q*,p)
xeQ peQ* 2 '
and after rearranging

M/Z=c . _inf inf lo M
T 7 C_erpeQ* ggl x, > —CQ,Q% P

For M — oo the left-hand side of this inequality remains positive, whereas the right-
hand side tends te-oco in view of (1.11), soM is a priori bounded proving the
lemma. O

COROLLARY 7.3.-During the evolution,F (D) is a priori bounded from above
and from below.

Proof. —This follows from|Du| < ¢ and from the flow equation. O

8. Strict obliqueness estimates

The following lemma establishes a uniform lower bound for the quantity whose
positivity we proved in Lemma 6.1.

LEMMA 8.1.— During the evolutior{(1.9),we have the strict obliqueness estimate
1
(v(x),v*(Du(x,1)))>=>0, xe€dQ, (8.1)
C

wherev and v* denote the inner unit normals 61 and Q*, respectively. The positive
lower bound is independent af
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Proof. -We assume that a solution of our flow equation exists for a time interval
(0, T1 and prove an estimate fo)zrpkuk during this time interval which is independent
of T. To establish a positive lower bound, we chodsg 7o) € 322 x [0, T'] such that
h vk is minimal there. As we have a positive lower bound fgg v on 9Q x {0},
we may assume thag > 0. Further on, we may assume thdtg) = ¢, and extendv
smoothly to a tubular neighborhood &f2 such that in the matrix sense

1
D' = v,i < ——8,1( (8.2)
Cc1
there for a positive constant. For a positive constam to be chosen we define
V= hpkvk + Ah(Du).
The functionv|yqx 0,7 attains its minimum oved2 x (0, T'] in (xo, #p), SO we deduce
there
0=v,=hpnpkuk,+hpkvf+Ahpkukr, 1<r<n-—-1, (8.3)
0>0. (8.4)

We assume for a moment that there holds
Uy (XO, tO) 2 —C(A), (85)

show that this estimate yields a positive lower bound d@v:,, s, and prove (8.5)
afterwards. Then the lemma follows from the calculations in the proof of Lemma 6.1
and from a positive lower bound far'”.

We rewrite (8.5) as

B pithin + R Ve + Al i, > —c(A).
Multiplying this with &, and adding (8.3) multiplied with, we obtain ai(xo, to)
Augihphp = —c(Ahy, — by vihy — hphp .
Using (6.2), the concavity of and (8.2), we obtain afy

1
Auklhpkhp, > —C(A)]’lpn + C_
1

as|Vh| =1 on 9. We may assume that the right-hand side of the inequality above
is positive as otherwisg,, = &, v* is bounded from below. Thus we deduce a positive
lower bound foru i, b p,.

We now sketch the proof of (8.5). There is another slightly shorter proof of this
inequality obtained by constructing a barrier in a tubular neighborho@f2cdivoiding
the term|x — xo/?> below, but we prefer the following proof as it uses only local
properties of the involved quantities. As for a similar proof with more details we refer to
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Lemma 4.2. Direct calculations using (1.9) give
Lo < Flugujy Vb + A - Flugiugih ) + c(A) - tr FV < c(A) -tr B
for A sufficiently large and
Lw:=—w+ ﬁijwij — 8pWj.

We wish to mention that this definition differs from the definitionZoin Lemma 4.2 by
a sign. AsQ is strictly convex, there exigt > 1 ande > 0 such that for :=d — ud?,
whered = dist(-, 02), we have nead2 in view of Lemma 5.3

LY < —e-trFY. (8.6)

We consider only in Qs := N B;s(xg), wheres > 0 is chosen so small thétis smooth
and nonnegative there and the above inequality holdsw Bssbounded and attains its
minimum overd2 x [0, T'] in (xq, tp) we findC > B > 1 and an affine linear function
[ with [(xg) = 0 such that the function

O:=C-9+4B-|x —x0/24v—v(xo, f0) +1
satisfies

LO<L0 inQyx[0,T].
Thus the maximum principle gives

{@ >0 on (085 x [0, T]) U (R x {0}),

(C-9+v+1D,(x0,10) =0

as the functiorC - © + B - |x — xg|2 + v — v(xo, fo) + [ vanishes in(xy, f). This shows
inequality (8.5).

Similar to the argument above we extendsmoothly to a tubular neighborhood of
9Q* such that* < —215¢ in the matrix sense and take as a smooth strictly concave
function such thath* = 0} = 9Q and|Dh*| =1 on32. We define

v  =h? (Du*)v™* + Ah*(Du*)
and a linear operator by
L*w:= —w+ I?*"jwij - g’(’;wi.

