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ABSTRACT. - A general notion of G-convergence for sequences of
maximal monotone operators of the form Du)) is intro-
duced in terms of the asymptotic behavior, as h -> + oo, of the solutions
u~, to the equations and of their momenta ah (x, DUh). The main
results of the paper are the local character of the G-convergence and the
G-compactness of some classes of nonlinear monotone operators.
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RESUME. - On présente une notion générale de G-convergence pour
des operateurs maximaux monotones sous forme divergence. On démontre
le caractere local de la G-convergence et de la G-compacite pour certaines
classes d’operateurs de ce type.
Mots clés : G-convergence, operateurs monotones, equations elliptiques non lineaires.

INTRODUCTION

The aim of this paper is to study a general notion of G-convergence
for nonlinear monotone operators d : H5’ P (S2) -~ H -1 ~ q (Q) of the form
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where Q is a bounded open subset of Rn, 1 p  + oo, and 1 /p + 1 /q =1.
We assume that the (possibly multivalued) map a: Q x Rn -4 Rn which
occurs in (0.1) is measurable on Qx Rn, is maximal monotone on R" for
almost every x E SZ, and satisfies suitable coerciveness and boundedness
conditions (see Section 2). The class of all these maps will be denoted by
Mn (Rn).
The main examples of maps of the class Mn (Rn) have the form

where ~03BE denotes the subdifferential with respect to ç and
Q x R" -~ [0, + oo[ is measurable in (x, ~), convex in §, and satisfies the

inequalities

for suitable constants 0  c 1 _ c2 . In this case the operator (0.1) is the
subdifferential of the functional

and the notion of G-convergence of the operators (0.1) can be studied in
connection with the notion of r-convergence of the corresponding
functionals (0.3) (see [1], [17], [3]).

Let us return to the general case of maps of the class M~ (R") for which
the representation (0.2) is not always possible. Let (ah) be a sequence in
Mn and let a E M~ (R"). To introduce the notion of G-convergence in
Mn we begin with the simpler case where ah and a are single-valued
and strictly monotone on R". We then say that (ah) G-converges to a if,
for and for every sequence ( f h) converging to f strongly
in H -1 ~ q (S~), the solutions u,~ of the equations

satisfy the following conditions:

where u is the solution of the equation

If we drop the hypothesis that ah and a are single-valued and strictly
monotone, then the definition of G-convergence is more delicate, due to
the non-uniqueness of the solutions of the equations (0.4) and (o . 5).
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In the general case we say that (ah) G-convergences to a if for every
increasing sequence of integers 1; (h), for for every
sequence ( fn) converging to f strongly in H -1 ° q (SZ), for every sequence

of solutions of the equations

and for every sequence (gh) in (Lq (S2))n with

there exists an increasing sequence of integers « (h) such that

and

where u is a solution of the equation

and

Let us emphasize that the notion of G-convergence in Mn (R") is inde-
pendent of the particular boundary condition chosen in the definition, in
the sense that, given we can replace by c~ + P (S2)
in (0 . 4), (0. 5), (0. 6), (0. 7) without changing the G-convergent sequences
and their limits.
The main result of this paper is the compactness of the class Mn (R") with

respect to G-convergence. Moreover we prove the following localization
property: if (ah) G-converges to a, (bh) G-converges to b, and

ah (x, . ) = bh (x, . ) for almost every x in an open subset Q’ of Q, then
a (x, . ) = b (x, . ) for almost every xeQB

Finally we determine some subsets of Mn (R") which are closed under
G-convergence. This allows us to prove in a unified way the compactness,
with respect to G-convergence, of all general classes of linear or nonlinear
operators of the form (0 .1 ) which have been considered in the literature.
The notion of G-convergence for second order linear elliptic operators

was studied by E. De Giorgi and S. Spagnolo in the symmetric case (see
[24], [25], [26], [12]), and then extended to the non-symmetric case by
F. Murat and L. Tartar under the name of H-convergence (see [27], [28],
and [18]). We refer to [5] and [23] for the related problem of the homoge-
nization of elliptic equations and to [30] for the extension of the notion
of G-convergence to higher order linear elliptic operators.
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The properties of the G-convergence for quasilinear elliptic operators
were studied by L. Boccardo, Th. Gallouet, and F. Murat in [7], [8],
and [6].
The first results in the nonlinear case (0 .1 ), with p = 2, are due to

F. Murat and L. Tartar, who studied (in [20]) the properties of the

G-convergence in a suitable class of monotone operators of the form
(0.1), assuming that the maps a are uniformly Lipschitz continuous and
uniformly strictly monotone on Rn. The corresponding homogenization
results were studied by L. Tartar in [27] and H. Attouch in [2].
A similar theory of G-convergence for more general classes of uniformly

equicontinuous strictly monotone operators was developed by
U. E. Raitum in the case 2 _ p ~ +00 (see [22]). For the corresponding
homogenization results we refer to [13] and [14].
We remark that, in order to include the case (0.2), we do not assume

the maps of our class Mn (R") to be continuous or strictly monotone on
Rn, and this requires a deep change in the proof of the compactness of
Mn under G-convergence. While all proofs in the quoted papers are
based essentially on a density argument, which is made possible by the
continuity of the operators j~ or of the inverse operators ~ -1, our
proof relies on a theorem by F. Hiai and H. Umegaki concerning the
representation of every closed decomposable subset of LP as the set of all
measurable selections of a suitable multivalued map (see [15]).

1. MULTIVALUED FUNCTIONS

In this section we fix the notation and recall some results concerning
multivalued functions and their measurability. Furthermore, we summarize
the main theorems for multivalued monotone operators on Banach spaces
which will be applied in this paper.

If x, y are elements of a set X, by [x, y] we denote the ordered pair
formed by x and y, whereas (x, y) denotes the scalar product of x and y,
provided X is a Hilbert space.

MULTIVALUED FUNCTIONS. - Let X and Y be two sets. A multivalued

function F from X to Y is a map that associates with any x E X a subset
F x of Y. The subsets F x are called the images or values of F. The sets

are called the domain of F and the graph of F, respectively. The range of
F is, by definition, the set
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If for every XEX the set F x contains exactly one element of Y, we say
that F is single-valued.

In general, we shall identify every multivalued function F with its graph
in X x Y. The inverse F -1 of the multivalued map F from X to Y is the
multivalued function from Y to X defined by if and only if

y E F x; in other words, F - i is the multivalued function, whose graph is
symmetric to the graph of F.

MEASURABLE MULTIVALUED FUNCTIONS. - Let (X, ~% ) be a measurable
space, and let F : X -~ R" be a multivalued function from the space X to
the family of non-empty subsets of the space Rn. For every BRn the
inverse image of B under F is denoted by

We shall consider the following measurability conditions:
(1.1) for each Borel set B c Rn, F -1 
( 1. 2) for each closed set C c Rn, F -1 (C) 
( 1. 3) for each open set De Rn, F -1 (U) 
(1.4) there exists a sequence (ah) of measurable selections such that

for each x (a selection of F is a map a:XRn
such that a (x) E F x for every x);
(1 . 5) G (F) (R"), where ~ (Rn) is the a-field of all Borel subsets
of Rn.

We say that a multivalued function F : X -4 R" is measurable [with
respect to J and B (R")] if ( 1. 2) is verified. Let us state a theorem which
links this definition of measurability of a multivalued function F to the
other conditions on F listed above.

THEOREM 1.1. - Let (X, ~% ) be a measurable space. Let F : X --~ R" be a
multivalued function with non-empty closed values. Then the following condi-
tions hold:

(i) ( 1.1 ) ~ ( 1. 2) ~ ( 1. 3) ~ ( 1. 4) ~ ( 1. 5);
(ii) If there exists a complete 03C3-finite measure  defined on J, then all

conditions ( 1. 1 )-( 1. 5) are equivalent.
The proof of the above theorem can be found in [ 11 ], Chapter III,

Section 2. A useful tool for problems of this type is given by the projection
theorem below (see [ 11 ], Theorem III . 23).

