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ABSTRACT. – We consider the flow of a strictly convex hypersurface driven by the G
curvature. For the Neumann boundary value problem and for the second boundary value p
we show that such a flow exists for all times and converges eventually to a solution
prescribed Gauß curvature equation. We also discuss oblique boundary value problems a
for Hessian equations.

MSC:primary 53C44; secondary 35K20, 53C42

RÉSUMÉ. – Nous considérons le flot d’une hypersurface strictement convexe piloté
courbure de Gauß. Pour le problème aux limites de Neumann et pour le deuxième pr
aux limites nous montrons qu’un tel flot existe pour tout temps et converge vers une solu
l’équation de courbure de Gauß prescrite. Nous étudions aussi des problèmes aux limites
et les flots pour des équations hessiennes.

1. Introduction

This paper concerns – in its first part – the deformation of convex graphs
bounded, convex domains�⊂ R

n, n� 2, with smooth boundary∂� to convex graphs
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with prescribed Gauß curvature and Neumann boundary condition. More preciselu
be a smooth strictly convex solution of

u̇=�
(
logdet(uij )− logf (x,u,Du)

)
in �× [0, T ),

uν = ϕ(x,u) on ∂�× [0, T ),
u|t=0 = u0 in �,

(1.1)

for a maximal time interval[0, T ), wheref,ϕ :� × R → R are smooth functions,ν
denotes the inner unit normal to∂� andu0 :�→ R, the initial value, is a smooth strictl
convex function. Here� :R → R is a smooth strictly increasing and concave funct
that vanishes at zero, i.e.,� satisfies

�(0)= 0, �′ > 0, �′′ � 0. (1.2)

In the sequel we assume for simplicity 0∈�.
To guarantee shorttime existence for (1.1) and convergence to smooth graph

prescribed Gauß curvature we have to assume several structure conditions. Thes

ϕz ≡ ∂ϕ

∂z
� cϕ > 0, (1.3)

f > 0 and fz � 0. (1.4)

Moreover, we will always either assume

fz

f
� cf > 0 (1.5)

or

�
(
log det(u0)ij − logf (x,u0,Du0)

)
� 0. (1.6)

To guarantee smoothness up tot = 0 it is necessary to assume the followi
compatibility conditions to be fulfilled on the boundary∂� for anym� 0(

d

dt

)m(
νiui − ϕ(x,u)

)∣∣
t=0 = 0, (1.7)

where time derivatives ofu,ui, . . . have to be substituted inductively by usingu̇ = �

andu|t=0 = u0. Applying Theorem 5.3, p. 320 [12] and the implicit function theore
we obtain smooth shorttime existence up tot = 0, see also [7].

During the flow, the smoothness of a solution guarantees that (1.7) is satisfied f
m� 0. So it is possible to extend a solution of the flow equation on a time interval[0, T )
to [0, T ] provided there are sufficient a priori estimates and then to[0, T + ε) for a small
ε > 0. In this way we obtain existence for allt � 0 from the a priori estimates. The sam
procedure works also for the other boundary conditions considered in this paper.

The main theorem for Neumann boundary conditions states

THEOREM 1.1. – Assume that� is a bounded, strictly convex domain inR
n, n� 2,

with smooth boundary. Letf,ϕ :� × R → R, be smooth functions that satisfy(1.3)–
(1.4). Let u0 be a smooth, convex function that satisfies the compatibility condi
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(1.7). Moreover, we assume that one of the conditions(1.5) or (1.6) is fulfilled. Then
a smooth solution of(1.1) exists for allt � 0. As t → ∞, the functionsu|t smoothly
converge to a smooth limit functionu∞ such that the graph ofu∞ satisfies the Neuman
boundary value problem{

det
(
u∞
ij

)= f
(
x,u∞,Du∞) in �,

u∞
ν (x)= ϕ(x,u∞) on∂�,

(1.8)

whereν is the inward pointing unit normal of∂�. The rate of convergence is exponen
provided(1.5) is satisfied.

When we assume condition (1.5), we obtain – by using (1.7) only form = 0 –
a solution of (1.1) which is smooth only fort > 0 and the rate of convergence
exponential only in time intervals[ε,∞), ε > 0.

In the case when condition (1.6) holds, we need only (1.7) form = 0,1 to obtain a
solution of (1.1). Hereu approachesu0 for t → 0 only up to its fourth derivatives, whe
time derivatives have to be counted twice.

In both cases, all the other claims of Theorem 1.1 remain unchanged.

Remark1.2. – If we consider for a smooth function� :R2 → R the evolution
equation

u̇=�(log detuij , logf )

and assume natural structure conditions, i.e., concavity of�,�1 > 0 and�(x, x) =
0 ∀x, then we prove in Lemma C.1 that there exists� :R → R with �′ > 0, �′′ � 0
such that� has the following simpler form

�(x, y)=�(x − y).

Example1.3. – For�(x)= x, our ansatz yields the logarithmic Gauß curvature fl

u̇= log detuij − logg(x,u)− n+ 2

2
log
(
1+ |Du|2),

more precisely, the “vertical” velocity equals the difference of the logarithms o
actual and the prescribed Gauß curvature. Another interesting example is giv
�(x)= 1− e−λx, λ > 0, which gives the flow equation

u̇= 1−
(
f (x,u,Du)

detuij

)λ
.

In a second part, we consider the second boundary value problem for Hessia
equations, more precisely, we solve the initial value problem

u̇= logF
(
D2u

)− logg(x,u,Du) in �× [0, T ),
Du(�)=�∗, (1.9)
u|t=0 = u0 in �,
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on a maximal time interval[0, T ), T > 0. We assume that�, �∗ ⊂ R
n, n � 2,

are smooth strictly convex domains,u0 :� → R is a smooth strictly convex function
Du0(�) = �∗ (= 0-th compatibility condition),g :� × R × �∗ → R is a smooth
positive function such thatgz > 0. F is a Hessian function of the class(K̃�), for a
precise definition we refer to Definition 5.1. Here we remark only, that the cla
Hessian functions considered includes especiallyF(D2u)= detD2u. We will show that
a smooth strictly convex solution of (1.9) exists for all times, i.e.,T = ∞, and converge
smoothly to a solutionu∞ of the elliptic second boundary value problem{

F
(
D2u∞)= g

(
x,u∞,Du∞) in �,

Du∞(�)=�∗,
(1.10)

when some structure conditions are fulfilled. The asymptotic behavior ofg is given by

g(x, z,p)→ ∞ asz→ ∞,

g(x, z,p)→ 0 asz→ −∞,
(1.11)

uniformly for (x,p) ∈ � × �∗. Furthermore we will always assume that there ho
either

gz

g
� cg > 0 (1.12)

or {
0� F(D2u0)− logg(x,u0,Du0) in �,

1st compatibility condition on∂�,
(1.13)

where the inequality means thatu0 is a subsolution. We remark that the bound
conditionDu(�) = �∗ is equivalent toh(Du) = 0 on ∂� for smooth strictly convex
functionsu, whereh :Rn → R is a smooth strictly concave function such thath|∂�∗ = 0
and |∇h| = 1 on ∂�∗. For the second boundary value problem the compatib
conditions read as follows(

d

dt

)m
h(Du)|t=0 = 0, m ∈ N, (1.14)

where derivatives ofu have to be replaced as above.
For the second boundary value problem, we obtain the following main theorem

THEOREM 1.4. – Assume that�, �∗, g, u0 andF are as assumed above and eith
(i) (1.12) or (ii) (1.13) are satisfied. Then there exists a smooth strictly convex fun
u :�× (0,∞)→ R of (1.9), i.e.,T = ∞, andu converges smoothly to a solutionu∞ of
(1.10)ast → ∞. Furthermore,u is continuous up to its(i) second/(ii) fourth derivatives
at t = 0, where time derivatives have to be counted twice, and(i) gives exponentia
convergenceu→ u∞ for t ∈ [ε,∞), ε > 0. If (1.14) is fulfilled for all m ∈ N, thenu is
smooth in[0, T ) and (i) gives exponential convergence tou∞ in [0,∞).