As before we obtain that*|;q«(0.7] IS positive. We fixI" > 0 and assume that|yqxo.7
attains its minimum in(yo, fo). As we wish to establish a positive lower bound f¢rwe
may assume thap > 0. By calculations as above — using Lemma 5.4 — we obtain in
(yo, to) an inequality of the form

Aught B > —c(A)hs v — vt bk (8.7)
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Sinceh*kv*k = (v*, v), we may assume again that this quantity is small. The second term
on the right-hand side is bounded below by a positive constant in view of the convexity

of Q* and|Dh*| =1 on 9Q*, so we deducerj,h’ k% >+ > 0. Usingu;, = u* and

hy, = vk we obtain a positive lower bound for’” completing the strict obliqueness
estimate. O

9. C2-estimates

For convenience we use the notatioy) (Du) = B*. We state the following estimates
on 42 obtained by differentiating the boundary condition

I/trﬁ = 0, I/twg 2 0, (91)

wheret and v denote a tangential vector and the inner unit normal, respectively, see
also (6.2). The estimates in this section are valid forasy0 if ¢ is not fixed explicitly.

Thus multiplying a term of the form(e) + ¢ - M with a constant yields again a term of
the formce(e) + ¢ - M. We obtain the following

LEMMA 9.1.— A solution of our flow equatioflL.9)in a time interval[0, T'] satisfies
forall e >0

ugg<ce)+e-M inQ, (9.2)
whereM := supg, 0.7 | D%u|.
Proof. —-We setH = h(Du),

Lw:=—w + ﬁijw,'j — gp,.w,»
and compute the differential inequality
LH > —(c(e) +eM) -tr F,

where we have used Lemma 5.5 and the boundednesg(Dfu). Applying the
maximum principle as in Lemma 8.1 to the functiet - (c(¢) +&-M) -9 — B - |x —
xol?>+ H +1 with 9, ] as in Lemma 8.14 > B >> 1 sufficiently large positive constants
andxg € 992, we obtain

ug, <cle)+e-M onoQ. (9.3)

We remark that in (8.6) is fixed and is not related toused here. In view afg, =0 on
9% and the strict obliqueness estimate or by using the maximum principle as above for
B instead ofv, the claimed inequality follows. O

As to the interior second derivative estimates we recall from [10]

LEMMA 9.2. — For a solution of our flow equation in a time intervid, 7] we have
the estimate

sup |D%|<c+ sup |D%/|+ sup|D?l.
Qx[0,T] 3Qx[0,T] Qx{0)
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Proof. —Similar computations as in [10] in the elliptic case — under the assumption
that
Qx[0,TIx 8" s, 1,6 y- ‘Du(x, t)|2+ logugs (x, 1)

attains its maximum is2 x (0, 7] x S"Lfory sufficiently large — give the above bound.
We remark, that we usefl € (F*) and not onlyF € (K) N (CNS. O

Up to now we controlg, (= 0), ugs and we have an interior estimate for the second
derivatives ofu. In the following lemma we bound double tangential derivatives at the
boundary. This completes ti@?-a priori estimates.

LEMMA 9.3. —For a solution of our flow equation in a time intervil, 7] the second
tangential derivatives at the boundary are a priori uniformly bounded.

Proof. —We may assume

sup Sup  urr = ugi(xo, fo), (9.4)
aNx[0,T] |t|=1,(r,v)=0

wherexg € 92, 19 € (0, T] and furthermore that = ¢, is the inner unit normal at
xo € 0Q2. At a boundary point we decompose any direction.e., a vecto€ € R” such
that|&| = 1,

. (v,§)
E=1(6)+ (/&Wﬂ’
where
(E) = — gy — S gT BT g (g,
(B,v)

and obtain the estimate

T

Ir(é)\2<l+c-<v,’§>2—2<v,f§>(/8 ’§>- (9.5)
(B, v)

We setr := 7(e1) and obtain ord 2 in view of the estimates (9.1), (9.2), (9.4) and (9.5)
above
(v,e1) - (BT, e1)

(B, v)

Before we proceed, we establish an estimate for the quaMityntroduced in
Lemma 9.1. Lemma 9.2 gives

u11 < (l+ c-(v,e1)?—2 ) - u11(x0, t0) + (c(&) + & - M) (v, e1)?.

M<c+ sup |D%l, (9.6)

aQx[0,T]

where the supremum also includes non-tangential directions. For a diréatierobtain
in view of ug, =0 0n 0, (9.4) and (9.2)

Ugg < UrE)yre) +C - Ugg <c-uyp(xg, to) +c(e)+¢e- M.
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Combining this inequality foe > 0 small enough with (9.6) we get

M < c¢- (1+ ua(xo, to)). 9.7
We droppede as it was fixed sufficiently small to get this inequality and will be fixed
differently later-on.