THEOREM 1.2. - Let (X, ~% , ~,) be a measurable space, where ~ is a

complete 03C3-finite measure defined on J. If G belongs to (Rn), then
the projection prx G belongs to ~% .

The next theorem states the equivalence between conditions ( 1. 2) and
( 1. 5) for certain multivalued functions even if the measure space is not
complete.

Vol. 7, n° 3-1990.
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THEOREM 1.3. - Let (X, ~ , ~,) be a measurable space, where ~, is a

complete 03C3-finite measure defined on J Let F : X ~ Rn x Rm be a multiva-
lued function with non-empty closed values. Let H : X x R" --~ Rm be the
multivalued function defined by

Then the following conditions are equivalent:
(i) F is measurable with respect to J and B(Rn)~B (R"‘);
(ii) G (F) E (R") Q ~ (R"‘);
(iii) H is measurable with respect to and r ‘ (Rm);
(iv) 

Proof. - By Theorem 1.1 (ii) we have that (i) ~ (ii). Moreover,
Theorem 1.1 (i) guarantees that (iii) ~ (iv). Since G (F) = G (H), we obtain
easily that (ii)=>(iv). To conclude the proof of the theorem we shall
show that (ii) ~ (iii). To this aim it is enough to prove that (ii) yields

for every compact subset C of R"‘. Let us fix a

compact set CRm. By taking (1.6) into account we have that

Let B denote the set of all XEX such that is non-empty.
By (ii) and the projection Theorem 1.2 it follows that If 03A6 is the
multivalued function from X to R" x R"‘ defined by 03A6 x = F x n (R" x C),
then D (~) = B and (1 . 7) becomes

Since G (c~) = G (F) n (~ x Rn x C) (Rn) Q ~ (Rm), by Theorem 1.1
there exists a sequence gJ of measurable functions from B to Rn x Rm
such that

for every XE B. By taking (1. 9) into account let us define the set

We shall prove that M = H -1 (C). The inclusion H-1(C)M follows
easily from (1.8), (1.9), and (1.10). To prove that M ~ H ~ 1 (C), let us

fix [x, ~] E M. By definition there exists a subsequence ~h~) of (cph) such
that (cp~ ~h~ (x)) converges to ç. Moreover, the corresponding sequence
(ga (h) (x)) belongs to the compact set C. Hence, by passing, if necessary,
to a subsequence we may assume that (gJ ~h~ (x)) converges to some r~ E Rm.
By (1 . 9) we have [~, hence [x, ~] E H -1 (C), which concludes the
nroof of the eaualitv M = H -1 fC). Since
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we have that and the proof of the theorem is

accomplished..

Finally, let us give a more general theorem for the existence of a
measurable selection of a multivalued function due to Aumann and von
Neumann (see [II], Theorem III.22).

THEOREM 1.4. - Let (X, ~ ) be a measurable space and let F be a
multivalued function from X to Rn with non-empty values. If the graph G (F)
belongs to and there exists a complete 03C3-finite measure defined
on ~ , then F has a measurable selection.

MAXIMAL MONOTONE OPERATORS. - Our present aim is to remind the
definition and some basic properties of multivalued maximal monotone
operators in Banach spaces.

Let X be a Banach space and let X* be its topological dual. By (,) we
denote the duality pairing between X* and X.

DEFINITION 1.5. - A subset A ~ X x X* is called monotone (resp. strictly
monotone) if

for any [x2, y2] E A.

DEFINITION 1.6. - A monotone subset A  X x X* is called maximal
monotone if it is not properly contained in any other monotone subset of
X x X*, i. e. for every [x, y] eX x X* such that

it follows that [x, y] EA.
We say that a multivalued operator F : X -~ X* is monotone (resp.

maximal monotone) if its graph is a monotone (resp. maximal monotone)
subset of X x X*.

REMARK 1.7. - Since the monotonicity is invariant under transposition
of the domain and the range of a map, F is (maximal) monotone if and
only if F -1 has this property.

Let us note that if F is a (multivalued) maximal monotone operator on
X, then for any x E D (F) the image F x is a closed convex subset of X*
(see, for example, [21], Chapter III.2).

Before giving the statement of the next theorem, which will be heavily
applied in Sections 2 and 5, we recall the definition of the concept of
upper-semicontinuous multivalued operator.

DEFINITION 1.8. - Let S 1 and S2 be two topological spaces, and let F
be a multivalued function of Sl into S2. Then F is said to be upper-
semicontinuous if for every so E S 1 and for every open neighborhood V of
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F so in S2 there exists a neighborhood U of so in Si 1 such that F for

every s E U.

The following result provides a useful criterion for maximal monotoni-
city (see [10], Theorem (3.18)).

THEOREM 1.9. - Let X be a Banach space and let X * be its dual. Let F
be a multivalued monotone operator of X into X *. Suppose that for each x
in X, F x is a non-empty weak* closed convex subset of X * and that for
each line segment in X, F is an upper-semicontinuous multivalued operator
from the line segment to X *, with X * given its weak* topology. Then F is
maximal monotone.

Finally, we state a surjectivity result for a class of multivalued monotone
operators which is of crucial importance in the proof of our theorems in
Sections 2 and 4.

THEOREM 1.10. - Let X be a reflexive Banach space and let X * be its
dual. Let F be a multivalued maximal monotone operator from X to X *. If
F is coercive, then R (F) = X*.

We remind that the (multivalued) operator F : X -~ X* is called coercive
if

The proof of Theorem 1.10 can be found in [21], Chapter III,
Theorem 2.10.

2. MULTIVALUED MONOTONE OPERATORS
IN SOBOLEV SPACES

In this section we study a class of multivalued monotone operators on
Sobolev spaces of the type - div (a (x, Du)).
Throughout the paper we denote by p a fixed real number, 1 p  + oo,

and by q its dual exponent, Moreover we fix a bounded

open subset Q of Rn, two non-negative functions ml, m2 (Q) and two
constants c 1 > 0, c2 > 0. By L (SZ) we denote the a-field of all Lebesgue
measurable subsets of Q, and by B (R") the o-field of all Borel subsets of
Rn. The Euclidean norm and the scalar product in R" are denoted by ] . ]
and ( . , . .), respectively.

DEFINITION 2.1. - By Mn (Rn) we denote the class of all multivalued
functions a : Q x R" -~ Rn with closed values which satisfy the following
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conditions:

(i) for a. e. x E n the multivalued function a (x, . ) : Rn --~ Rn is maximal
monotone;

(ii) a is measurable with respect to ~ (SZ) Q ~ (Rn) and PJ (Rn), i. e.

for every closed set 

(iii) the estimates

hold for a. e. for every 03BE~Rn, and 03BE).

REMARK 2.2. - Conditions (2.1) and (2.2) imply that there exist two
functions m.~ E Lq (Q), ma (Q) and two constants c~ > 0, c~ > 0 such that

for a. e. xeQ, for every 03BE~Rn, and 03BE). Conversely, if a satisfies
(2.3) and (2.4), then (2.1) and (2.2) hold for suitable ml, m2, cl, c2.

REMARK 2.3. - For a. e. x~03A9 and for every 03BE~Rn the set a (x, ç) is
closed and convex in Rn by (i) (see, for instance, [21], Section III.2.3).
Moreover, (ii) and Theorem 1.1 (i) imply that the graph of a belongs to
~ (Rn). By (2.3), for a. e. x E SZ the maximal monotone

operator a (x, . ) is locally bounded, hence a-1 (x, . ) is surjective
(see [21], III.4.2). This implies that a (x, ~) ~ QS for and for every
ç E Rn.

Given a E Mn (Rn), and we consider the
Dirichlet boundary value problem

where 
’

To study the solutions of (2. 5), and in particular their dependence on
f and a, we shall give some equivalent formulations of this problem which
are used in the sequel.

