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ABSTRACT. - We prove several first and high order inverse mapping
theorems for set-valued maps from a complete metric space to a Banach
space and study the stability of the open mapping principle. The obtained
results allow to investigate questions of controllability of finite and infinite
dimensional control systems, necessary conditions for optimality, implicit
function theorem, stability of constraints with respect to a parameter.
Applications to problems of optimization, control theory and nonsmooth
analysis are provided.
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1. INTRODUCTION

Consider a set-valued map G : X -~ Y between two metric spaces and
define its inverse G -1: Y -~ X by

Let X EX, Y E G (x) and let Bh (x) denote the closed ball in X centered
at x with radius h > o. This paper is mainly concerned with sufficient
conditions for:

1. the uniform open mapping principle at (x, y) : 3 E > 0, k > 0, p > 0 such
that

2. the Holder regularity of the inverse map G -1 1 at Q, x) : ~ k > 0, E > 0,
L > 0 such that

3. necessary conditions verified by boundary points of G (B£ (x)).
A classical result of functional analysis states that if a (single-valued)

C1-function f : X ~ Y between two Banach spaces has a surjective deriva-
tive f’ (x) at a point x E X, then for all h > 0, f (x) E Int f (Bh (x)) (i. e. the
open principle holds true) and the set-valued map f-1 is roughly speaking
Lipschitzian at f (x). It implies in particular that if f’ (x) is surjective, then
Ker f’ (x) is tangent to the level set {x~ X : f (x) = f (x)} [31]. We refer to
[ 11 ], [10], [28] for historical comments and an extensive bibliography. The
open mapping principle part of the above theorem is sometimes referred
as Graves theorem ([24], [25]).
However the above classical result is not strong enough to answer many

questions arising in Control Theory and Optimization:
We may have to deal with maps defined on metric spaces (which have

no much regularity) rather than with C1, single-valued functions. On the
other hand the sets of constraints are given by set-valued maps. This is
then a first source of motivations to use new tools adapted to these

purposes.
Actually set-valued maps are in the background, even when many efforts

where devoted to hide them. Indeed there have been many attempts to
overcome the difficulties, and most of them are actually based on a careful
construction of a selection to which one or another open
mapping result can be applied. However very often this is neither a direct
nor a simple way to follow.

Let us mention also that beside the above theorem used together with
such selection f [6], several different open mapping arguments have been

Annales de /’Institut Henri Poincaré - Analyse non linéaire
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applied to f, for instance the one based on Brouwer’s fixed point theorem
(see for example proof of Pontriagin’ principle in [30]), a "degree theory"
open mapping result [39], extensions of Grave’s theorem to nonsmooth
functions [43], etc. We also refer to [33], where a number of fixed point
theorems and their applications to infinite dimensional control problems
are given.
Our strategy is then to deal directly with inverse and open mapping

theorems for set-valued maps from a complete metric space to a Banach
space and to replace the notion of derivative (which needs a linear struc-
ture) by a notion of variation, which describes the infinitesimal behavior
of a map at a given point.
The inverse function theorem for set-valued maps is also a very conven-

ient tool to be applied to optimization problems, even those whose data
are given by single valued functions. We refer to [1], [4], [28] and their
references, where this issue is illustrated by many examples.
Most extensions of the above classical result are of the first order

involving surjectivity of the first derivative. Such assumption excludes
from consideration those functions whose derivative is not surjective or
simply vanishes. A high order open mapping principle for single valued
maps taking their values in a finite dimensional space was proved in [25]
using Brouwer’s fixed point theorem and for set-valued maps in [18] on
the basis of Ekeland’s principle. I would like also to acknowledge the
private communication of J. Borwein, that, still using Ekeland’s principle,
it is possible to show that the sufficient condition for openness proved
in [18] implies as well the Holder continuity of the inverse.

Finally a convenient extension of the inverse mapping theorem is neces-
sary to treat nonsmooth problems. Some generalizations in this direction
can be found in [8], [43].