This result extends to Hessian quotient equations as follows.
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THEOREM 1.5. – Theorem1.4 holds also forF = Sn,k, 1 � k � n − 1, wheng
happens to be independent of the gradient ofu, whereSn,k(D2u) is the quotient of the
n-th and thek-th elementary symmetric polynomial of the eigenvalues ofD2u.

Notation 1.6. – Indices denote partial derivatives or vector components and are
and lowered with respect toδij except for(uij ) that denotes the inverse of(uij ). Indices
z andpi denote partial derivatives with respect to the argument used for the fun
u and for its gradient, respectively, dots refer to time derivatives. We use the Ei
summation convention and sum over repeated Latin indices from 1 ton. For a vectorν
we useuν ≡ uiν

i with obvious generalizations to other quantities. We usec to denote
a positive and already estimated constant. Its value may change from line to
necessary. We point out that the inequalities remain valid whenc is enlarged. A function
u :� × [0, T ) → R is called (strictly) convex, ifu(·, t) is (strictly) convex for every
time t ∈ [0, T ). A function u :�→ R is called strictly convex, if the eigenvalues of
Hessian are positive. This definition extends to hypersurfaces and sets by usin
principal curvatures. Finally, we use

f̂ = logf

to denote the logarithm of a functionf .

We briefly discuss the relation of our result with the existing literature. In [6] smo
compact, strictly convex and rotationally symmetric hypersurfaces inR

3 have been
deformed by its Gauß curvature to round points. The Gauß curvature flow

d

dt
F = −Kν

for smooth embeddingsF of hyperspheres inRn+1 has been the subject in [1]. F
the n-th root ofK this flow has been considered in [4]. In [3,8] the authors use
equations to prove existence theorems for closed hypersurfaces of prescribed cu
For Gauß curvature flows strict convexity is an essential assumption because th
flow becomes strictly parabolic. In addition the degenerate Gauß curvature flow w
sides has been investigated in [5]. There are also several papers about curvatu
with Dirichlet boundary condition, we only mention [11]. The elliptic version of our fl
equations (1.1), (1.9) has been explored in [14,17–19] by using the continuity m
see also [16] for a related problem. Some of the techniques used there will be app
our paper as well.

The organization of our paper is as follows: In the first part, we study flow equa
subject to prescribed Neumann boundary values. In Section 2 we prove un
estimates for|u̇|. This will be used in Section 3 to deriveC0-estimates.C1-estimates then
follow from [14]. As a consequence we will obtain a uniform positive lower bound
detuij . In Section 4 we deriveC2-estimates and in Section 10 we mention how to ob
Hölder regularity for the second derivatives ofu and prove Theorem 1.1. In a seco
part we consider the second boundary value problem. In Section 5 we introduce H
functions and a dual problem, next, we prove the strict obliqueness of our bou
condition. After the estimates foṙu andu in Section 7, we give a quantitative versi
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of our obliqueness result. In Section 9 we establishC2-estimates and in Section 10 w
prove Theorem 1.4. As far as the second boundary value problem is concerned,
use methods of [17,19] without mentioning this explicitly there. In the appendix we
generalizations to oblique boundary value problems for Hessian equations and in
how to obtain the result for Hessian quotient equations. We remark that our resu
parabolic versions of [14,17,18], so our results can be considered as alternative ex
proofs using parabolic methods.

This paper has been finished as the second author visited the program “No
Partial Differential Equations” of the Isaac Newton Institute for Mathematical Scie
Cambridge, in 2001. He wants to thank the organizers for their invitation to
stimulating location. Both authors thank Claus Gerhardt for useful suggestion
discussions. In addition, the authors are indebted to Jürgen Jost for his suppor
Max Planck Institute for Mathematics in the Sciences where part of this paper ha
written.

2. u̇-estimates

For a constantλ we define the function

r := eλt (u̇)2.

An easy computation shows that (1.1) implies the following evolution equation forr

ṙ =�′uij rij − 2eλt�′uij u̇i u̇j −�′ fpi
f
ri +

(
λ− 2�′ fz

f

)
r. (2.1)

LEMMA 2.1. – As long as a smooth convex solution of(1.1) exists we obtain th
estimate

min
{

min
t=0

u̇,0
}

� u̇� max
{

max
t=0

u̇,0
}
.

Proof. –If (u̇)2 admits a positive local maximum inx ∈ ∂� for a positive time, then
we differentiate the Neumann boundary condition and obtain from (1.3)(

(u̇)2
)
ν
= 2(u̇)2ϕz > 0

which contradicts the maximality of(u̇)2 at x. Now we chooseλ= 0 in (2.1) and get

d

dt
(u̇)2 ��′uij

(
(u̇)2

)
ij

−�′fpi
f

(
(u̇)2

)
i
− 2�′fz

f
(u̇)2.

So we obtain from (1.2) and (1.4) that a positive increasing local maximum of(u̇)2 on
�× [0, t0] cannot occur at an interior point of� for any time 0< t0 < T . ✷

COROLLARY 2.2. – As long as a smooth convex solution of(1.1) exists we get a
positive lower bound for�′, 1/c� >�′ > c� > 0.
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Proof. –This follows immediately as Lemma 2.1,�(0)= 0 and the strict monotonic
ity of � give a bound for the argument of�. ✷

LEMMA 2.3. – As long as a smooth convex solution of(1.1) exists we obtain th
estimate

min
{

min
t=0

u̇,0
}

� u̇eλt � max
{

max
t=0

u̇,0
}

for λ� cf c� provided(1.5) is fulfilled.

Proof. –This statement follows from Corollary 2.2 and a proof similar to the proo
Lemma 2.1. ✷

LEMMA 2.4. – A solution of our flow(1.1)satisfiesu̇ > 0 or equivalently�> 0 for
t > 0 if 0 �≡ u̇� 0 for t = 0.

Proof. –Differentiating the flow equation yields

ü=�′uij u̇ij −�′(f̂zu̇+ f̂pi u̇i
)
, (2.2)

thus

d

dt

(
u̇eλt

)=�′uij
(
u̇eλt

)
ij

−�′(f̂zu̇eλt + f̂pi
(
u̇eλt

)
i

)+ λu̇eλt . (2.3)

We fix t0 > 0 and a constantλ > 0 such thatλ >�′f̂z for (x, t) ∈�×[0, t0]. From (2.3)
and the strong parabolic maximum principle we see thatu̇eλt has to vanish identically i
it vanishes in(x0, t) ∈�× (0, t0), contradictingu̇ �≡ 0 for t = 0. If u̇eλt = 0 for x0 ∈ ∂�
the Neumann boundary condition implies(

u̇eλt
)
ν
= ϕz

(
u̇eλt

)= 0,

but this is impossible in view of the Hopf lemma applied to (2.3) becauseλ >�′f̂z. ✷
Remark2.5. – The constantλ in the previous proof depends ont0. It can be chosen

independent oft0, if �′f̂z is uniformly bounded above and this is true, ifu is bounded
in C1.

3. C0- and C1-estimates

Remark3.1. – The strict convexity ofu and the fact thatϕ(· , z)→ ∞ uniformly as
z→ ∞ imply thatu is uniformly a priori bounded from above asuν = ϕ(x,u) on ∂�.

LEMMA 3.2. – Under the assumptions of Lemma2.3 we have the following lowe
bound foru

u� min
t=0

u+ 1

λ
min

{
min
t=0

u̇,0
}

for all 0< λ� c�cf .
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Proof. –This easily follows from Lemma 2.3

u(x, t)= u(x,0)+
t∫

0

u̇(x, τ ) dτ

� u(x,0)+ min
{

min
t=0

u̇,0
} t∫

0

e−λτ dτ

� min
t=0

u+ 1

λ
min

{
min
t=0

u̇,0
}
. ✷

LEMMA 3.3 (C1-estimates). –For a smooth and convex solutionu of the flow
equation(1.1), the gradient ofu remains bounded during the evolution.

Proof. –This follows from theC0-estimates obtained so far and Theorem
in [14]. ✷

Remark3.4. – As long as a smooth solutionu of our flow equation (1.1) exists an
logdetuij remains bounded,u remains strictly convex providedu0 is strictly convex. The
quantity log detuij , however, stays bounded as both the argument of� (see Lemma 2.1
Corollary 2.2) and logf are estimated. Finally, logf remains bounded as|u|1 is a priori
bounded.