DEFINITION 2.4. - Let By [resp. M(H1,P)] we
denote the class of all multivalued operators A : H~ ~ p (SZ) -~ 
[resp. A : (SZ) ~ (Lq (SZ))"] satisfying the following conditions:

(i) [resp. H1,p(03A9)] and gi~Aui, i =1, 2, then
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(ii) the estimates

hold for every [resp. uEH1,P(Q)] and g E A u.
[resp. ~ (H 1 ~ p)] we denote the class of all multivalued

operators ~ : H~ ~ p (S2) -~ H -1 ~ q (SZ) [resp. ~ : H 1 ~ p (SZ) -~ H -1 ~ q (S2)] of the
form

with [resp. 

REMARK 2.5. - In the case (p=0 the operators of the class ~~ P)
are monotone according to Definition 1.5 in consequence of (i). If
~ E ~ P) is maximal monotone, then D (~) = Ho~ P (S2). Indeed ~ is
locally bounded by (2 . 6), hence ~-1 is surjective (see [21], III.4.2).

DEFINITION 2.6. - Let To every aEMn(Rn) we associate
the operators defined by

Their restrictions to H~ P (SZ) belong to M (H~ P) and ~~ (H~ ~ P) and will
be denoted by A~ and respectively.
By taking these definitions into account, problem (2.5) becomes then

equivalent to the following one: find such
that

or equivalently, find and such that

Let us denote by I the (single-valued) monotone operator from LP (Q)
to Lq (SZ) defined by I u = u ~p- 2 u. The next theorem is more than needed
for solving problem (2. 9) in the case cp = 0, but it is used in its generality
in Section 6.

THEOREM 2 . 7. - Let ~° be the operator in ~~ P) associated to a
function a E M~ (Rn) in the case cp = 0 (Definition 2. 6). Then

(i) ~° is maximal monotone ;
(it) every ~, ->_ o.
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Proof - Let us start with the proof of (i). To this aim we show that
the operator ~° satisfies the assumptions of Theorem 1. 9.

(a) For every we have To prove this assertion
let us fix u E Ho~ P (Q). By Remark 2 . 3 the set a (x, Du (x)) is non-empty, .
closed, and convex in R" for a. e. Therefore, by taking Theorem 1.1
into account we conclude that there exists a measurable R"
such that g(x) ea(x, Du (x)) for a. è. x~03A9. Finally, the estimate (2.3) .

yields g E (Lq (Q))", which concludes the proof of (a). _

(b) For every is a convex subset of H -1 ~ q (S~). This
follows easily from the fact that a (x, Du (x)) is a convex subset of R" for
a. e. x E n (Remark 2. 3).

(c) For every is a weakly closed subset of 
and the multivalued operator ~° is upper-semicontinuous from the strong
topology of Ho~ P (S~) to the weak topology of H -1 ~ q (S2). By the bounded-
ness condition (2. 3), to prove this assertion it is enough to show that, if

converges to u strongly in Ho~ P (SZ), ( fh) converges to f weakly in
H -1 ~ q (SZ), and for every h E N, then Under these
assumptions on f;,, f, uh, u, the boundedness condition (2. 3) guarantees
the existence of a sequence of functions gh E (L9 (SZ))" and of a function
g E (Lq (SZ))" such that (up to a subsequence) (gh) converges to g weakly in
(L~ (Q))", gh (x) E a (x, Duh (x)) for a. e. x e Q, - div gh = f~, and - div g = f
Therefore, it remains to verify that g (x) E a (x, Du (x)) for a. e. If
we show that the set

has Lebesgue measure zero, then the maximal monotonicity of a yields
g(x)Ea(x, Du(x)) a. e. on Q, which concludes the proof of (c). To prove
that I M = 0, let us write where

By Remark 2. 3 the graph of G belongs to J~ (Q) (R") (1t"), thus
by the projection Theorem 1. 2. By the Aumann-von Neumann

Theorem 1.4 there exists a measurable selection [~, r~] of G defined on
M. Therefore and

Ior every x E M. un the other hand, the monotonicity assumption on a
implies that

tor every hEN. If I M > o, there exists a measurable subset M’ of M with
( M’ ~ > 0 such that [~ (x), ~ (x)] is bounded on M’. By integrating (2 . 12)
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on M’ and by passing to the limit as h - + oo, we obtain

which contradicts (2 .11 ) being Therefore we have to conclude

that I M = 0. This proves (c) and completes the proof of (i).
Proof of (ii). By (i) we have that ~° is maximal monotone. Since

D (~°) = D (I) = Ho~ P (SZ), and I is maximal monotone on Ho° P (SZ), the
operator ~° + ~, I is maximal monotone for every ~, >__ 0 (see [21], III. 3. 6).
By (2 . 2) it is also coercive and therefore by
Theorem 1.10.

REMARK 2. 8. - Problem (2. 9) has a solution for every 
Indeed, let us define the multivalued function a~ (x, ~) = a (x, ~ + Dcp (x))
which still belongs to the class Mn (Rn). If ~~ denotes the operator in
J( (H5’ P) associated to the function a~ by Definition 2. 6, it follows easily
that for every Since by Theorem 2 . 7 (ii)
we have that R (~~) = H -1 ~ q (SZ), our assertion follows immediately.

Finally, the following result is a useful tool to check the maximality of
certain monotone operators on H5’ P (Q).
LEMMA 2.9. - Let .91 be a (multivalued) monotone operator from

into H -1 ~ q (SZ), let ~, > 0, and let I be the (single-valued) function
from LP (Q) to Lq(n) defined by 
then maximal monotone.

Proo. f : - Let ~ : Ho° p (SZ) -~ H -1 ° q (S2) be a (multivalued) monotone
operator such that j~ ~= ~. The proof will be accomplished if we show
that B d. Let f~B u. It is clear that

On the other hand, since there exists 
such that f+ Then the assumption ~ ~ ~ implies

By taking (2.13) and (2.14) into account, the strict monotonicity of the
operator B+03BBI yields v = u a. e. on Q. Thus, or

equivalently, fEd u, which concludes the proof of the lemma.

3. G-CONVERGENCE OF MONOTONE OPERATORS

In this section we introduce a notion of convergence in the class of
multivalued functions Mn (R") which permits a satisfactory analysis of the
perturbations of Dirichlet problems of the form (2. 5).
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The convergence considered here is defined in terms of a general concept
of set-convergence named Kuratowski convergence (see [16], Section 29)
which can be formulated in abstract terms in an arbitrary topological
space (X, t) as follows.

DEFINITION 3.1. - Let (Eh) be a sequence of subsets of X. We define
the sequential lower limit and the sequential upper limit of by

and

Then, we say that the sequence (Eh) Kseq (03C4)-converges to a set E in X if

and in this case we write Kseq (i)- lim Eh = E.

REMARK 3 . 2. - From the definitions above it follows immediately that

Therefore (Eh) Kseq (t)-converges to E if and only if

REMARK 3 . 3. - It is easy to prove that

if and only if every subsequence (EQ (h») of (Eh) has a further subsequence
~T ~h~~) such that

This notion of set-convergence has been particularized to obtain the
graph-convergence of sequences of maximal monotone operators on
reflexive Banach spaces (see [3], Definition 3. 58), which is useful for handl-
ing convergence problems for the stationary and evolution equations
associated to such operators.
To study perturbations of Dirichlet problems of the form (2.5) we

introduce here a stronger notion of convergence.
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We denote by w the weak topology on H 1 ~ p (SZ). If a1 denotes the weak
topology of and a2 the topology on (Lq (~))" induced by the
pseudo-metric we denote by a the
weakest topology on which is stronger than a1 and a2. In other
words, converges to g in a if and only if (gh) converges to g weakly
in (LR and ( - div gh) converges to - div g strongly in H -1 ~ q (SZ).
The connection between w and’ a is explained by the following lemma,

which will be frequently used in the sequel. -

LEMMA 3 . 4. - Let be a sequence converging to u weakly in ° p (SZ),
and let (gh) be a sequence in (Lq (SZ))" converging to g in the topology a.
Thpn

for every tp E Co (SZ).