In this paper we prove first and high order sufficient conditions for
openness and regularity of the inverse map which allows to obtain several
new results concerning controllability, optimality and Lipschitzian realiz-
ations. Sufficient conditions for invertibility are expressed in terms of
variations of set-valued maps defined on metric spaces.

Variations measure infinitesimal behavior of a map and seem to be a

very (may be the most) natural notion to be used to study the uniform
open mapping principle (see Remark following Definition 5.1 from
Section 5). In several examples of applications provided here, we show
how variations can be computed. In particular this leads to a short and
direct proof of the maximum principle in control theory (both for finite
and infinite dimensional cases).

In summary our extensions deal with:
1. nonsmooth functions and set-valued maps;
2. set-valued maps defined on a complete metric space;
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3. maps taking their values in a Banach space;
4. high order sufficient conditions.
The strength of these results is showed by examples of applications to:
1. reachability of nonlinear infinite dimensional control systems;
2. necessary conditions for optimality;
3. small time local controllability;
4. some problems of nonsmooth analysis.
The outline of the paper is as follows. We first show equivalence of the

uniform open mapping principle and Holder continuity of the inverse
(Section 2). So the problem of regular inverse reduces to sufficient condi-
tions for the uniform open mapping principle. We use Ekeland’s varia-
tional principle to investigate this problem. In particular we prove that
whenever Y is a smooth Banach space, then the uniform open mapping
principle is equivalent to a "convex uniform open mapping principle",
which can then be applied together with separation theorems (Section 3).
In [17] we derived from these results some second order conditions for
invertibility of a C2-function taking its values in a Hilbert space and for
stability with respect to a parameter of a system defined by inequality
constraints.

Applications of Ekeland’s principle appear often in nonsmooth analysis
to derive necessary conditions for optimality and sufficient conditions for
invertibility. In this paper Ekeland’s principle is rather used to prove
stability of the uniform open mapping principle (Section 4). Necessary
conditions for optimality can be seen as a violation of the open mapping
principle. For nonsmooth problems, necessary conditions can be seen as
a violation of the uniform open mapping principle for smooth approxim-
ations. This approach to nonsmooth problems was pioneered by J. Warga
([41]-[43]). In Section 13, we derive several "nonsmooth" results based on
stability of the open mapping principle.
To express sufficient conditions for the uniform open mapping principle

we introduce in Section 5 "variations" of set-valued maps, which describe
infinitesimal changes of a map on a neighborhood of a given point. We
shall consider two different types of variations. The first one is called

contingent variation and is related to the (first) Gateaux derivative. It

allows to prove the first order sufficient conditions. The second type of
variations is much more regular (similar to continuous Frechet derivative)
and is defined for all orders. Naturally it leads to higher order results.

Several extensions of the first order conditions to set-valued maps on
Banach spaces can be found in [1], [4], [28]. A high order open mapping
principle via high order variations of set-valued maps was proposed in [18].
Their proofs use Ekeland’s principle but now can be derived directly
from Theorem 2.2 (Section 2). The proof of Theorem 2.2 is based on a
constructive argument, similar to the one used in [24], [ 11 ], which allows
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to estimate the Holder constant, the neighborhood where the map can be
inverted and errors. Although several proofs of this paper are also based
on the variational principle, it is applied mainly to bring some convexity
arguments, while in earlier works this was not exploit at all.
The first order inverse function theorems for a map G taking its values

in a Banach space Y are proved in Section 6. Special attention is given to
the case when the norm of Y is Gateaux differentiable away from zero.
This also allows to derive necessary conditions satisfied by boundary
points of the image of G. They are used to prove necessary conditions for
optimality for an abstract infinite dimensional mathematical programming
problem in Section 11, which in turn is applied to an infinite dimensional
optimal control problem with end point constraints and to a semilinear
optimal control problem.