4. C2-estimates

4.1. Preliminary results

We useν for the inner unit normal of∂� andτ for a direction tangential to∂�.

LEMMA 4.1 (MixedC2-estimates at the boundary). –Letu be a solution of our flow
equation(1.1). Then the absolute value ofuτν remains a priori bounded on∂� during
the evolution.

Proof. –We represent∂� locally as graphω over its tangent plane at a fixed po
x0 ∈ ∂� such that locally� = {(xn, x̂): xn > ω(x̂)}. We differentiate the Neuman
boundary condition

νi(x̂)ui
(
x̂, ω(x̂)

)= ϕ
((
x̂, ω(x̂)

)
, u
(
x̂, ω(x̂)

))
, x̂ ∈ R

n−1,

with respect tôxj , 1� j � n− 1,

νijui + νiuij + νiuinωj = ϕj + ϕnωj + ϕzuj + ϕzunωj

and obtain atx0 ≡ (x̂0,ω(x̂0)) ∈ ∂� a bound forνiuij in view of theC1-estimates and
Dω(x̂0)= 0. Multiplying with τ j gives the result. We remark that it is only possible
multiply the equation with a tangential vector as the differentiation with respectx̂j

and so alsoj correspond to tangential directions.✷
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LEMMA 4.2 (Double normalC2-estimates at the boundary). –For any solution of
the flow equation(1.1) the absolute value ofuνν is a priori bounded from above on∂�.
(uνν > 0 also follows from the strict convexity of a solution.)

Proof. –We use methods known from the Dirichlet problem [15], where more de
can be found and assume the same geometric situation as in the proof of Lem
with x0 ∈ ∂�. From (1.1) we obtain

u̇k =�′uij uijk −�′(f̂k + f̂zuk + f̂piuki
)

and define therefore

Lw := ẇ−�′uijwij +�′f̂piwi,

where we evaluate the terms by using the functionu. From the definition ofL it is easy
to see that for appropriate extensions ofν andϕ∣∣L(νkuk − ϕ(x,u)

)∣∣� c · (1+ truij
)
,

where – here and in the following –c is an a priori bounded positive constant that m
change its value as necessary. We define�δ :=� ∩ Bδ(x0) for δ > 0 sufficiently small
and set

ϑ := d −µd2

for µ � 1 sufficiently large whered denotes the distance from∂�. We will show that
Lϑ � ε

3�
′ truij for a small constantε > 0 (depending only on a positive lower bou

for the principal curvatures of∂�) in �δ .

Lϑ = −�′uij dij + 2µ�′uij didj + 2µ�′uij ddij +�′f̂pi (di − 2µddi)

� −�′uij dij + 2µ�′uij didj − cµd
(
1+ truij

)− c.

We use the strict convexity of∂�, di ≈ δin, |ukl| � truij , 1 � k, l � n, and the inequal
ity for arithmetic and geometric means

Lϑ � ε�′ truij +�′µunn − cµδ
(
1+ truij

)− c

��′ n
3

(
detuij

)1/n · ε(n−1)/n ·µ1/n + 2

3
ε�′ truij − cµδ

(
1+ truij

)− c. (4.1)

As detuij is a priori bounded from below by a positive constant in view of

detuij = (detuij )
−1 = exp

(−f̂ −�−1(u̇)
)
,

we may chooseµ so large that the first term in (4.1) is greater thanc + 1. For
δ � 1

cµ
min{1, 1

3ε} we get

Lϑ � 1

3
ε�′ truij

and furthermoreϑ � 0 on ∂�δ if we chooseδ smaller if necessary.
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ic
For constantsA,B > 0 consider the function

2 :=Aϑ +B|x − x0|2 ± (νiui − ϕ(x,u)
)+ l,

where l is an affine linear function such that2 � 0 for t = 0 and l(x0) = 0. We fix
B � 1, get2� 0 on∂�δ, and deduce forA� B thatL2� 0 as truij is bounded from
below by a positive constant. The maximum principle yields2� 0 in �δ. As2(x0)= 0
we have2ν(x0)� 0 which in turn gives immediately|uνν | � c. ✷

Remark4.3. – From Section 3 and the uniform estimates foru̇ we get for a fixed
positive constantµ0

min{detuij , f } � µ0 > 0.

According to [14] we obtain unique convex solutionsψρ ∈C2(�) for 0 � ρ � 1 of the
boundary value problem{

detψij = 1
2µ0 in �,

ψν = ϕ
(
x,ψ + ρ|x|2)− 2ρ〈x, ν〉 on ∂�

such that|ψρ|2,� � c andψij � λδij for positive constants independent ofρ. Fix ρ > 0
sufficiently small such that̄ψρ =ψρ + ρ|x|2 satisfies

detψ̄ij < µ0 in �,

where we dropped the indexρ asρ is fixed now.

LEMMA 4.4. –For ψ̄ as constructed above,u� ψ̄ is valid during the evolution.

Proof. –The functionψ̄ satisfies the elliptic differential inequality{
detψ̄ij < µ0 in �,

ψ̄ν = ϕ(x, ψ̄) on ∂�

and the parabolic differential inequality{ ˙̄ψ >�(log detψ̄ij − logµ0) in �× [0, T ),
ψ̄ν = ϕ(x, ψ̄) on∂�× [0, T )

as ψ̄ is independent oft , so ˙̄ψ = 0. Furthermore we have the following ellipt
differential inequality {

det(u0)ij � µ0 in �,

(u0)ν = ϕ(x,u0) on∂�

and the parabolic differential inequality{
u̇=�

(
log detuij − f̂

)
��(logdetuij − logµ0) in �× [0, T ),

u = ϕ(x,u) on ∂�× [0, T ).
ν
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We combine the elliptic differential inequalities and obtain by the mean value the
with a positive definite matrixaij and a positive functionC{

aij (u0 − ψ̄)ij > 0 in�,

(u0 − ψ̄)ν = C · (u0 − ψ̄) on∂�,

thus we obtainu = u0 � ψ̄ for t = 0 in view of the elliptic maximum principle. From
the parabolic differential inequalities we get{

u̇− ˙̄ψ < ãij (u− ψ̄)ij in �× [0, T ),
(u− ψ̄)ν = C̃ · (u− ψ̄) on ∂�× [0, T ),

so the parabolic maximum principle givesu� ψ̄ for all t � 0. ✷
COROLLARY 4.5. – For ψ as constructed above there exists a positive constaδ0

such that

(ψ − u)ν � δ0 > 0.

Proof. –As u� ψ̄ we deduce from the Neumann boundary condition

ψ̄ν − uν = ϕ(x, ψ̄)− ϕ(x,u)=
1∫

0

ϕz
(
x, τ ψ̄ + (1− τ)u

)
dτ · (ψ̄ − u),

so(ψ̄ − u)ν � 0, and furthermore

(ψ − u)ν = (
ψ̄ − ρ|x|2 − u

)
ν
� −2ρ〈x, ν〉 � δ0 > 0

as� is strictly convex and 0∈�. ✷
4.2. Interior estimates

To establish a prioriC2-estimates everywhere, we proceed as in [14]. For the rea
convenience, however, we repeat the argument given there modified for the pa
case. We may takeT slightly smaller than the maximal time interval for which a solut
exists. We define for(x, ξ, t) ∈�× Sn−1 × [0, T ]

W(x, ξ, t) := logw+ β
(
uiui +M(ψ − u)

)
,

where

w(x, ξ, t)= uξξ − 2〈ξ, ν〉(ξ i − 〈ξ, ν〉νi) · (ϕi + ϕzui − ukν
k
i

)
≡ uξξ + akuk + b,

andν is a smooth extension of the inner unit normal to∂� that vanishes outside a tubul
neighborhood of∂�; ak andb depend only onx andu.
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LEMMA 4.6 (InteriorC2-estimates). –For a solution of the flow equation(1.1),W
attains its maximum over�× Sn−1 × [0, T ] at a boundary point, i.e., in∂�× Sn−1 ×
[0, T ], providedβ �M � 1 are chosen large enough or|D2u| is a priori bounded by
a constant determined by theC2-norm ofu0 and known or estimated quantities.