Proof. - The lemma is a simple case of compensated compactness
(see [19], [29]). It can be proved by observing that

for every 03C6~C~0(03A9). []

Having in mind the usual identification of a multivalued map with its
graph we give the following definition.

DEFINITION 3 . 5. - We say that a sequence (ah) in Mn (Rn) G-converges
to if

where A~ and A° are the operators in M (H6’ P) associated to ah and a by
Definition 2. 6 in the case cp = 0.

REMARK 3 . 6. - The condition Kseq (w x sup A° in the

above definition determines uniquely the G-limit a, as we shall prove in
Corollary 5.9.

REMARK 3.7. - Using Remarks 3.2 and 3. 3 it is easy to prove that
the G-convergence satisfies the following axioms:

(i) axiom of the constant sequences: if ah = a for every h E N, then (ah)
G-converges to a ;

(ii) axiom of the subsequences: if (ah) G-converges to a, and (aa (h») is a
subsequence of (ah), then (aa (h») G-converges to a ;
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In the sequel we enunciate some results regarding the G-convergence
on the class Mn and make some comments connecting these results
to our investigation on convergence of solutions to sequences of Dirichlet
problems of type (2. 5). We shall prove the following Theorem in Section 6.

THEOREM 3 . 8. - Let let (ah) be a sequence in Mn (Rn) and
let Then the following conditions are equivalent:

(i) (ah) G-converges to a,
(ii) Kseq (w x a)-lim sup A,

(ii) (w x a)-lim sup 

where Ah, A are the operators in M P) associated to an and a by
Definition 2 . 6 and Ah, are the corresponding operators in M (H1,03C6 P).

REMARK 3.9. - It follows immediately from the boundedness hypo-
thesis (2. 6) that the inclusion

is equivalent to the following condition: if a (h) is a sequence of integers,
( fh) is a sequence in H -1 ~ q (SZ), and is a sequence of local solutions in

(Q) of the equations

with

then u is a solution to the equation

and for every sequence (gh) in (Lq with

there exists a subsequence (g~ ~~~) such that

and

REMARK 3.10. - The inclusion
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is equivalent to the following condition: for every increasing sequence of
integers,; (h), for every f E H -1 ° q (SZ), for every sequence ( fh) converging
to f strongly in H -1 ° q (SZ), for every sequence of solutions of the
equations

and for every sequence (gh) in (Lq with

there exists an increasing sequence of integers a (h) -~ +00 such that

and

where u is a solution of the equation

and

In fact, assume (3.5) and suppose uh, gh satisfy the above
assumptions. By the coerciveness condition (2.7) the sequence (uh) is
bounded in and therefore (gh) is bounded in (Lq by the
growth condition (2 . 6). Thus, there exists a subsequence ~h~, ga ~h~] of

gh] which converges to [u, g] weakly in (Q) x (Lq This implies
that converges to - div g weakly in H -1 ~ q (SZ), hence f = - div g.
Therefore [ur ~h~, ga (h)] converges to [u, g] in the topology w x a and the
assumption (3. 5) implies g E A cP u, hence (3. 7). This yields that u is a
solution of (3 . 6), being f = - div g.
The converse implication is trivial.
The following result, which will be proved in Section 6, shows the

relationship between our definition of G-convergence and that one consi-
dered by Ambrosetti and Sbordone in [1].

Let us denote by p the strong topology in H -1 ~ q (SZ).
THEOREM 3 . 11. - Let Let (ah) be a sequence in 

which G-converges to a E M~ (Rn). Then
(i) Kseq (w x p)- lim z/~ = a/,

(ii) (w x p)- lim ~h = ~~,

where j~~, ~ are the operators in ~l P) associated to ah and a by
Definition 2 . 6 and ~h, ~~ are the corresponding operators in ~l (H~ ~ P).
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REMARK 3.12. - The condition

can be expressed in terms of convergence of solutions of differential

equations. More precisely, (3.8) holds if and only if both the following
conditions (a) and (b) are satisfied:

(a) if ( fh) converges to f strongly in H -1 ~ q (SZ), (Uh) converges to u
weakly in and uh satisfies the equation

for infinitely many h E N, then u is a solution to

(b) and u is a solution to (3.10), then there exist ( fh)
coverging to f strongly in H ~ 1 ~ q (SZ) and converging to u weakly in

such that uh satisfies the equation (3 . 9) for every h E N.

REMARK 3.13. - Conditions (i) and (ii) in Theorem 3.11 do not imply
that (ah) G-converges to a. The reason lies in the fact that a is not uniquely
determined by the associated operator j~ as the following example shows.
Assume n = 3, and let (p e C~ (Q). Let us define

and

where x denotes the external product in R3. It is easy to see that a and b
belongs to the class Mn (R~) with p = 2, ml = m2 = 0, cl = (1 + max 12),
and c2 = 1. ~

Since

it follows that

This implies that the operators in ~ (H 1 ~ 2) associated to a and b

according to Definition 2. 6 coincide.
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4. A COMPACTNESS THEOREM

The main purpose of this section is to prove the following compactness
result for the G-convergence on the class of multivalued functions Mn (Rn).

THEOREM 4. 1. - Let be a sequence in M~ (Rn). Then there exists a
subsequence (aa ~h~) of which G-converges to a function a of the class

Without any difficulty Theorem 4.1 comes out from the next two
theorems and from the definition of G-convergence.

THEOREM 4 . 2. - Let be a sequence in Mn (Rn), and let (Ah ) be the
sequence of operators in M P) associated to (a h) by Definition 2 . 6. Then
there exist a subsequence (A° ~h~) of and an operator
B E M P) such that

Moreover 

THEOREM 4. 3. - Let B E M P) with D Co (SZ). Then there
exists a unique function a E M~ (Rn) such that B ~ A°, where A° denotes
the operator in M P) associated to a by Definition 2. 6.

The proofs of these theorems are quite technical and will be divided in
several steps. We devote this section to the proof of Theorem 4. 2, whereas
Theorem 4. 3 will be proved in the next section.
The following proposition is the first step of the proof of Theorem 4. 2.

PROPOSITION 4 . 4. - Let (Bh) be a sequence of operators of the class
M P). Then there exists a subsequence (Ba ~h~) which (w x 
ges to an operator B E M P) .

Proof. - On every separable reflexive Banach space X there exists a
metric d such that for every sequence (xh) in X the following conditions
are equivalent:

(4 . 2) (Xh) is norm-bounded in X and x) --~ 0.

By Tj~ we denote the topology induced by a metric on Ho~ P (SZ) which
satisfies (4 . 1 ) and (4 . 2). By i2 we denote the topology on (Lq (Q))" induced
by the metric

where d is a metric on (Lq which satisfies (4 . 1) and (4 . 2).
Since i 1 has a countable base, by the Kuratowski compactness

theorem (see [16], Section 29, Theorem VIII) there exists a subsequence of
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(Bh), still denoted by (Bh), which  03C42)-converges to a set

B C ~O~ P (~) >( (SZ))".
By Remark 3 . 2, to prove that (Bh) Kseq (w x a)-converges to B, it is

enough to show that ,

and

Let us verify (4 . 3). Let [u, g] E (w x a)-lim sup Bh. Then, there exist
h - co

a (h) - +00 and gJ converging to [u, g] in the topology w x a such
that [Uh’ E Ba ~h~ for every hEN. By (4 .1 ) and (4 . 2) we get immediately
that gh] converges to [u, g] in 03C41 x i2 and we conclude that [u, g] E B.