First order inverse function theorems are also used to investigate Lipsch-
itz behavior of controls for finite and infinite dimensional control systems
(Section 10) and the implicit function theorem (Section 9). This last theo-
rem allows to make a Lipschitz realization of an implicit dynamical system.
A high order inverse function theorem for maps with values in a

uniformly smooth Banach space is proved in Section 7. An application of
this result to question of small time local controllability is given in

Section 12. Finally Section 13 is devoted to some finite dimensional
nonsmooth problems. One can find in [17] some further applications of
set-valued inverse mapping theorems.

CONTENTS

1. Introduction.

2. Uniform open mapping principle and inverse mapping theorem.
3. Uniform open mapping principle in smooth Banach spaces.
4. Stability of the uniform open mapping principle.
5. Variations of set-valued maps.
6. First order inverse mapping theorems.
7. High order inverse mapping theorems.
8. Taylor expansion and the inverse theorem.
9. An implicit function theorem.
10. Lipschitz behavior of controls.

10.1. Finite dimensional control system.
10.2. Infinite dimensional control system.
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11. A multiplier rule for infinite dimensional problems.
11.1. A semilinear control problem with end point constraints.
11.2. Optimal control of a problem with state constraints.

12. Small time local controllability.
13. Applications to nonsmooth analysis.

2. UNIFORM OPEN MAPPING PRINCIPLE

AND INVERSE MAPPING THEOREM

Consider a set-valued map G from a complete metric space (X, dx) to
a metric space (Y, dy). That is for every G (x) is a (possibly empty)
subset of Y. Recall that graph of G is a subset of the product space
X  Y:

When it is not otherwise specified explicitly, we shall use on it the

following metric:

In this paper we restrict our attention to those maps whose graph is
closed. From now on we posit such an assumption. The inverse map G -1
is defined by

In the other words (x, y) E Graph (G) if and only if (y, x) E Graph (G-1).
In this section we study a relationship between the uniform open map-

ping principle and the regularity of the inverse map G -1. For all x E X,
h > 0 denote by Bh (x) [respectively Bh (x)] the open (respectively closed)
ball in X of center x and radius h > o.

THEOREM 2.1. - Let p>O, x0~X, y0~G(X0). The following
statements are equivalent:

(i) For all (x, y) E Graph (G) near (xo, yo) and all small h > 0

(ii) For all (xl, yl) e Graph (G) near (xo, yo) and all y2 E Y near yo

Remark. - When Y is a Banach space and B denotes the open unit
ball in Y, then the inclusion (1) can be formulated as
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or equivalently as

The implication (it) ~ (i) in the above theorem is immediate. The oppo-
site claim results from the more precise:

THEOREM 2.2. - Consider yo E G (xo). If there exist k > 0, E > 0, p > 0,
0  1 such that for all (x, y) E Graph (G) n B£ (xo) x BE and all
h E [0, E]

then, for all (xi , y i ) e Graph (G) Q (xo) x B~/2 (y0), for all h > 0 satis-

fying max{h 1-03B21/k, , 203C1hk}~ 2 and all 

or equivalently for all (xl, yl) E Graph (G) (~ (xo) x (yo) and all

y2 E Y satisfying dY y2)  min E , 4 p E 2 
k 

1 _ 
k

Proof . - Fix any such that h/( 1- oc 1 ~k) _ E . Then for all
2

(x, y) E Graph (G) U BE (xo) x BE and all h e ]0, E]

Let xl, yl, y2, h as in the conclusion of theorem. It is enough to consider
the case We look for satisfying 
as the limit of a sequence we shall built. Set uo = xi. By (3) there exists
(Mi, E Graph (G) such that dx (uo, u 1 ) = dx u 1 )  h, dy y2)  ap hk.
Assume that we already constructed Graph (G), i =1, ..., n such
that

Then

Vol. 7, n° 3-1990.