Remark4.7. – More precisely we assume for the maximum ofW w � 1, c �
�′ λ

2 truij , see (4.7), and furthermore (4.10), (4.11), whereε is determined just abov
(4.13) andβ is determined directly below (4.13). This gives a possibility to calculat
upper bound of|D2u| in view of the above a priori estimates, if the maximum ofW is
attained in�× Sn−1 × (0, T ].

Proof of Lemma4.6. –We assume thatW attains its maximum in the poin
(x0, ξ0, t0) ∈ � × Sn−1 × (0, T ] (but later on we write againξ for simplicity) andw
is positive in a neighborhood ofx0, so we calculate there

Wi = wi

w
+ 2βukuki + βM(ψ − u)i,

Wij = wij

w
− wiwj

w2
+ 2βukj uki + 2βukukij + βM(ψ − u)ij ,

Ẇ = ẇ

w
+ 2βuku̇k + βM(ψ̇ − u̇).

We differentiate the flow equation twice

u̇i =�′uklukli −�′Dif̂ , (4.2)

u̇ξξ =�′uijuijξξ −�′uikujluijξ uklξ −�′Dξξ f̂

+�′′(uij uijξ )2 − 2�′′uijuijξDξ f̂ +�′′(Dξf̂
)2

��′uijuijξξ −�′uikujluijξ uklξ −�′Dξξ f̂ , (4.3)

where we have used the concavity of�.D· indicates that the chain rule has not yet be
applied to the respective terms.

As |ukukν | is bounded on∂� we may fixM such that

Mδ0 � 2
∣∣ukukν∣∣∣∣∂�, (4.4)

where we useδ0 as introduced in Corollary 4.5.
Now we restrict our attention to the point where the maximum is attained. We

thereWi = 0, Wij � 0, Ẇ � 0 and�′ > 0, so we get

0� Ẇ −�′uijWij � ẇ

w
−�′ 1

w
uijwij +�′ 1

w2
uijwiwj

+ 2βuku̇k − 2β�′;u− 2β�′ukuijuijk − λβM�′ truij + cβM (4.5)

with λ > 0 as in Remark 4.3. We remark thatc also depends on�′. From (4.2) and (4.3
we get

ẇ−�′uijwij � u̇ξξ + aku̇k −�′uij uξξij −�′akuijukij + c · (1+ truij
)

� −�′uikujluijξ uklξ −�′Dξξ f̂ + c · (1+ ∣∣D2u
∣∣+ truij

)
. (4.6)
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We assume now thatW is large in its maximum, more preciselyc��′ λ
2 truij , combine

(4.5) and (4.6) and take (4.2) into account

0� −�′uikujluijξ uklξ −�′Dξξ f̂ +�′ 1

w
uijwiwj − 2βw�′ukDkf̂

− 2βw�′;u− λ

2
βMw�′ truij + c · (1+ ∣∣D2u

∣∣+ truij
)
. (4.7)

We consider the quantityuijwiwj separately and use Young’s inequality for 0< ε < 1
to be fixed later

uijwiwj = uij
(
uξξi +Dia

kuk +Dib+ akuki
)(
uξξj +Dja

lul +Djb+ alulj
)

≡ uij
(
uξξi +Bi + akuki

)(
uξξj +Bj + alulj

)
� (1+ ε)uijuξξiuξξj + 2

ε
uijBiBj + 2

ε
uij ukj a

kulia
l + uijBiBj + 2Bia

i + aiajuij

� (1+ ε)uijuξξiuξξj + c

ε

(
1+ ∣∣D2u

∣∣+ truij
)
. (4.8)

On the other hand we get in view ofWi = 0

uijwiwj � cβ2w2(1+ ∣∣D2u
∣∣+ truij

)
, (4.9)

wherec depends on the constantM fixed above.
We assume thatuξξ and the greatest eigenvalue ofuij at x0, uηη, are nearly as larg

asw, more precisely

0<
1

1+ ε
� uηη

w
� 1+ ε, (4.10)

and for later use

1� uξξ , 1 �
∣∣D2u

∣∣, 1

2

∣∣D2u
∣∣�w � 2

∣∣D2u
∣∣, (4.11)

so we get for 0< ε ! 1 in view of (4.8) and (4.9)

1

w
uijwiwj = (1− 3ε)

1

w
uijwiwj + 3ε

1

w
uijwiwj

� uηηuijuξξiuξξj + c

εw

(
1+ ∣∣D2u

∣∣+ truij
)+ cεβ2w

(
1+ ∣∣D2u

∣∣+ truij
)
. (4.12)

We calculate for−Dξξ f̂ − 2βwukDkf̂ in view ofWi = 0

−�′Dξξ f̂ − 2β�′wukDkf̂

� −�′f̂pkukξξ − 2β�′wukf̂pi uik + cβ
(
1+ ∣∣D2u

∣∣)+ c
(
1+ ∣∣D2u

∣∣2)
� cβ

(
1+ ∣∣D2u

∣∣)+ c
(
1+ ∣∣D2u

∣∣2),
where it is important to notice that the 2βŵfpiu

kuki-terms cancel. We plug this estima
and (4.12) in (4.7)
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0� −�′uikujluijξ uklξ +�′uηηuijuξξiuξξj − 2βw�′;u− λ

2
wβM�′ truij

+ c

εw

(
1+ ∣∣D2u

∣∣+ truij
)+ cεβ2w

(
1+ ∣∣D2u

∣∣+ truij
)

+ cβ
(
1+ ∣∣D2u

∣∣)+ c
(
1+ ∣∣D2u

∣∣2 + truij
)
.

The sum of the first two terms is known to be nonpositive, see, e.g., [14]. We c
ε= 1/β2, so we obtain

0� −2�′β
∣∣D2u

∣∣2 − λ

2

∣∣D2u
∣∣βM�′ truij

+ cβ2(∣∣D2u
∣∣+ truij

)+ c
∣∣D2u

∣∣ · (∣∣D2u
∣∣+ truij

)
. (4.13)

If we fix β sufficiently large, it is easy to see that|D2u|(x0, t0) has to be a priori bounde
by a constant. ✷
4.3. Remaining boundary estimates

The proof of the tangentialC2-estimates at the boundary can be carried out as in
There, however, the authors only mention that this estimate can be obtained sim
at the beginning of Section 3 there. So we repeat the argument for readers not f
with [14].

Before stating the lemma we wish to point out that it is in general not true thatξ0 is
a direction tangential to∂� whenW attains its maximum at(x0, ξ0, t0) ∈ ∂�× Sn−1 ×
(0, T ].

LEMMA 4.8. –The second derivatives of a solutionu of our flow equation(1.1) are
a priori bounded in�× [0, T ].

Proof. –In view of Lemmas 4.2 and 4.6 we may assume without loss of gene
thatW attains its maximum at a point(x, ξ, t) ∈ ∂�× Sn−1 × (0, T ) with ξ �= ν and
distinguish two cases.

(i) tangential: If ξ is tangential to∂�, we differentiate

νiui = ϕ(x,u)

with respect to tangential directions under the assumptions stated in the pr
Lemma 4.1 and get in view ofDω(x̂0)= 0

νiξξui + 2νiξuiξ + νiuiξξ + νiuinωξξ

= ϕξξ + ϕnωξξ + 2ϕzξuξ + ϕzzuξuξ + ϕzuξξ + ϕzunωξξ ,

so we obtain

uνξξ � −2νiξ uiξ + ϕzuξξ − c� ϕzuξξ − c (4.14)

as∂� is strictly convex. On the other hand the maximality ofW atx gives 0�Wν ,

0� uξξν − c+wβ
(
2uiuiν +M(ψ − u)ν

)
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and furthermore using (4.4) and Corollary 4.5

0� uξξν − c,

so we obtain in view of (4.14) andϕz � cϕ > 0 the desired estimateuξξ � c.
(ii) non-tangential: If ξ is neither tangential nor normal we need the tricky choic

w in [14]. We find 0< α < 1 and a tangential directionτ such that

ξ = ατ +
√

1− α2 ν.