We may assume in view of (9.7) for the rest of the proof thatxg, #p) > 1 and for

W= Uil +2<l),€1>’ <IBT’61>
u11(xo, fo) (B,v)

we obtain — by using (9.7) — the estimate
w <1+ c(e)x'|> ond nearxo,

wherex’ = (x1, ..., x"1), and we get furthermore < c(¢) everywhere ordQ2. We
consider 2v, e1) - (BT, e1)/(B,v) as a known function depending a@m, Du), use the
flow equation, and obtain i€ by direct calculation

—w + ﬁijwij —gpw; = —c-(c(e)+¢- M)trﬁij.
Thus the maximum principle gives with a barrier function as constructed above
u11p(xo, o) < (c(e) + € - M)ua1(xo, 10). (9.8)
Differentiating the boundary condition twice in the directionwe obtain at(xo, o)
h e prUiatin 4 up11 + uppw11 =0,

wherew is a function such that locallg2 is represented as graphover its tangent
plane atxg. Combining this equality with (9.8) and (9.3), we obtain in the non-trivial
caseu11(xo, fp) = ¢(3€2) which we will assume in the following

(c(e) +&- M) - ur1(xo, 10) + h p putxausn = 0. (9.9)

Inequality (9.7) and the uniform concavity bfyield

ol

2

(c(e) + & - ur1(xo, 10)) - u11(xo, fo) = — (u11(xo, 1))

We now fixe > 0 sufficiently small and get a bound fe{,(xo, fo). O

10. Proof of the main theorems

We return to the case of a Neumann boundary value problem.
From the uniformC?-estimates fom: and the uniformCP-estimates foni = ® we
obtain thatu remains uniformly convex and we conclude that the flow operator is
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uniformly parabolic and concave. So we can apply the results of Chapter 14 in [13]
to obtain uniformC?“-estimates for, with a small positive constaiat. Then standard
Schauder estimates [12] imply uniform boundsdik, for all £ > 0. It follows that a
smooth solution of (1.1) exists for all> 0. We then need the following lemma.

LEMMA 10.1. - If a solution of the flow equatiorfl.1) exists for all: > 0 and
either (1.5) or (1.6) are satisfied, then the flow converges to a solution of the Neumann
problem, i.e.,

lim u(x, ) = u™>(x)
t—0o0
exists and

detufy = f(x,u®, Du™) inQ.
Moreover,u(t, -) — u® smoothly. If(1.5) holds, then the convergence is exponentially
fast in anyC*-norm,k > 0.

Proof. —First, we assume that (1.6) is fulfilled. We may assuig@, -) % 0 and
proceed as in [8]. Integrating the flow equation gives

{uo":ga(x,uo") onog,

u(t,x) —u,x)= [ &.
/

The left-hand side is uniformly bounded in view of th8-estimates. As log det; — f
is nonnegative we fing, =, (x) — oo such that

(logde(D?u) — f(x,u, Du))|,_, — 0. (10.1)

On the other hand(x, ) is monotone, so lim, o, u(x, 1) =: u®(x) exists and is smooth
in view of our a priori estimates. Dini's theorem and interpolation inequalities of the form

1Dl < cllil - (|| D3| + || Dall),

for i = u — u®, where|| - || denotes the sup-norm, yield smooth converganee u*°.
Thus we conclude in view of (10.1) that® is a smooth solution of the stationary
problem (1.8).

In case (1.5) we use the a priori bounds for@iknorms and: — 0, see Lemma 2.3,
to get smooth convergence i#é (x). Again by Lemma 2.3 we conclude

lu—u|| <coe™

for constantsig > 0, cg > 0. Then we apply interpolation inequalities as above to
u=u—u* and derive

o =], < e

for any k > 0 and positive constants;, c¢;. Clearly, u* is a smooth solution of the
stationary problem (1.8). O
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Remark10.2. — By an iteration method applied to the interpolation inequality one can
even show (Lemma C.2) thaj can be chosen independentkof

Proof of Theoremd.1 and 1.4. —The a priori estimates obtained so far guarantee
longtime existence for solutions of our flow equations, so the statement of Theorem 1.1
follows from Lemma 10.1 and the claim of Theorem 1.4 follows from a similar
lemma. O

Appendix A. Oblique boundary value problems
A.l. Flowssolving the oblique boundary value problem for Hessian equations

We get the following theorem for Hessian flow equations.