190 H. FRANKOWSKA

and

Hence by (3) and by (5) applied to (un, vn), there exists
vn + 1 ) E Graph (G) such that

.- , . m . a ~ - ~ i u I i n 1 ~ r 4 / 1

Observe that (4) implies that { ui } is a Cauchy sequence and that (5)
implies that lim vi = y2. Let x2 be the limit of { ui}. Since Graph (G) is

closed, (x2, y2) E Graph (G) and thus x2 E G-1 (y2). Moreover by (6),

x 2)- - 1 h a 1/k and therefore

Since ae]P, 1 [ may be chosen arbitrary close to P, the proof is complete.

3. UNIFORM OPEN MAPPING PRINCIPLE
IN SMOOTH BANACH SPACES

In the previous section we have shown that the uniform open mapping
principle (1) is a necessary and sufficient condition for the "Holder conti-
nuity of the inverse map" (2). However verification of the open mapping
principle may be a difficult task. In this section we replace it by a "convex
uniform open mapping principle" which, thanks to separation theorems,
is more simple to deal with. We assume that Y is a Banach space and
that its norm ]] . ]] is Frechet differentiable away from zero. We denote by
d the metric of the complete metric space X and by co the closed convex
hull. We start by a first order result.

THEOREM 3.1. - Let yo e G (xo). If for some p>O, E>O, M>O and all
(x, y) E Graph (G) U BE (xo) x BE and all h E ]0, E]

or equivalently
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then for all (x, y) E Graph (G) ~ B~/2 (xo) x B~/2(y0) and all h E ]0, E [
2

Remark

(a) Assumption (7) may be seen as the convex uniform open mapping
principle (compare with Remark following Theorem 2.1).

(b) It is clear that if (8) holds true on a neighborhood of (xo, yo, 0) in
Graph (G) x R+ then so does (7). Hence uniform open mapping principle
and the convex uniform open mapping principle are equivalent in those
spaces whose norm is Frechet differentiable away from zero. 0

Proof. - It is enough to prove that for every ~, > 0 and all x, y, h as in
the conclusion of the theorem

Fix ~, > 0 and assume for a moment that for some

(t, z) E Graph (G) (’~ (xo) x and be ]o, - E [, there exists
2

Define 001 by Applying the Ekeland
variational principle [12], [13] to the complete metric space
K : = Graph (G) n B~, (t) x Y with the metric

and the continuous function (~,~)-~~"~~ ( we prove the existence of
(x, y) E K n x B8h(z) such that

From (10) we know that By differentiability of the norm
of Y, for some pEY* of and all veY of 

 p, hv > + o (h), where lim ~ =0. Hence for
h-+O+ h

all (u, y+hv)EK with 
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and therefore, for all small h > 0

This yields that for some Eh -~ 0 +

Let be such that ( p, v ~ ~ - /O. By our assumptions, forall hE ]0, E], p v belongs to the right-hand side of (7). Hence for all small
h > 0 we which leads to a contradiction and
ends the proof. U

In the high order result stated below we assume that Y is a uniformly
smooth Banach space, i. e. its norm ] ] . ] is uniformly Frechet differentiable
away from zero. That is, for a function o : R + --~ R + satisfying
lim o(t)jt=O and for y e Y with there exists

J (y) E Y*, ~ J (y)~lY* =1 such that for every t E R

where ( . , . ) states for the duality pairing on Y* x Y. Recall that a
uniformly smooth Banach space is reflexive. Every Hilbert space is
uniformly smooth and a space Y is uniformly smooth if and only if its
dual Y* is uniformly convex. In particular LP spaces are uniformly smooth
for 1 p  oo [5].