We rewritew as

w(x, ξ)= uξξ − 2α
√

1− α2 τ i
(
ϕi + ϕzui − ukν

k
i

)= uξξ − 2α
√

1− α2uτν

in view of the differentiated Neumann boundary condition, so we see that

uξξ = α2uττ + (1− α2)uνν + 2α
√

1− α2uτν

= α2uττ + (1− α2)uνν −w(x, ξ)+ uξξ

and obtain in view of the maximality ofW and the fact thatW − logw is independen
of ξ andw(x, τ)= uττ , w(x, ν)= uνν

w(x, τ)�w(x, ξ),

w(x, ξ)= α2uττ + (1− α2)uνν = α2w(x, τ)+ (1− α2)w(x, ν)
� α2w(x, ξ)+ (1− α2)w(x, ν).

Thereforew(x, ξ)�w(x, ν) gives the upper bounduξξ � c proving the statement.✷
In the following sections we consider the second boundary value problem

Section 10 we will come back to Neumann boundary conditions. Sections 5 to
not be used for the proof of Theorem 1.1.

5. Legendre transformation and Hessian functions

We introduce some classes of Hessian functions similar to [8,15]. A slightly diffe
class of Hessian functions is considered in [17].

Let >+ ⊂ R
n be the open positive cone andF ∈ C∞(>+) ∩ C0(>+) a symmetric

function satisfying the condition

Fi = ∂F

∂λi
> 0;

then,F can also be viewed as a function defined on the space of symmetric, po
definite matricesSym+(n), for, let (uij ) ∈ Sym+(n) with eigenvaluesλi , 1� i � n, then
defineF on Sym+(n) by

F(uij )= F(λi).
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We haveF ∈ C∞(Sym+)∩C0(Sym+). If we define

F ij = ∂F

∂uij
,

then we get in an appropriate coordinate system

F ij ξiξj = ∂F

∂λi

∣∣ξ i ∣∣2 ∀ξ ∈ R
n,

andF ij is diagonal, ifuij is diagonal. We define furthermore

F ij,kl = ∂2F

∂uij ∂ukl
.

DEFINITION 5.1. – A Hessian functionF is said to be of the class(K), if

F ∈ C∞(>+)∩C0(>+
)
, (5.1)

F is symmetric, (5.2)

F is positive homogeneous of degreed0 > 0,

Fi = ∂F

∂λi
> 0 in >+, (5.3)

F |∂>+ = 0, (5.4)

and

F ij,klηij ηkl � F−1(F ij ηij
)2 −F ikũjlηij ηkl ∀η ∈ Sym,

where(ũij ) denotes the inverse of(uij ), or, equivalently, if we set̂F = logF ,

F̂ ij,klηij ηkl � −F̂ ikũj lηij ηkl ∀η ∈ Sym,

whereF is evaluated at(uij ).

If F satisfies

∃ε0 > 0: ε0F truji � F ij uiku
k
j

for any(uij ) ∈ Sym+, where the index is lifted by means of the Kronecker-delta, then
indicate this by using an additional star,F ∈ (K�).

The class of Hessian functionsF which fulfill, instead of the homogeneity conditio
the following weaker assumption

∃δ0 > 0: 0<
1

δ0
F �

∑
i

Fiλi � δ0F

is denoted by an additional tilde,F ∈ (K̃) or F ∈ (K̃�).
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A Hessian functionF which satisfies for anyε > 0

F(ε, . . . , ε,R)→ +∞, asR → +∞,

or equivalently

F(1, . . . ,1,R)→ +∞, asR → +∞,

in the homogeneous case, a condition similar to an assumption in [2], is said to be
class(CNS).

Example5.2. – We mention examples of Hessian functions of the class(K̃�) as given
in [8,15].

LetHk be thek-th elementary symmetric polynomials,

Hk(λi) :=
∑

1�i1<···<ik�n

λi1 · · ·λik , 1� k � n, (5.5)

σk := (Hk)
1/k

the respective Hessian functions homogeneous of degree 1 and define furthermo

σ̃k(λi) := 1

σk(λ
−1
i )

≡ (Sn,n−k)1/k.

The functionsSn,k belong to the class(K) for 1 � k � n− 1 andHn belongs to the clas
(K�).

Furthermore, see [8],

F :=Ha0
n ·

N∏
i=1

F
ai
(i), ai > 0, (5.6)

belongs to the class(K̃�) providedF(i) ∈ (K̃), and we may even allowF(i) �= 0 on∂>+.
An additional construction gives inhomogeneous examples [15]. LetF be as in (5.6)

η ∈ C∞(R�0) andcη > 0 such that

0<
1

cη
� η� cη, η′ � 0,

then

F̃ (λi) := F

(
exp

( λi∫
1

η(τ)

τ
dτ

))

belongs to the class(K̃�).

Important properties of the class(K̃�) for the a priori estimates of the seco
derivatives ofu at the boundary are stated in the following lemmata.

LEMMA 5.3. – LetF ∈ (K̃�), then for fixedε > 0

F(ε, . . . , ε,R)→ ∞ asR → ∞,
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i.e., (K̃�)⊂ (K̃)∩ (CNS), moreover, whenF ∈ (K̃)∩ (CNS), 0< 1
c
� F � c, and

0< λ1 � · · · � λn,

then the following three conditions are equivalent

λ1 → 0, λn → ∞, trF ij → ∞.

Proof. –We refer to [15]. ✷
For the dual functions we have a similar lemma.

LEMMA 5.4. – LetF ∈ (K̃�),

0< λ1 � · · · � λn,

and0< 1
c
� F � c. Then the following three conditions are equivalent

λ1 → 0, λn → ∞, trF ∗ij → ∞,

whereF ∗ is defined by

F ∗(λi)= 1

F(1/λi)
.

Proof. –We haveF1 � · · · � Fn > 0, see [9,17], so we get in view of the definiti
of F ∗

F ∗
i (λ1, . . . , λn)= Fi(1/λi)

F 2
· 1

λ2
i

.

Thus F ∗
1 → ∞ as λ1 → 0 gives the result andλn → ∞ forcesλ1 → 0 in view of

Lemma 5.3. To get trF ∗ij → ∞, λ has to leave any compact subset of>+. ✷
LEMMA 5.5. – LetF ∈ (K̃)∩ (CNS). ThenF ∗ as defined above satisfies(5.1)–(5.4)

andF ∗ ∈ (CNS). For F = (Sn,k)
1/(n−k), 1 � k � n− 1, and obviously, see Lemma5.3,

also forF ∈ (K̃)∩ (CNS) we have for anyε > 0∑
i

Fiλ
2
i �

(
c(ε)+ ε · |λ|) ·∑

i

Fi, (5.7)

provided0< 1
c
� F � c.

Proof. –See [17]. ✷
Instead of Lemma 5.4 we get the following weaker result forS∗

n,n−k .

LEMMA 5.6. – LetF = (Sn,n−k)∗ =Hk, 1 � k � n− 1, and assume0< 1
c

� F � c

and

0< λ1 � · · · � λn,
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then

F1 � · · · � Fn > 0.

Moreover, at least one of the following conditions is fulfilled

Fn � 1

c
> 0 (5.8)

or

trF ij → ∞.

Proof. –The first inequality and the casek = 1 are obviously true. If 0< 1
c

�
λn−k+1 � · · · � λn, thenFn � 1

c
> 0. If λn−k+1 → 0, thenλn → ∞ asλn−k+1 · · ·λn �

1
c
·Hk � 1

c
> 0, so

(Hk)1 � · · · � (Hk)n−k+1 � λn−k+2 · · ·λn = 1

λn−k+1
· λn−k+1 · · ·λn

� 1

λn−k+1
· 1

c
·Hk � 1

λn−k+1
· 1

c
→ ∞. ✷

By direct calculations we obtain the following

LEMMA 5.7. –If u is a strictly convexC2-solution of (1.9), then the Legendr
transform ofu, u∗ :�∗ × [0, T )→ R, defined by

u∗(y, t) := xiui(x, t)− u(x, t)≡ xiyi − u, yi = ui(x, t)

satisfies the evolution equation
u̇∗ = F̂ ∗(D2u∗)− logg∗(y, u∗,Du∗) in �∗ × [0, T ),
Du∗(�∗)=�,

u∗|t0 = u∗
0 in �∗,

whereu∗
0 is defined similarly asu∗,

F ∗(λi)= 1

F(1/λi)
,

and

g∗(y, z∗, q∗) := 1

g(q∗, yiq∗
i − z∗, y)

and the time derivative ofu∗ is taken withy fixed.