Let us prove (4 . 4). Let [u, g] E B. Then there exists a sequence gn]
which converges to [u, g] in 03C41 03C42 such that gh] E Bh for h large enough.
Since (div gh) is bounded in H -1 ~ q (SZ), condition (2 . 7) implies that is

bounded in hence (gh) is bounded in (Lq (SZ))" by (2 . 6). Then
the equivalence between (4 .1 ) and (4 . 2) yields that (uh) converges to u
weakly in and (gh) converges to g weakly in (Lq (~))". Since

(- div gh) converges to - div g strongly in H -1 ~ q (SZ), we conclude that
converges to [u, g] in the topology w x ~, which implies (4 . 4).

Finally, let us prove that the operator B belongs to the class M P).
We verify here only condition (i) of Definition 2. 4. The boundedness and
coerciveness conditions (2.6) and (2.7) can be proved in the same way.
Let us fix Ui E H5’ P (Q) and gt E B ui, i =1,2. By (4 . 4) there exists a sequence

g;,] converging to gi] in the topology w x a in the topology w x a
such that [u, gh] E B,, for h large enough. Since Bh E M P), we have

~ aa

for every cp E Co (Q), cp >_ 0 on Q. By Lemma 3 . 4 it follows that

for every cp E C~ (Q), cp ~ 0 on Q. This implies that

hence B satisfies condition (i) of Definition 2 . 4..

The second step to achieve the proof of Theorem 4.2 is based on the
next proposition.
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PROPOSITION 4. 5. - Let be a sequence of operators in M and
be the corresponding sequence in ~~ according to (2. 8). Assume

that

Then

where B is the operator of the class associated to B e M (H1,p0)
according to (2.8) and p denotes the strong topology 

Proof - The inclusion is trivial. To prove
h - co

the inclusion let us fix
h - co

By (3.2) there exist a(/!)-~+oo, and a
h - co

sequence fh] converging to [u, f] in w x p such that ~,] e ~ ~) for
every A e N. By Definition 2.6 this implies that there exists ~ ~ M~
such that - div ~ =yj,. By (2.6) we have

for a suitable constant c, which implies that the sequence (gh) is bounded
in (Lq (S2))n. Thus there exists a subsequence (gT ~h~) converging weakly in
(Lq (Q))" to a function g, which yields that ( - div g-r ~~~) converges to - div g
weakly in H -1 ~ q (SZ). Since, by assumption, converges to f strongly in
H -1 ~ q (Q), we conclude that f= - div g. Therefore, ~n~, gT ~h~] converges
to [u, g] in the topology wx a and [uT ~h~, gz ~h>] E Ba ~~ Thus [u, g] E Band

We are now able to prove Theorem 4. 2.

PROOF OF THEOREM 4. 2. - By Proposition 4 . 4 there exist a subsequence
(At ~h~) of and an operator B belonging to M P) such that

Let us prove that D (B) = Ho° p (SZ). Since the K-convergence is stable with
respect to continuous perturbations, Proposition 4. 5 together with (4. 5)
implies that for every ~, >_ 0, we have

where ~ is the operator in ~ P) associated to B according to (2 . 8).
Let us prove that R (~ + ~, I) = H -1 ~ ~ (SZ). Let f E H -1 ° q (S2). By
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Theorem 2. 7 (ii), for every h E N there exists uh E Ho° P (Q) such that

By (2. 7) the sequence is bounded in Ho~ P (SZ), thus it contains a

subsequence which converges to a function u weakly in Ho~ P (S2). By (4 . 6)
we have

which gives 
By Lemma 2 . 9 the operator ~, hence is maximal monotone. By

(2 . 6) the operator PJ - 1 is coercive on H -1 ° q (Q). Therefore Theorem 1.10
implies that which is equivalent to 
This yields D (B) = (Q) and concludes the proof of the theorem..

5. A REPRESENTATION THEOREM

The main goal of this section is the proof of the following theorem,
which contains Theorem 4. 3 of Section 4.

THEOREM 5.1. - Let B E M with D (B) ~ C~ (Q). Then there exists
a unique multivalued function a E M~ (Rn) such that B ~ A, where A denotes
the operator in M (HI, P) associated to a by Definition 2.6.
The following representation theorem for maximal monotone operators

in the class ~l p) is an easy consequence of Theorem 5 .1 and
Remark 2.5.

THEOREM 5 . 2. - Any maximal monotone operator in ~l P) is asso-
ciated to a function a E M03A9 (Rn) according to Definition 2. 6.

Before starting with the proof of Theorem 5 .1 we shall introduce some
notions and results related to measurable multivalued functions.

By ff we denote the family of all measurable multivalued functions
F : Q - R" x R" with non-empty closed values, and for every F e ~ we
indicate by ~F~ q the set of all (LP (S2))n x (Lq (Q))"-selections of F, i. e.

Then the following results hold (see, for instance, [15], Lemma 1.1 and
Corollary 1.2).

LEMMA 5. 3 (Castaign representation). - Let If ~F~ q is non-

empty, then there exists a sequence of functions belonging to ~F° q such
that F x = (x) : for all x E S2.

LEMMA 5 . 4. - Let F 1, If then F1x=F2x
a. e. on S2. 

~ 
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Let M be a set of single-valued measurable functions f : Q - R" x R".
We call M decomposable [with respect to ~ (Q)], if fl, f2 E M and U (S~)
imply where 1 U and indicate the characteristic
functions of U and of QBU, respectively. The following theorem gives a
characterization of the closed decomposable subsets of (LP (S2)}" x (Lq (SZ)}’~
(for the proof see [15], Theorem 3 .1 ).

THEOREM 5.5. - Let M be a non-empty closed subset of
(LP (~2)}~’ x (Lq Then=- M is decomposable if and only if there exists

PROOF OF THEOREM 5 .1. - Let E be the subset of x (Lq 
defined by

Then, E is non-empty and satisfies the following monotonicity condition:

Moreover for every g] E E we have

Let dec E be the smallest decomposable set containing E. It is easy to
prove that g] E dec E if and only if there exists a finite Borel partition

E I of SZ and a finite family gi])i E I of elements of E such that
g] = [cp~, g~] a. e. on Therefore, dec E is non-empty and (5 . 2), (5 . 3),

(5 . 4) hold with E replaced by dec E.
Besides dec E, let us consider also the set

defined as the closure of dec E in with 
endowed with its strong topology and (Lq (S2))" endowed with its weak

topology. The next proposition, whose proof will be given later, summa-
rizes the main properties of E.

PROPOSITION 5. 6. - Let E be the set defined by (5. 5). Then the following
properties hold:

(a) for every [~p, g] E E there exists a sequence gh] E dec E such that
(cph) converges to cp strongly in (LP and (gh) converges to g weakly in
(Lq (~))n~ 

_

(b) E is decomposable and (5 . 2), (5 . 3), (5 . 4) hold with E replaced by E;
(c) E is maximal monotone.

PROOF oF THEOREM 5.1 (Continuation). - Since E is a non-empty,
closed, and decomposable subset of (LP (SZ))" x (Lq (SZ))", by Theorem 5. 5
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there exists a measurable multivalued function F : SZ -~ Rn x Rn with non-

empty closed values such that

Let us define the multivalued function a : Q x Rn  Rn by

We shall prove in Lemma 5. 7 that a belongs to the class Mn (Rn). By
(5.1), (5 . 6), and (5 . 7) we have B ~ A, where A denotes the operator in

associated to a by Definition 2 . 6. The uniqueness of a will be
proved in Proposition 5 . 8 ..

PROOF oF PROPOSITION 5 . 6. - Let us start with (a). Let 
and let be the ball in (LP (S~))" with center cpo and radius 1. Since

(5 . 3) holds for dec E, there exists a constant R=R(ci, mi, (po) such that,
if g]EdecE and then where ~R denotes the ball in
(Lq (S~))" with center 0 and radius R. We may also assume that go 
Therefore,

(5 . 8) dec E n (~ x n R) = dec En (~ x ~) ~ QS
for every neighborhood ~ of go in the weak topology of (Lq (n))n and for
every neighborhood % of cpo in the strong topology of (LP (S2))n such that
~lC ~ ~lC 1.