THEOREM 3.2. - Assume that Y is uniformly smooth. Let yo E G (xo),
k >_ 1. The following statements are equivalent:

(i) For some p > 0 and for all (x, y) E Graph (G) near (xo, yo) and all
small h > 0

(it) For some p > 0, M > 0 and for all (x, y) E Graph (G) near (xo, yo)
and all small h > 0

(iii) For some p > 0, M > 0 and for all (x, y) E Graph (G) near (xo, yo)
and all small h > 0
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Prof. - Because of separation theorems (ii) is equivalent to (iii).
Obviously (i) yields (ii) with M = p. To prove the implication (ii) ==> (i) we
proceed by a contradiction argument. Assume contrary that for some
(ti, zy) E Graph (G) converging to (xo, yo) and h; ~ 0 + there exist

Applying the Ekeland variational principle [12], [13] to the complete
metric space Ki: = and the continuous function

(x, I I 1 ~k, we prove the existence of such that

From ( 13) we know that Since Y is uniformly smooth for some
pi E Y* of ~ pi I lY* -1 and all y,

Hence

for a function 6: R+ - R+ satisfying lim 
° o(h) = 0 and, by (1 5), for all

h - 0 + h

(x, y) e K;

or equivalently

Set
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and observe that, by (14), ~(~ ~) + /~ - ~ + - ~ == -/~ ~. Thus
2z 2~ /

Hence for a sequence Ei -~ 0 + and for all v ~ >_ - E~.
Consequently

On the other hand, by our assumptions, for all large i,
inf ( p;, v ~ _ - p. But (16) which contradicts the

v E cu (Ai n MB)

choice of Ei.

4. STABILITY
OF THE UNIFORM OPEN MAPPING PRINCIPLE

The main aim of this section is to establish "stability" of the uniform
open mapping principle. Namely we prove here that if a sequence of set-
valued maps with closed graphs Gi: X ~ Y from a complete metric space
X to a Banach space Y approaches uniformly a map G on a ball BE (xo)
and satisfies the uniform open mapping principle on a neighborhood of
(xo, yo), then so does G. This result is helpful for investigation of

nonsmooth problems.

THEOREM 4.1. - Consider a sequence of set-valued from
a complete metric space X to a Banach space Y having closed graphs. Let
yo EGo (xo). We assume that for some $ > 0 and for every ~, > 0 there exists
an integer I~ such that for all i >_ x E Bs (xo)

If for some 0  E  ~, p>O and for all i >_ 1, 
and all h E [0, E]

then f°r everY x, Y> e Graph (Go) m Bc/4 xo> x Bc/4 (y0), h e 1°, 1 1 We have

Proof. - Set G = Go. It is enough to check that for every ~, > 0 and all
(x, y), h as in the conclusion of theorem, the inclusion (9) holds true. Fix
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~, > 0 and assume for a moment that for some

there exists YEY as in (10). Define 001, K as in the proof of
Theorem 3.1. By Ekeland’s variational principle applied to the continuous
function (x, on the complete metric space K with the metric

there exists (x, y) E Graph (G) n x B8h(z) such that

By the choice of y, Consider 6 > 0 so small that

2

and let i be so large that for all uEBE(xo), B. Pick
2(1+~,)

2

v’ E Gi (x) such that ( ~ v’ - __ 
~ 

. Then, by ( 18), for all
2(1+~,)

(u, v) E Ki: = Graph (Gi) n X Y

Applying Ekeland’s principle to the continuous function

on the complete metric space Ki with the metric (17), we show that for
some (ii, v) E Ki U B~ (x) x B~ (v’) and all (u, v) E Ki
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Hence for every (u, v) e K~

Moreover from the choice of r~, v’

Observe that x0)~3 4~, v - _ E and, by the assumptions of theo-
rem, for all h e [o, E]

Since B (x) c Bh(t), for all small h > 0

Thus p ~ (0 + 8) p  p. The obtained contradiction ends the proof. D

Altough it is possible to prove stability of the higher order uniform
open mapping principle in uniformly smooth Banach spaces using ideas
from Section 3 and from the above proof we do not do it here: our

applications use only the above first order result.