6. Strict obliqueness

LEMMA 6.1. – As long as a solution as in Theorem1.4 exists, our boundary
condition is strictly oblique, i.e.,〈

ν(x), ν∗(Du(x, t))〉> 0, x ∈ ∂�, (6.1)



1062 O.C. SCHNÜRER, K. SMOCZYK / Ann. I. H. Poincaré – AN 20 (2003) 1043–1073

s in
lique.

y
dition

ality
whereν andν∗ denote the inner unit normals of� and�∗, respectively.

Proof. –To prove (6.1) we use

νi(x) · ν∗
i

(
Du(x, t)

)= νi · hpi
(
Du(x, t)

)
.

As h(Du) is positive in� and vanishes on∂�, we get on∂� for τ orthogonal toν

hpkukτ = 0, hpkukν � 0. (6.2)

Thus we see from

hpkν
k = hpkukiu

ij νj = hpkukν · uνν � 0 (6.3)

that the quantity whose positivity we wish to show is at least nonnegative.
We compute in view of (6.2) and (6.3) on∂�

(
hpkν

k
)2 = uννhpkukνu

ννuνlhpl = uννhpkukiu
ij ujlhpl = uννuklhpkhpl ,

so we deduce the positivity of the quantity considered.✷
7. u̇- and C0-estimates

Remark7.1 (u̇-estimates). – The results of Section 2 hold also for the flow (1.9), a
both cases, the flow equation is parabolic and the boundary condition is strictly ob

If condition (1.12) is fulfilled, uniformC0-a priori estimates follow immediately b
integrating the estimate in Lemma 2.3, see also Lemma 3.2. In the case of con
(1.13), the positivity ofu̇, Lemma 2.4, gives a lower bound foru. So it remains to
establish an upper bound foru in the casėu� 0.

LEMMA 7.2. –A solutionu of our flow equation(1.9) is uniformly bounded.

Proof. –The concavity ofF̂ (·) gives the estimate

F̂
(
D2u

)
� F̂ ij (1, . . . ,1)(uij − δij )+ F̂ (1, . . . ,1)� c ·;u+ c.

For 0< t1 < t2 we integrate the flow equation and estimate in view of the inequ
above, the divergence theorem and|Du| � c (Du(�)=�∗)

t2∫
t1

∫
�

logg(x,u,Du)� c

t2∫
t1

∫
�

;u+ c(t2 − t1)−
∫
�

(
u|t2 − u|t1

)

� c

t2∫
t1

∫
∂�

|Du| + c(t2 − t1)−
∫
�

(
u|t2 − u|t1

)
� c(t2 − t1)−

∫ (
u|t2 − u|t1

)
. (7.1)
�
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The boundedness ofDu and the convexity of� yield the estimate∣∣u(x1, t)− u(x2, t)
∣∣� c�,�∗ ∀x1, x2 ∈� ∀t > 0. (7.2)

So we obtain from (7.1) for anyx ∈�

1

|�|
t2∫
t1

∫
�

logg(x,u,Du)� c+ c(t2 − t1)− u(x, t2)+ u(x, t1). (7.3)

Now we fixT > 0 and assume that

u(x0, T )= max
�×[0,T ]

u=:M >max
{

2max
�

u0,0
}
.

We chooset ∈ (0, T ) maximal such thatu(x0, t)= M
2 . From the monotonicity ofg and

(7.3) we get the estimate

M

2
= u(x0, T )− u(x0, t)

� c+ c · (T − t)− (T − t) · inf
x∈� inf

p∈�∗ logg
(
x,
M

2
− c�,�∗ ,p

)
and after rearranging

M/2− c

T − t
� c− inf

x∈� inf
p∈�∗ logg

(
x,
M

2
− c�,�∗ ,p

)
.

For M → ∞ the left-hand side of this inequality remains positive, whereas the r
hand side tends to−∞ in view of (1.11), soM is a priori bounded proving th
lemma. ✷

COROLLARY 7.3. –During the evolution,F̂ (D2u) is a priori bounded from abov
and from below.

Proof. –This follows from|Du| � c and from the flow equation. ✷
8. Strict obliqueness estimates

The following lemma establishes a uniform lower bound for the quantity w
positivity we proved in Lemma 6.1.

LEMMA 8.1. – During the evolution(1.9),we have the strict obliqueness estimat

〈
ν(x), ν∗(Du(x, t))〉� 1

c
> 0, x ∈ ∂�, (8.1)

whereν and ν∗ denote the inner unit normals of� and�∗, respectively. The positiv
lower bound is independent oft .
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Proof. –We assume that a solution of our flow equation exists for a time inte
(0, T ] and prove an estimate forhpkν

k during this time interval which is independe
of T . To establish a positive lower bound, we choose(x0, t0) ∈ ∂�× [0, T ] such that
hpkν

k is minimal there. As we have a positive lower bound forhpkν
k on ∂� × {0},

we may assume thatt0 > 0. Further on, we may assume thatν(x0) = en and extendν
smoothly to a tubular neighborhood of∂� such that in the matrix sense

Dkν
l ≡ νlk � − 1

c1
δlk (8.2)

there for a positive constantc1. For a positive constantA to be chosen we define

v = hpkν
k +Ah(Du).

The functionv|∂�×(0,T ] attains its minimum over∂�× (0, T ] in (x0, t0), so we deduce
there

0 = vr = hpnpkukr + hpkν
k
r +Ahpkukr , 1� r � n− 1, (8.3)

0 � v̇. (8.4)

We assume for a moment that there holds

vn(x0, t0)� −c(A), (8.5)

show that this estimate yields a positive lower bound foruklhpkhpl and prove (8.5
afterwards. Then the lemma follows from the calculations in the proof of Lemm
and from a positive lower bound foruνν .

We rewrite (8.5) as

hpnpluln + hpkν
k
n +Ahpkukn � −c(A).

Multiplying this with hpn and adding (8.3) multiplied withhpr we obtain at(x0, t0)

Auklhpkhpl � −c(A)hpn − hpkν
k
l hpl − hpkhpnplulk.

Using (6.2), the concavity ofh and (8.2), we obtain atx0

Auklhpkhpl � −c(A)hpn + 1

c1

as |∇h| = 1 on ∂�∗. We may assume that the right-hand side of the inequality a
is positive as otherwisehpn = hpkν

k is bounded from below. Thus we deduce a posi
lower bound foruklhpkhpl .

We now sketch the proof of (8.5). There is another slightly shorter proof of
inequality obtained by constructing a barrier in a tubular neighborhood of∂� avoiding
the term |x − x0|2 below, but we prefer the following proof as it uses only lo
properties of the involved quantities. As for a similar proof with more details we ref
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Lemma 4.2. Direct calculations using (1.9) give

Lv � F̂ ij uliujmν
khpkplpm +A · F̂ ij ukiuljhpkpl + c(A) · tr F̂ ij � c(A) · tr F̂ ij

for A sufficiently large and

Lw := −ẇ+ F̂ ijwij − ĝpiwi.

We wish to mention that this definition differs from the definition ofL in Lemma 4.2 by
a sign. As� is strictly convex, there existµ� 1 andε > 0 such that forϑ := d −µd2,
whered = dist(·, ∂�), we have near∂� in view of Lemma 5.3

Lϑ � −ε · tr F̂ ij . (8.6)

We considerϑ only in�δ :=�∩Bδ(x0), whereδ > 0 is chosen so small thatϑ is smooth
and nonnegative there and the above inequality holds. Asv is bounded and attains i
minimum over∂�× [0, T ] in (x0, t0) we findC � B � 1 and an affine linear functio
l with l(x0)= 0 such that the function

2 := C · ϑ +B · |x − x0|2 + v− v(x0, t0)+ l

satisfies {
2� 0 on

(
∂�δ × [0, T ])∪ (�δ × {0}),

L2� 0 in�δ × [0, T ].
Thus the maximum principle gives

(C · ϑ + v + l)n(x0, t0)� 0

as the functionC · ϑ +B · |x − x0|2 + v − v(x0, t0)+ l vanishes in(x0, t0). This shows
inequality (8.5).