Since the weak topology is metrizable on ~R, there exists a countable
base for the neighborhood system of go in ~R endowed with the
weak topology of (Lq (Q))". We may also assume that ’~’h + 1 ~ for every
h E N. Let us denote by the ball in with center cpo and radius

I/h. By (5 . 8) the sets dec E n x are non-empty, thus for every
h E N we may pick up gh]EdecE such that and This

yields that (cph) converges to cpo strongly in (LP (SZ))" and (gh) converges
to go weakly in (Lq (Q))", concluding the proof of (a).
By applying (a), we obtain easily property (b) of E from the analogous

property of dec E.

Finally, let us prove (c). To this aim we apply Theorem 1.9 to E. We
prove first that for every cp E (LP (S~))", the set E is non-empty. In the
case cp E (LP (SZ))", cp piecewise constant and with compact support on Q,
the proof follows easily from the assumption D (B) =5 C~ (SZ) and the
definition of dec E. The general case can be obtained by approximation
of cp E (LP (Q))" in the strong topology of (LP with functions (cph) of
the previous type. In fact, from above it follows that there exists

such that Then, the estimate (5 . 3) for E [proved
in (b)] implies that (gh) is bounded in (Lq By passing, if necessary,
to a subsequence, (gh) converges to function g in the weak topology of
(Lq (S2))" and g lies in E (cp); the first assumption of Theorem 1. 9 is so
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guaranteed. It is clear that for every cp E (LP (S2))" the set E is decompo-
sable and weakly closed in (Lq (~))". Let us prove that E is convex.
Fix gl, and te (0, 1). There exists a sequence (Uh) of subsets
of n such that 1 ( Uh --~ t and 1 ( ~~Uh --~ (1- t) in the weak* topology of
L~(Q). Since is decomposable we have 1|Uhg1 + E E (cp).
Since E((p) is weakly closed in (Lq (SZ))", taking the limit as h - + oo, we
obtain tgl + (1- t) g2 E E (cp), which proves that E is convex. Finally,
let us prove that E is upper semi-continuous from with the

strong topology, into (L~ (SZ))", with the weak topology. Fix cp E (LP (S2))",
and let be an open neighborhood of E((p) in the weak topology of
(Lq (S2))". We claim that for every sequence (cph) converging to cp strongly
in there exists k E N such that E (cpn) ~ ~Y~’ for every h >_ k. Assume
the contrary. Then there exists a subsequence (h») of (cpn) and a sequence
(gh) such that gh E E (h)) and gh~ V for every hEN. By the estimate
(5.3) for E [proved in (b)] the sequence is bounded in (Lq (Q))n, thus
there exists a subsequence, (g, ~~~) of (gh) which converges weakly in (Lq (Q))"
to a function g. Since [cp~ ~~ ~h~~, for every h E N we have 
hence But the last fact requires that for h large enough,
which contradicts our assumption. This implies that E is upper-semiconti-
nuous and concludes the proof of (c)..

LEMMA 5 . 7. - The function a defined by (5 . 7) belongs to M03A9

Proof of Lemma 5. 7. - The measurability of a follows immediately
from the measurability of F and from Theorem 1. 3. Moreover, the pro-
perty (5.2) for E and the Castaign representation of F (Lemma 5.3)
imply that F x is monotone for a. e. x E SZ. We come now to the maximal
monotonicity of a. By (5.7) it is enough to show that the set M defined
by

has Lebesgue measure zero. To this aim let us write M = { x EQ : ~ x ~ QS ~,
where

Since and E = ~F° q ~ QS, by Lemma 5. 3 there exists a sequence
ghl E (LP (Q))n x ~~))n such that

Since gh are measurable and F is measurable, it follows easily that the
graph of 4Y belongs to ~° (Q) Q ~‘ (Rn) Q ~ (Rn), thus M E ~ (Q) by the
projection Theorem 1.2. By the Aumann-von Neumann Theorem 1.4
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there exists a measurable selection go] of C defined on M. Therefore,
for every x~M we have

and

If M ~ > o, there exists a measurable subset M’ of M with M’ ( > 0 such
that (x), go (x)] is bounded on M’. Given we define the

functions

and

Then [cp, g] E (Lp (SZ))" x (Lq (SZ))". By (5 .10) and by property (S . 2) of E
we have that

for every g] E E. Since E is maximal monotone ’ [Proposition 5 . 6 (c)],
the above inequality yields [cp, g] E E,or equivalently, g(x)] E F x a. e.
on Q. But this implies that for a. e. xEM’, which
contradicts (5 . 9) being M’ ~ > o. Therefore, we have to conclude that the
set M has Lebesgue measure zero, which guarantees that a (x, . ) is max-
imal monotone for a. e. x E n. To conclude that a E Mn (Rn) it remains to
verify that a satisfies (2 .1 ) and (2. 2), but this is an easy consequence of
Lemma 5.3 and of properties (5.3) and (5.4) for E [Proposition 5.6
(b)] . N

The following proposition will be crucial in the proof of the localization
property considered in the next section.

PROPOSITION 5 . 8. - Let with 
Let a and b be two functions of the class and

let A and B be the corresponding operators of the class M P). If C ~ A
andCB, then a (x, 03BE)=b(x, 03BE) for a. e. x~03A9 and for every 03BE~Rn.

Proof. - It is enough to prove the proposition when B)/=0, since the
general case can be obtained easily by translation (Remark 2. 8).

Let E be the subset of (LP x (Lq (SZ))" defined as in (5 .1 ) with B
replaced by C and let
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It is clear that C ~ A implies EEa. Since Ea is decomposable we have
dec E ~ Ea. Since Ea is maximal monotone (see [9], Example 2. 3 . 3), it is

sequentially closed in (LP x (Lq with (LP endowed with its

strong topology and (Lq (0))" endowed with its weak topology. Therefore,
hence by the maximal monotonicity of E [Proposition

5 . 6 (c)].
Analogously, we obtain therefore Lemma 5.4 implies that

a (x, ~) = ~ (Jc, ç) for and for 

The following corollary proves the uniqueness of the G-limit.

COROLLARY 5 . 9. - Let let (ah) be a sequence of functions
of the class Mn (R"), and let

where Ah are the operators in M(H~~ P) associated to an by Definition 2.6.
Let a and b be two functions of the class Mn and let and B~ be the

corresponding operators of the class M (H~ ~ P). If C ~ and C ~ then

a (x, 03BE)=b(x, 03BE) for a. e. x~03A9 and for every 03BE~Rn.

Proof. - It is enough to prove the corollary when (p==0, since the

general case can be obtained easily by translation (Remark 2. 8).
Assume that and Since we have immedi-

ately and by Theorem 4 . 2 we get The
conclusion follows now from Proposition 5 . 8..

6. LOCALIZATION AND BOUNDARY CONDITIONS

In the first part of this section we prove the local character of the
G-convergence in the class In the second part we study the
convergence of solutions to non-homogeneous Dirichlet problems of the
form (2. 5).

Let Q’ be an open subset of Q. Besides the topologies w and cr on
and (Lq (SZ))" introduced in Section 3, we consider the topologies

w’ and a’ defined analogously on and (Lq (SZ’))". For every
a E Mn (Rn) we denote by a’ the function of Mn, (Rn) defined by

Then the following localization property holds.

THEOREM 6 . 1. - Let be a sequence in Mn which G-converges
to a in Mn (R"). Then G-converges to a’ in M~. 

This theorem is an easy consequence of the next result.
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THEOREM 6 . 2. - Let be a sequence in Mn which G-converges
to a E Mn (R"). Then

where Ah and A’ are the operators in M (H 1 P (Q’)) associated to ah and a’
by Definition 2. 6.