5. VARIATIONS OF SET-VALUED MAPS

To check whether the uniform open mapping principle holds true it is
convenient to introduce variations of set-valued maps which measure
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"infinitesimal changes" of the map. We recall first the notions of Kura-
towski’s lim sup and lim inf [3]:

Let T be a metric space reT be a family of subsets of Y. The
Kuratowski lim sup and lim inf of A~ at To are closed sets given by

Consider a metric space X and a Banach space Y. Let G : X --> Y be a

set-valued map, that is for all x E X, G (x) is a (possibly empty) subset
of Y.

DEFINITION 5 .1. - Let (x, y) E Graph (G), k > o.
(i) The contingent variation of G at (x, y) is the closed subset of Y

(ii) The k-th order variation of G at (x, y) is the closed subset of Y

where -~G denotes the convergence in Graph (G).
In other words v E (x, y) if and only if there exist sequences h; -~ 0 + ,

such that The word contingent is used because
the definition reminds that of the contingent cone of Bouligand.

Similarly v E Gk (x, y) if and only if for all sequences h;-0+,
yi) -~ G (x, y) there exists a sequence vz - v such that

yi + hk vi~ G (Bhi (xi)).
Clearly, G~1~ (x, y) and Gk (x, y) are closed sets star shaped at zero. When

X is a Banach space, G : X ~ Y is a Gateaux differentiable at some xeX
function and B denotes the closed unit ball in X, then

G’ (x) (B) c G~ 1 ~ (x, G (x)). If G is Frechet differentiable at x then

G’ (x) (B) = G~1~ (x, G (x)). Moreover if G is continuously differentiable at
x then G’ (x) (B) = G 1 (x, G (x)).
Remark. - Observe that if G verifies the uniform open mapping

principle at (xo, yo) in the sense that for some p > o, k > 0 and for all

(x, y) e Graph (G) near (xo, yo) and for all small h > 0

then yo). Moreover if k = 1 then for some E > 0
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In Sections 6 and 7 we show that the converse statement holds true for
the first order condition. For the high order one we have to impose some
additional assumptions. 0

Remark. - When X is a Banach space the following two set-valued
derivatives DG (x, y), CG (x, y) of G at a point (x, y) E Graph (G) were
considered in [3], Chapter 5:

where TGraph (G) (x, y) and CGraph (G) (x, y) denote respectively the contingent
and Clarke’s tangent cones to Graph (G) at (x, y) (see [9], [3]). It is not
difficult to show that

Moreover if for a subset K c Y, G (.) = K, then for every we

have G~ 1 ~ (x, y) = TK (y), G 1 (x, y) = CK (y). In this way some results from
[3], Chapter 5 and [4], which use the set-valued derivatives CG (x, y),
DG (x, y) are consequences of those proved in Section 6.

Let co (co) denote the convex (closed convex) hull. We proved in [18]
some properties of high order variations. In particular, if Y = R" then for
any integer k >_ 1

The following theorem extends those results to the infinite dimensional
case.

THEOREM 5 . 2. - For every (x, y) E Graph (G), k>O we have:
(i) For all K >__ k, 0 E Gk (x, y) c GK (x, y);
(ii) For all s > o, R + Gk (x, y);

m

(iii) For all ~,i >_ o, y), i = 0, ..., m satisfying L ~,~ = 1,

(iv) For all v E co Gk (x, y) there exists E > 0 such that ~ v~ Gk (x, y) ;
(v) ~, co Gk (x, y) = ~, Gk (x, y) ;
(vi) co Gk (x, y). Moreover these

conditions are equivalent to

Proof. - For all (x’, y’) E Graph (G) and h > 0 we have 
Therefore Fix K > k. Then for all h E ]o,1 ], Hence

G (Bh (x’)) - G (Bh (x’)) - .Y’ . °
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Consequently for all v E Y

and (~) follows. To prove (ii) fix ~),~~0 and set 
Let yi) ~G (jc, y), hi ~ 0+, h’i=03BB1/khk/ki. Then for all large i, h’i~hi. Let

be such that This

implies that y) and since ~0 is arbitrary (ii) follows. Fix next
~~ as in (iii). We proceed by induction. Observe first that