Similar to the argument above we extendν∗ smoothly to a tubular neighborhood
∂�∗ such thatν∗k

i � −1
c
δki in the matrix sense and takeh∗ as a smooth strictly concav

function such that{h∗ = 0} = ∂� and|Dh∗| = 1 on∂�. We define

v∗ = h∗
qk
(Du∗)ν∗k +Ah∗(Du∗)

and a linear operator by

L∗w := −ẇ+ F̂ ∗ijwij − ĝ∗
qi
wi.

As before we obtain thatv∗|∂�×[0,T ] is positive. We fixT > 0 and assume thatv∗|∂�×[0,T ]
attains its minimum in(y0, t0). As we wish to establish a positive lower bound forv∗ we
may assume thatt0 > 0. By calculations as above – using Lemma 5.4 – we obta
(y0, t0) an inequality of the form

Au∗ h∗ h∗ � −c(A)h∗ ν∗k − ν∗lh∗ h∗ . (8.7)
kl qk ql qk k qk ql
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Sinceh∗
qk
ν∗k = 〈ν∗, ν〉, we may assume again that this quantity is small. The second

on the right-hand side is bounded below by a positive constant in view of the con
of �∗ and |Dh∗| = 1 on ∂�∗, so we deduceu∗

klh
∗
qk
h∗
ql

� 1
c
> 0. Usingu∗

kl = ukl and
h∗
qk

= νk we obtain a positive lower bound foruνν completing the strict obliquenes
estimate. ✷

9. C2-estimates

For convenience we use the notationhpk(Du)= βk . We state the following estimate
on ∂� obtained by differentiating the boundary condition

uτβ = 0, uνβ � 0, (9.1)

whereτ and ν denote a tangential vector and the inner unit normal, respectively
also (6.2). The estimates in this section are valid for anyε > 0 if ε is not fixed explicitly.
Thus multiplying a term of the formc(ε)+ ε ·M with a constant yields again a term
the formc(ε)+ ε ·M . We obtain the following

LEMMA 9.1. – A solution of our flow equation(1.9) in a time interval[0, T ] satisfies
for all ε > 0

uββ � c(ε)+ ε ·M in �, (9.2)

whereM := sup�×[0,T ] |D2u|.
Proof. –We setH = h(Du),

Lw := −ẇ+ F̂ ijwij − ĝpiwi

and compute the differential inequality

LH � −(c(ε)+ εM) · tr F̂ ij ,

where we have used Lemma 5.5 and the boundedness ofF̂ (D2u). Applying the
maximum principle as in Lemma 8.1 to the function−A · (c(ε)+ ε ·M) · ϑ − B · |x −
x0|2 +H + l with ϑ , l as in Lemma 8.1,A�B � 1 sufficiently large positive constan
andx0 ∈ ∂�, we obtain

uβν � c(ε)+ ε ·M on∂�. (9.3)

We remark thatε in (8.6) is fixed and is not related toε used here. In view ofuβτ = 0 on
∂� and the strict obliqueness estimate or by using the maximum principle as abo
β instead ofν, the claimed inequality follows. ✷

As to the interior second derivative estimates we recall from [10]

LEMMA 9.2. – For a solution of our flow equation in a time interval[0, T ] we have
the estimate

sup
�×[0,T ]

∣∣D2u
∣∣� c+ sup

∂�×[0,T ]

∣∣D2u
∣∣+ sup

�×{0}

∣∣D2u
∣∣.
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Proof. –Similar computations as in [10] in the elliptic case – under the assum
that

�× [0, T ] × Sn−1 % (x, t, ξ ) &→ γ · ∣∣Du(x, t)∣∣2 + loguξξ (x, t)

attains its maximum in�× (0, T ]×Sn−1 for γ sufficiently large – give the above boun
We remark, that we usedF ∈ (F̃ �) and not onlyF ∈ (K̃)∩ (CNS). ✷

Up to now we controluβτ (= 0), uββ and we have an interior estimate for the sec
derivatives ofu. In the following lemma we bound double tangential derivatives a
boundary. This completes theC2-a priori estimates.

LEMMA 9.3. –For a solution of our flow equation in a time interval[0, T ] the second
tangential derivatives at the boundary are a priori uniformly bounded.

Proof. –We may assume

sup
∂�×[0,T ]

sup
|τ |=1,〈τ,ν〉=0

uττ = u11(x0, t0), (9.4)

wherex0 ∈ ∂�, t0 ∈ (0, T ] and furthermore thatν = en is the inner unit normal a
x0 ∈ ∂�. At a boundary point we decompose any directionξ , i.e., a vectorξ ∈ R

n such
that |ξ | = 1,

ξ = τ(ξ)+ 〈ν, ξ 〉
〈β, ν〉β,

where

τ(ξ)= ξ − 〈ν, ξ 〉ν − 〈ν, ξ 〉
〈β, ν〉β

T , βT = β − 〈β, ν〉ν,
and obtain the estimate

∣∣τ(ξ)∣∣2 � 1+ c · 〈ν, ξ 〉2 − 2〈ν, ξ 〉〈β
T , ξ 〉

〈β, ν〉 . (9.5)

We setτ := τ(e1) and obtain on∂� in view of the estimates (9.1), (9.2), (9.4) and (9
above

u11 �
(

1+ c · 〈ν, e1〉2 − 2
〈ν, e1〉 · 〈βT , e1〉

〈β, ν〉
)

· u11(x0, t0)+ (c(ε)+ ε ·M)〈ν, e1〉2.

Before we proceed, we establish an estimate for the quantityM introduced in
Lemma 9.1. Lemma 9.2 gives

M � c+ sup
∂�×[0,T ]

∣∣D2u
∣∣, (9.6)

where the supremum also includes non-tangential directions. For a directionξ we obtain
in view of uβτ = 0 on ∂�, (9.4) and (9.2)

uξξ � uτ(ξ)τ (ξ) + c · uββ � c · u11(x0, t0)+ c(ε)+ ε ·M.
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Combining this inequality forε > 0 small enough with (9.6) we get

M � c · (1+ u11(x0, t0)
)
. (9.7)

We droppedε as it was fixed sufficiently small to get this inequality and will be fix
differently later-on.

We may assume in view of (9.7) for the rest of the proof thatu11(x0, t0)� 1 and for

w := u11

u11(x0, t0)
+ 2

〈ν, e1〉 · 〈βT , e1〉
〈β, ν〉

we obtain – by using (9.7) – the estimate

w � 1+ c(ε)|x′|2 on∂� nearx0,

wherex′ ≡ (x1, . . . , xn−1), and we get furthermorew � c(ε) everywhere on∂�. We
consider 2〈ν, e1〉 · 〈βT , e1〉/〈β, ν〉 as a known function depending on(x,Du), use the
flow equation, and obtain in� by direct calculation

−ẇ+ F̂ ijwij − ĝpiwi � −c · (c(ε)+ ε ·M)tr F̂ ij .

Thus the maximum principle gives with a barrier function as constructed above

u11β(x0, t0)�
(
c(ε)+ ε ·M)u11(x0, t0). (9.8)

Differentiating the boundary condition twice in the directione1 we obtain at(x0, t0)

hpkpluk1ul1 + uβ11 + uβnω11 = 0,

whereω is a function such that locally∂� is represented as graphω over its tangen
plane atx0. Combining this equality with (9.8) and (9.3), we obtain in the non-tri
caseu11(x0, t0)� c(∂�) which we will assume in the following(

c(ε)+ ε ·M) · u11(x0, t0)+ hpkpluk1ul1 � 0. (9.9)

Inequality (9.7) and the uniform concavity ofh yield

(
c(ε)+ ε · u11(x0, t0)

) · u11(x0, t0)� 1

c

(
u11(x0, t0)

)2
.

We now fixε > 0 sufficiently small and get a bound foru11(x0, t0). ✷
10. Proof of the main theorems

We return to the case of a Neumann boundary value problem.
From the uniformC2-estimates foru and the uniformC0-estimates foru̇ = � we

obtain thatu remains uniformly convex and we conclude that the flow operato
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uniformly parabolic and concave. So we can apply the results of Chapter 14 in
to obtain uniformC2,α-estimates foru, with a small positive constantα. Then standard
Schauder estimates [12] imply uniform bounds inCk , for all k � 0. It follows that a
smooth solution of (1.1) exists for allt � 0. We then need the following lemma.