Proof. - By Remark 3.3 it is enough to show that for every subse-
quence (aQ ~h~) of (ah) there exists a further subsequence (a(J ~T ~h~~) such that

By the definition of G-convergence and by Theorem 4. 2 for every
subsequence (h») of (ah) there exists a further subsequence ~h~~) such
that

where ~h~~ and A° are the operators of M 
P (SZ)) associated to

aa tT ~h~~ and a by Definition 2. 6. This implies that

Indeed, let (Q’) and let u~C~0 (SZ) such that u |03A9’=u’. Since

(Theorem 4 . 2), there exists such that

[u, g] E C. Thus, there exists a sequence gh] converging to [u, g] in the
topology w x a such that gh] E At (or ~h~~ for every hEN. It is clear that
[uh ~~., ~.] converges to [u ~., g ~.] in the topology w’ x a’; therefore
[u’, E (w’ x a’)-lim inf A~ (or ~h~~, which proves (6 . 5).

h - 00

Proceeding as in proof of Proposition 4.4 we can also show that

(w’ x a’)-lim inf A~ (or ~h~~) E M P (Q’)). Therefore, by Theorem 5 .1
h -~ oo

there exists b’ E Mn, (R") such that

where B’ denotes the operator of M P (Q’)) associated to b’ by Defini-
tion 2 . 6. We define C’ _ ~ [u ~ [u, g] E C}. It is clear that

and being By (6 . 4)
we have

Moreover, without any difficulty it can be shown that
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’

By taking (6 . 7) and (6 . 8) into account, Proposition 5.8 guarantees that
a’ = b’. Therefore A’ = B’ and (6 . 6) implies (6 . 3). N

The following corollary is an easy consequence of Theorem 6. 2.

COROLLARY 6 . 3. - Let (ah) and be sequences in which

G-converge to a and b, respectively. If ah = bh, then a’ = b’.
Let be a family of open subsets of S2 such that S2BU S2‘ ( = o.

tel i

For every we denote by ai the restriction of a to S2‘ x Rn. The
next corollary follows immediately from the compactness Theorem 4.1
and Corollary 6. 3.

COROLLARY 6.4. - A sequence in G-converges to

if and only if G-converges to al in M~i (Rn) for every i E I.
We now prove the results stated in Section 3 regarding the convergence

of solutions to non-homogeneous Dirichlet problems.
Proof of Theorem 3. 8. - (i) ~ (ii). It follows from Theorem 6. 2 with

(ii) ~ (iii). - Let [u, g] E (w x a)-lim sup Ah. By (3 . 2) there exist a
h - co

sequence of integers 6 (h) -~ + oo, and a sequence gh] converging to
[u, g] in the topology w x a such that gh] E A~ ~h~ ~ Aa ~h~ for every hEN,
hence [u, by (ii). Since clearly u - cp E Ho~ P (Q), we have [u, g] E 
which gives (iii).

(iii) ~ (i). The compactness Theorem 4 .1 implies that for every subse-
quence ~h~) of (ah) there exist a further subsequence ~T ~h~~) of (aa ~h~)
and a function such that ~~ ~h~~) G-converges to b. Since (i)
implies (iii), we get

where B4p is the operator of M (H~ ~ p) associated to b.
On the other hand, by assumpation we have

By Corollary 5. 9 we deduce that a (x, 03BE)=b(x, ç) for a. e. x~03A9 and for
every The proof can now be completed by using the Urysohn axiom
(Remark 3 . 7) ..
We conclude this section by giving the proof of Theorem 3.11.

Proof of Theorem 3 . 1l. - Let us prove (ii). To this aim we show first
that the G-convergence of the sequence (ah) to the function a in Ma (Rn)
implies that
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By the definition of G-convergence and by Theorem 4.2 for every
subsequence (aa ~,,~) of (an) there exists a further subsequence (h») such
that

By Proposition 4. 5 this implies that

Since R (~a ~T ~h~> + ~, I) = H -1 ° q (SZ) for every ~, >__ 0 [Theorem 2 . 7 (ii)], it
follows that R + ~, I) = H -1 ~ q (Q) (see the proof of Theorem 4 . 2), hence
~ is maximal monotone (Lemma 2. 9). Therefore, by the monotonicity of
~° the inclusion (6.12) implies that

and (6.11) follows from the Urysohn property of the K-convergence.
To prove (ii) in the general case for every we

consider the operator A~ of the class M P) defined by

and the operator ~° of associated to A~ by (2 . 8). By
Theorem 3 . 8 the G-convergence of the sequence (ah) to the function a in
Mn (R") can be expressed by

which implies that

Since (Ah)°, A~ are operators of M P), the inclusion (6 .13) implies, as
already seen, that

which gives immediately (ii).
Proof of (i). By Theorem 3 . 8 the G-convergence of (ah) to a in Ma (R")

implies that

Arguing as in the proof of Proposition 4. 5 we obtain
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By (ii) it follows that

for every cp E H -1 ~ q (Q), which yields (i).. 

~ ~’

7. SOME G-CLOSED CLASSES OF OPERATORS

In this section we consider some subsets of Mn (R"), which are closed
under G-convergence. These classes are obtained by imposing to the

operator a some additional conditions of uniform equicontinuity or strict
monotonicity.

DEFINITION 7 .1. - Given a non-negative function mE L 1 (n) and two
constants a and c, with 0  a _ (p/2) A (p -1 ) and c>0, we denote by
U = U (a, c, m) the class of all operators a E Mn (Rn) such that

and

for a. e. x E n, for every 03BE1, 03BE2 E R" and ~1 E a (x, 03BE1), ~2 E a (x, 03BE2), where
~ - ~ (x, ~1, ~2, ~11, ’~ 2) denotes the left hand side of (7.1).

DEFINITION 7. 2. - Given a non-negative function mE L 1 (n) and two
constants ~3 and c, with and c>0, we denote by
S = S (P, c, m) the class of all operators a E Ma (R") such that

and

for a. e. x~03A9, for every 03BE1, 03BE2~Rn and ~1~a(x, 03BE1), ~2~a(x, 03BE2), where
~ - ~ (x, ~~, ~2, ~12) denotes the left hand side of (7 .1).

REMARK 7 . 3 . - Conditions (2.1) and (2 . 2) imply that there exists a
non-negative function mE L 1 (n) such that (7 .1 ) holds for every

aEMn(Rn).
Moreover, by (7 . 2) every function a of the class U is single-valued.

REMARK 7 . 4. - By using the estimates (2 . 1 ) and (2. 2) it is easy to
see that, if 0 _ a’ __ a _ (p/2) n (p -1 ), then U(a.,c,m)  U (a’, c’, m’) for
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suitable c’ and m’. In the same way it can be proved that, if
then S ( ~i’, c’, m’) for suitable c’ and m’.

The model example of operator of the classes U and S is given by

Indeed, if 0  b (x)  b2  + oo for every x E Q, then

for suitable c’, c", m’ and m".

Before proving that the classes U and S are closed under G-convergence
we compare them with some other classes of monotone operators which
are not closed, but are defined in a simpler way.

DEFINITION 7. 5. - Given a non-negative function m E LP (Q) and two
constants a and c, with 0 _ a --1 n (p -1 ) and c>0, we denote by
U* = U* (a, c, m) the class of all single-valued operators a E Mn (Rn) such
that

for a. e. x~03A9 and for every 03BE1, ç2ERn.

DEFINITION 7 . 6. - Given a non-negative function m E LP (SZ) and two
constants ~3 and c, with and c>0, we denote by
S* = S* (P, c, m) the class of all operators a E Mn (Rn) such that

for a. e. for every and r~ 1 E a (x, ~1), r~2 E a (x, ~2).

REMARK 7. 7. - From (2. 3) we obtain that

for suitable c’ and m’. Conversely, given c’, c", m’, and m", from (2.4) it
follows that

for suitable c and m. Moreover, given c and m, we have

for suitable c’, c", m’, and m".
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In particular, if 2 p  + oo, (7 . 6) and (7 . 7) imply

Finally, it 1 p _ 2, (7 . 6) and (7 . 7) yield
/~1~B TT/ w t t_n_ ~ ~ - .

The following lemma is crucial in the proof of the closedness of the
classes U and S.