Assume that we already proved that for some Osm

Fix (Uj, ~ G(x, y), hj ~ 0+. By (19), for some ... (uj)

vi, we have zj + hJ wj E G (xj). This and Definition 5 . 1 imply
that

Since +03BBs+1)(uj), the definition of wj and (20)
yield

Because the sequences (Uj, Zj) -~ G (x, y), h~ -~ 0 + are arbitrary we proved
that (19) is verified with s replaced by s + 1. Applying (19) with s = m and

m

using the identity L ~,i =1 we obtain (iii). Fix next v E co Gk (x, y) and let
i=0

m m

y) be such that L Set 
i=0 i=0

m

for i = o, ... , m and Since we have
i=O

m 

L ~,i _ 1 and therefore, by (iii) and (i), L yo). On the other
i=o i=o
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m 

hand (m + 1 ) - k v = ~ ((m + and therefore (iv) holds
f=0 i=o

true with E = (m + 1 ) - k. The statement (v) follows from (iv). Assume next
that y) = Y. Since Gk (x, y) is starshaped at zero, for all

(x, y). Thus y) = Y, where Z denote
03BB~Z

the set of positive integers. Using Baire’s theorem, we prove that Gk (x, y)
has a nonempty interior and therefore also co Gk (x, y) does. Assume for
a moment that zero is not an interior point of co Gk (x, y). By the
separation theorem, there exists a non zero

The obtained contradiction proves that 0 E Int co Gk (x, y). The converse
follows from (v). The last statement is a consequence of the Caratheodory
theorem. D

Remark. - Observe that the proof of (iv) and Caratheodory’s theorem
yield that whenever dim Y  00

6. FIRST ORDER INVERSE MAPPING THEOREMS

As one may expect, the first order results are more simple and require
less assumptions that their high order analogous. This is why we study
them separately.

In this section, we assume that X is a complete metric space with the
metric d and Y is a Banach space with the norm )] . ]]. Consider a set-
valued map G : X -> Y having a closed graph.

THEOREM 6 . 1. - Let Yo E G (xo) and assume that for some E > 0, p > 0

Then for every (xl, Graph (G) (~ (xo) x (yo), y2 E Y satisfying

Annales de /’Institut Henri Poincaré - Analyse non linéaire



201INVERSE MAPPING THEOREMS

Remark. - Inequality ( 22 ) implies that for every L > 1 G-1 is p seudo-
P

Lipschitz at (yo, xo) with the Lipschitz constant L (see [1]). D

COROLLARY 6 . 2. - Consider yo E G (xo), p > o. Then (22) holds true for
all (xl, yl, y2) E Graph (G) x Y near (xo, yo~ yo) f and only f for some E>O
inclusion (21) is verified.

Proof. - Indeed if for all (xl, yl, y2) E Graph (G) x Y near (xo, yo~ yo)
we have (22), then for every such (xl, yl, y2) and every 0  p’  p

1

and therefore for some ~eG’~). ~i~)~-!!~!’~!!’ This implies
P

that for all small /!>0, Hence 

Thus (21) is satisfied for some E > 0 and every p’p. Since the right-hand
side of (21) is closed we deduce that the inclusion (21) is verified as well
with p= p’. The opposite follows from Theorem 6.1. D ,

The above contains a classical result of functional analysis: 
’ 

. 