THEOREM A.1l. — Let Q c R" be a smooth uniformly strictly convex domaif,a
positive smooth function defined @nx R x R” with £, > 0, let ¢ be a smooth function
defined or2 x R with ¢, > 0in 92 x R and

p(x,z7) > o000, z—>o000, o€{-11},

uniformly inx. Let F € (K*) and 8 a smooth vectorfield 0B that is C1-close to the
inner unit normalv as described if18]. Then the initial value problem for the parabolic
boundary value problem

it =log F(D?u) —log f (x,u, Du) inQ,
ug=@(x,u) ono

has a unique smooth strictly convex solutioand u converges smoothly to a solution
of the Neumann boundary value problem

F(Dzu) = f(x,u, Du) in <,
ug =@(x,u) onog2

if we start with a smooth strictly convex subsolutign= u/|,—o, i.e.,

{0< F(D?%uo) — f(x,uo, Dug) in<,
(u0)g = @(x, ug) ona

and assume compatibility conditions foe 0 as in our main theorem.

Proof. —We sketch the proof which can be obtained by combining the proofs of [18]
and of the corresponding Neumann boundary value problem aboveC%hstimates
follow from the maximum principleC!-estimates are stated in [14]. The crucial proof
of the C2-estimates is obtained as a combination of the proof above and the proof
of [18], where the inequality for geometric and arithmetic means has to be avoided as
in [15]. Instead we use Lemma 5.3. Higher regularity follows by standard theory and
the considerations above give smooth convergence to a solution of the oblique boundary
value problem for Hessian equationsa
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RemarkA.2. — A similar result can be obtained in the case that (1.5) is fulfilled
instead of 0< F(D%ug) — f(x, ug, Dug).

Again it is possible to modify the flow equation by introducisgas above.

It is also possible to obtain the existence proof for the elliptic oblique boundary
value problem stated in Theorem A.1 by elliptic methods [18] as well agferv
by modifying the proof of [14].

A.2. Nonconvex domains

If Q fails to be convex, then all the steps above work perfectly — providen
¢(392) > 0is sufficiently large — besides the a priori estimatesifgrthat seem to be out
of reach at the moment.

Appendix B. Hessian quotient equations

Proof of Theoreml.5. —We confine ourselves to the most important differences
compared to the proof of Theorem 1.4.

Inequality (8.6) can be obtained by takiny as a strictly concave function that
vanishes orvQ2, becausez,, = 0. Lemma 5.6 is needed to obtain (8.7). The original
functiony can be used here. Lemma 9.1 follows by using Lemma 5.5. Finally, to obtain
Lemma 9.2, we have to use a positive lower bound f@itAr This bound follows from
the concavity ofF" or from Lemma 5.6. Here it suffices to maximize

w = logugs + A - |x|?

forax>1. O

Appendix C. Miscellaneous results

LEMMA C.1.- LetW¥:R2 — R be a smooth concave function such tdgt> O or
Y, < 0and ¥(x,x) =0 Vx. Then there exist® :R — R with &' > 0, ®” < 0 such
that

W(x,y) =D — ).

Proof. —The monotonicity of¥ implies that¥ > 0 in {x > y}, so the concavity
of W] _y=, ¢ > 0, gives that¥|,_,—. is constant. We fixx > 0 and consider
{(x,y): ¥(x,y) =—a}. Our claim follows immediately if we show théfr = —«} is a
straight line. We consider only the cage > 0. As¥|,>,, is constant alonfx — y = c}
we see thaW,(x, x) =: 8 > 0 is independent of. Due to the concavity ofr we get
thus

U —A,x) <W(x,x) —Yi(x,x))A=—81 Vx

and deduce that there exists- 0 such that

{(V=—a}C{—c<x—y<O0}L
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Using again the concavity of we see tha{¥ = —«} is a convex curve that can be
represented as a graph oyer= 0} due tow; > 0. Such a curve in a strip as mentioned
above, however, has to be a straight linez

LEMMA C.2.-Letu:Q x [0, 00) — R be a smooth function such that
ID'ullg < ¢
for constantsC; independent of. If there exist positive constants A such that
lulld < e,
then for any0 < A < A we can find positive constantssuch that

[Dlullg<cre™.

Proof. —Without loss of generality we assurhe= 1. We use interpolation inequalities
of the form
2
1Dv]|” < cllvll - ([[D?0]| + 1 Dv]))

inductively. This induction gives the following sequence fot € N

1, =0,
g = 0, k=0, >0,
' aj_1 -1+ ar+1.k6-1 10 k=0
2 9 9 1

wheregq, , are exponents such that
[D'v]| < Cppemst

for positive constants’; ;. Herek is the induction variable. We will prove that;, — 1
ask — oo. We have 0< arp < 1, ai g 2 a1k andal,k < dpg+1 forall I,k > 0. Let
a; :=limy_ o a;, and observe that; = (¢;_1 + a;41)/2 for/ > 1, so we deduce

Ayl = A —1- (le - am+l)-

Asl>a >0, weseethat; =1foralll. O
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