LEMMA 10.1. – If a solution of the flow equation(1.1) exists for all t � 0 and
either (1.5) or (1.6) are satisfied, then the flow converges to a solution of the Neum
problem, i.e.,

lim
t→∞u(x, t)=: u∞(x)

exists and {
u∞
ν = ϕ

(
x,u∞) on∂�,

detu∞
ij = f

(
x,u∞,Du∞) in �.

Moreover,u(t, ·)→ u∞ smoothly. If(1.5) holds, then the convergence is exponenti
fast in anyCk-norm,k � 0.

Proof. –First, we assume that (1.6) is fulfilled. We may assumeu̇(0, ·) �≡ 0 and
proceed as in [8]. Integrating the flow equation gives

u(t, x)− u(0, x)=
t∫

0

�.

The left-hand side is uniformly bounded in view of theC0-estimates. As log detuij − f̂

is nonnegative we findtk = tk(x)→ ∞ such that(
log det

(
D2u

)− f̂ (x, u,Du)
)∣∣
t=tk → 0. (10.1)

On the other hand,u(x, ·) is monotone, so limt→∞ u(x, t)=: u∞(x) exists and is smoot
in view of our a priori estimates. Dini’s theorem and interpolation inequalities of the

‖Dũ‖ � c‖ũ‖ · (∥∥D2ũ
∥∥+ ‖Dũ‖),

for ũ= u− u∞, where‖ · ‖ denotes the sup-norm, yield smooth convergenceu→ u∞.
Thus we conclude in view of (10.1) thatu∞ is a smooth solution of the stationa
problem (1.8).

In case (1.5) we use the a priori bounds for allCk-norms anḋu→ 0, see Lemma 2.3
to get smooth convergence tou∞(x). Again by Lemma 2.3 we conclude∥∥u− u∞∥∥< c0 e−λ0t

for constantsλ0 > 0, c0 > 0. Then we apply interpolation inequalities as above
ũ= u− u∞ and derive ∥∥u− u∞∥∥

k
< ck e−λkt

for any k � 0 and positive constantsλk, ck . Clearly, u∞ is a smooth solution of th
stationary problem (1.8). ✷
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Remark10.2. – By an iteration method applied to the interpolation inequality one
even show (Lemma C.2) thatλk can be chosen independent ofk.

Proof of Theorems1.1 and 1.4. –The a priori estimates obtained so far guaran
longtime existence for solutions of our flow equations, so the statement of Theore
follows from Lemma 10.1 and the claim of Theorem 1.4 follows from a sim
lemma. ✷

Appendix A. Oblique boundary value problems

A.1. Flows solving the oblique boundary value problem for Hessian equations

We get the following theorem for Hessian flow equations.

THEOREM A.1. – Let � ⊂ R
n be a smooth uniformly strictly convex domain,f a

positive smooth function defined on�× R × R
n with fz � 0, let ϕ be a smooth functio

defined on�× R with ϕz > 0 in ∂�× R and

ϕ(x, z)→ σ∞, z→ σ∞, σ ∈ {−1,1},
uniformly inx. LetF ∈ (K̃�) andβ a smooth vectorfield on∂� that isC1-close to the
inner unit normalν as described in[18]. Then the initial value problem for the parabol
boundary value problem{

u̇= logF
(
D2u

)− logf (x,u,Du) in �,

uβ = ϕ(x,u) on∂�

has a unique smooth strictly convex solutionu andu converges smoothly to a solutio
of the Neumann boundary value problem{

F
(
D2u

)= f (x,u,Du) in �,

uβ = ϕ(x,u) on∂�

if we start with a smooth strictly convex subsolutionu0 = u|t=0, i.e.,{
0� F

(
D2u0

)− f (x,u0,Du0) in �,

(u0)β = ϕ(x,u0) on∂�

and assume compatibility conditions fort = 0 as in our main theorem.

Proof. –We sketch the proof which can be obtained by combining the proofs of
and of the corresponding Neumann boundary value problem above. TheC0-estimates
follow from the maximum principle,C1-estimates are stated in [14]. The crucial pr
of the C2-estimates is obtained as a combination of the proof above and the
of [18], where the inequality for geometric and arithmetic means has to be avoid
in [15]. Instead we use Lemma 5.3. Higher regularity follows by standard theory
the considerations above give smooth convergence to a solution of the oblique bo
value problem for Hessian equations.✷
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RemarkA.2. – A similar result can be obtained in the case that (1.5) is fulfi
instead of 0� F(D2u0)− f (x,u0,Du0).

Again it is possible to modify the flow equation by introducing� as above.
It is also possible to obtain the existence proof for the elliptic oblique boun

value problem stated in Theorem A.1 by elliptic methods [18] as well as forβ = ν

by modifying the proof of [14].

A.2. Nonconvex domains

If � fails to be convex, then all the steps above work perfectly – providedϕz �
c(∂�) > 0 is sufficiently large – besides the a priori estimates foruνν that seem to be ou
of reach at the moment.

Appendix B. Hessian quotient equations

Proof of Theorem1.5. –We confine ourselves to the most important differen
compared to the proof of Theorem 1.4.

Inequality (8.6) can be obtained by takingϑ as a strictly concave function th
vanishes on∂�, becausêgpi ≡ 0. Lemma 5.6 is needed to obtain (8.7). The origi
functionϑ can be used here. Lemma 9.1 follows by using Lemma 5.5. Finally, to o
Lemma 9.2, we have to use a positive lower bound for trF ij . This bound follows from
the concavity ofF̂ or from Lemma 5.6. Here it suffices to maximize

w := loguξξ + λ · |x|2

for λ� 1. ✷
Appendix C. Miscellaneous results

LEMMA C.1. – Let� :R2 → R be a smooth concave function such that�1 > 0 or
�2 < 0 and�(x, x) = 0 ∀x. Then there exists� :R → R with �′ > 0, �′′ � 0 such
that

�(x, y)=�(x − y).

Proof. –The monotonicity of� implies that� > 0 in {x > y}, so the concavity
of �|{x−y=c}, c > 0, gives that�|{x−y=c} is constant. We fixα > 0 and conside
{(x, y): �(x, y)= −α}. Our claim follows immediately if we show that{� = −α} is a
straight line. We consider only the case�1 > 0. As�|{x�y} is constant along{x−y = c}
we see that�1(x, x) =: β > 0 is independent ofx. Due to the concavity of� we get
thus

�(x − λ, x)��(x, x)−�1(x, x)λ= −βλ ∀x
and deduce that there existsc > 0 such that

{� = −α} ⊂ {−c < x − y < 0}.
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Using again the concavity of� we see that{� = −α} is a convex curve that can b
represented as a graph over{x = 0} due to�1 > 0. Such a curve in a strip as mention
above, however, has to be a straight line.✷

LEMMA C.2. – Letu :�× [0,∞)→ R be a smooth function such that∥∥Dlu
∥∥2
�

� Cl

for constantsCl independent oft . If there exist positive constantsc, λ̃ such that

‖u‖2
�

� ce−λ̃t ,

then for any0< λ< λ̃ we can find positive constantscl such that∥∥Dlu
∥∥2
�

� cl e
−λt .

Proof. –Without loss of generality we assumeλ̃= 1. We use interpolation inequalitie
of the form ∥∥Dv∥∥2 � c‖v‖ · (∥∥D2v

∥∥+ ‖Dv‖)
inductively. This induction gives the following sequence forl, k ∈ N

al,k :=


1, l = 0,

0, k = 0, l > 0,
al−1,k−1 + al+1,k−1

2
, l > 0, k > 0,

whereal,k are exponents such that∥∥Dlv
∥∥� Cl,k e−al,k t

for positive constantsCl,k. Herek is the induction variable. We will prove thatal,k → 1
ask → ∞. We have 0� al,k � 1, al,k � al+1,k, andal,k � al,k+1 for all l, k � 0. Let
al := limk→∞ al,k and observe thatal = (al−1 + al+1)/2 for l � 1, so we deduce

am+l = am − l · (am − am+1).

As 1� al � 0, we see thatal = 1 for all l. ✷
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