LEMMA 7. 8. - Let y and 03B4 be two non-negative constants with y + b  1.
Let ~, ~, 6 be functions in L 1 (SZ) and let (~h), (~h), be sequences in
L1 (Q) converging to ~, ~, 8 in the weak sense of distributions. Suppose that
~n>_0, 6h>__o, and
/’7 1 A 1 I ~ I ~ i v w,. ~ ~ W .

rrooJ. - Let E =1- y - d. By (7 .14), for every cp E Co (S~), cp >_ 0 we
have

, / /~ B ". / /~ v

Since (p) converges to in the weak sense of distributions we obtain
r y

Therefore, by taking the limit in (7.16) as h - + oo we get

for every (SZ), By standard approximation argument we
obtain (7 . 17) for every cp E L°° (S2), cp >__ o. In particular, we have
,. _ _

for every x~03A9 and p >__ 0 small enough and this implies (7 15) by the
Lebesgue derivation theorem.

THEOREM 7 . 9. - The classes U and S are closed under G-convergence.
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Proof. - Let us fix a, c, and m as in Definition 7.1. Let (ah) be a
sequence in U (r:t, c, m) which G-converges to a function a E M~ (R’~). We
have to prove that By hypothesis we have

where A~ and A° are the operators of M P) associated to by
Definition 2 . 6. By Theorem 4. 2 there exists a subsequence of (ah), still
denoted by (a~), such that

As in the proof of Theorem 5 .1 we introduce the set E defined by

and we denote by dec E the smallest decomposable subset of

(LP (Q))" x (Lq (Q))" containing E. Moreover, we consider the set

defined as the closure of dec E in x with 
endowed with its strong topology and (Lq (SZ))" endowed with its weak

topology. As in the proof of Proposition 5.8 it follows that

We are now in a position to prove (7.1) and (7.2). This will be done
in three steps.

a. e. on Q, where

a. e. on i2, where

STEP 3. - The inequalities (7 .1 ) and (7. 2) hold for a. e. for

every ~ 1, ç2ERn and ’~ 2 E a (x, ~ 2) .
Proof of Step 1. - Let gi] E B, i =1,2. By (7 18) there exists a

sequence gh] converging to gi] in the topology w x a, such that
for every h E N. Since we have
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where

Let us define

By Lemma 3.4 (~h) converges to ç and converges to e weakly in the
sense of distributions. Therefore ~ > 0 a. e. in SZ and Lemma 7. 8 yields

proving (7.20). ~
Proof of Step 2. - The result of Step 1 can be reformulated by sayingthat (7 . 21 ) holds for [c~‘, gI] E E. The characterization of dec E mentioned

in the proof of Theorem 5 .1 implies (7 . 21 ) for gi] E dec E. Let us prove
the same property for E. Let gi] E E, i =1,2. By Proposition 5 . 6 (a)there exists a sequence gh] E dec E such that converges to cpi stronglyin (LP (SZ))" and converges to g~ weakly in (Lq Since (7 . 21 ) holds
on dec E, we have

where

By applying Lemma 7. 8 to

we obtain (7 . 21) for and [cp2, g2]. Moreover 03C9 >_ 0 a. e. in Q, being

Proof of Step 3. - Let us denote by M the set of all x~03A9 such that
(7 . 2) is not satisfied for some ç 1, ç2, ,~ 1, 112 with r~ 1 E a (x, ~1), ~2 E a (x, ~2).
We have to prove that I M =0. To this aim we write G x ~ QS ~ ,where G : SZ -~ (Rn)4 is the multivalued function defined by
Gx=~[~1,~2,1’~1,?’~2]:IW-~ZI I

>c~~p-1-a»p(rl~ -~12~ ~~ -~2)°‘~p~ rliEa(x, ~‘)~ i=1~2 ~ ~
By Remark 2 . 3 the graph of G belongs

to ~f (R")4, thus (Q) by the projection Theorem 1. 2. By the
Aumann-von Neumann Theorem 1.4 there exists a measurable selection

of G defined on M. Therefore, for every x~M we have

and
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If > o, there exists a measurable subset M’ of M with positive measure
such that is bounded on M’. By Step (a) in the proof of
Theorem 2 . 7 there exists g* E (Lq (Q))" such that

For i =1, 2, we define

Then [cp‘, g‘] E (Lp (n))n x (Lq (n))n and gi (x) E a (x, q/ (x)) a. e. in Q by (7 . 23)
and (7.24).

Therefore [cp ‘, g‘] E E by (7 .19), hence

by Step 2. This contradicts (7 . 22) being Therefore, we have to
conclude that M has Lebesgue measure 0, which proves that (7.2) holds
for a. e. 
The proof of (7 .1 ) is analogous, therefore the class is closed

with respect to G-convergence. 2022
To prove that the class p v 2 _ ~3  + oo, is closed, we note

that (7. 3) is equivalent to

and the proof can be concluded as in the case U (a, c, m)..
Theorem 7.9 and Remark 7.7 allow us to obtain some compactness

results concerning the class U* and S*.

COROLLARY 7 .10. - Assume p=2. Given two non-negative functions
m’, m" E L2 (SZ) and two cons tans c’ > 0, c" > 0, there exist two non-negative
functions m’, m" E L2 (SZ) and two constants c’ > 0, c" > 0 with the following
property: if

.. , ,

for every h~N, then there exists a subsequence (a03C3(h)) of which

G-converges to a function

The same result was obtained by different methods by F. Murat and
L. Tartar in [20].

COROLLARY 7 .11. - Assume 1  p _ 2. Given two non-negative functions
m’, m" E LP (SZ) and two constants c’ > 0, c" > 0, there exist two non-negative
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functions m’, m" E LP {S2) and two constants c’ > 0, e" > 0 with the following
property: if

for every hEN, then there exists a subsequence (aa ~h~) of which

G-converges to a function

A similar result was obtained by N. Fusco and G. Moscariello in the
case of the homogeneization (see [ 13], [14]).

COROLLARY 7 .12. - Assume 2 p  + oo and 0  a __ 1. Given two non-
negative functions m’, m" E LP (SZ) and two constants c’ > 0, c" > 0, there
exist two non-negative functions rrt’, m" E LP (SZ) and two constants c’ > 0, c
" > 0 with the following property: if

for every hEN, then there exists a subsequence (a~ ~~~) of which

G-converges to a function

Compare this result with those obtained by U. E. Raitum in [22]. We
refer also to [13], [14] for the case a== 1.

DEFINITION 7.13. - By L (cl, cz} we denote the class of all operators
a : Q x R" --~ R" of the form

is a n x n-matrix of bounded measurable functions
such that

for a. e. x~03A9 and for every 03BE~Rn.
By (cl, c2) we denote the class of all operators of L (cl, c2) corres-

ponding to a symmetric matrix (x)).

REMARK 7.14. - It is easy to see that L (cl, c~) is the set of all operators
with p = 2, such that for a. e. x~03A9 the multivalued function

a (x, . ) is linear, L e. its graph is a linear subspace of Rn x Rn.

THEOREM 7 . 15. - The classes L (cl, c2) and e2) are closed under
G-convergence.
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Proof. - We give a sketch of the proof only for the case of

(ci, c2) being analogous. By arguing as in the proof of Theorem 7 . 9,
for which we refer for the notation, the result will be achieved in three
steps.

STEP 1. - B is a linear subspace of (Q) x (L2 (Q))".
STEP 2. - E is a linear subspace of (L~ (Q))" x (L~ (Q))".
STEP 3. - For a. e. the multivalued function a (x, . ) is linear.
The proof of each step is completely analogous to the proof of the

corresponding step in Theorem 7 . 9, and is therefore omitted..

The compactness under G-convergence of the class c2) was proved
by different methods by F. Murat and L. Tartar in [18] and [27]. The
symmetric case was studied earlier by S. Spagnolo and E. De Giorgi
(see [24], [25], [26], [12]).
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