’

COROLLARY 6.3. - Let a function between two Banach

spaces. Assume that g is continuously differentiable at some X0~X and for
some p>O

Then for all (x, y) near (xo, Yo), dist ( x, g -1 Cv )) g (x) - y . I) In particular
P

for yo = g (xo) and for all x E xo + Ker g’ (xo)

and thus the tangent space to g-1 (yo) at xo coincides with Ker g’ (xo).
To derive such result, it is enough to observe that since g E C 1 locally

at xo by our assumption, for all x near B c g’ (x) B c g~l ~ (x, g (x)).
2

Remark. - By the Banach open mapping theorem, assumption (23) is

verified whenever g’ (xo) is surjective, i. e. g’ (xo) X = Y, D

Proof of Theorem 6. 1. - By Theorem 2.2, it is enough to check that
for every ~, > 0 and for all
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inclusion (9) holds true. Fix ~, > o, (t, z)e Graph (G) n BE/2 (xo) x BE/2 

0  h _ E and assume for a moment that there exists YEY satisfying (10).
Define 0  e  1 and K as in the proof of Theorem 3 . 1. Applying the
Ekeland variational principle [13] to the continuous function

(x, on the complete metric space K with the metric given by
(17), we prove the existence of (x, y) E B©h (t) x B©h (z) verifying (18).
Observe that x E Int Bh(t), y E Int (z) and y. Set

By our assumption there exist hi --~ o + , 
such that Hence, from (18) we deduce that for all

large i

and Dividing by 03C1 hi and
I + X P

taking the limit yields I e. The obtained contradiction ends the

proof. D

THEOREM 6 . 4 (A characterization of the image) . - Let yo e G (xo).
Assume that there exist closed convex subsets K (x, y) c G(1) (x, y) , E > 0
and a compact set Q c Y such that

Then at least one of the following two statements holds true:
(i) There exist L > 0, ~ > 0 such that for all

(ii) There exists a non zero p E Y* such that

Consequently if for some b > 0, yo is a boundary point of G (Bs (xo)), then
there exists a non zero p E Y* such that (25) is satisfied.
Observe that if Y is a finite dimensional space and 0 E K (x, y) for all

(x, y) E Graph (G), then condition (24) is always verified with Q equal to
the closed unit ball.
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Proof. - If for some E’ > 0

then Theorem 6 .1 implies statement (i). Otherwise if for every E’ > 0

the above is not satisfied, by the separation theorem for a sequence
Yo) and some pi E Y* ~,~ -~ 0 +

Let Z E Y, p > 0 be such that the ball z + p B is contained in the left hand

side of (24). Pick WiEB such that w . >_ 1-1 and let 
qiEQ be such that z-pwi=ki+qi.
Then

Consider a subsequence converging to some q E Q. Then for all large j

Let be a weak- * cluster point Passing to the limit in
the last inequality we get ~ p, z - q ~ ~p/2. Therefore p is different from
zero. On the other hand the inequality (26) yields (25). D

When the norm of Y is differentiable, then a stronger result may be

proved:

THEOREM 6.5. - Assume that the norm of Y is Gâteaux differentiable
away from zero and let yo E G (xo). If for some E > o, p > o, M>O

then for every (x i , y i ) e Graph (G) Q (xo) x (y0), y2 e Y satisfying

~ y2-y1~~ min{
8 ’ 4

Remark. - It was shown in [17] that in the case when G is single-
valued, the constant M in the assumption (27) may be taken equal to
+00. 0
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COROLLARY 6. 6. - Assume that Y = R" and that for some M > 0

Then there exist E > 0, p > 0 such that conclusions of Theorem 6. 5 are valid.

Proof. - By Theorem 2. 2 it is enough to show that (9) holds true for

all 03BB>0, (x, y)eGraph (G) ~B~/2 (xo) x o  h - Fix such 03BB,

h, (t, z) = (x, y) and assume for a while that there exists y E Y satisfying
(10). Define 0, K as in the proof of Theorem 3.1. Applying the Ekeland
variational principle [13] to the continuous function on

the complete metric space K with the metric (11), we prove that for some
(x, x inequality (12) is verified. Since y ~ y, from differ-
entiability of the norm, we infer the existence of p E Y* such

that for all h~ -~ 0 + , v~ - v

where lim inf o" (hj)/hj = 0. Fix v E (x, y) and let h~ ---~ 0 + , v~ - v be such

that Then from (12) and (28)

Dividing by h~ and taking the limit yields

and therefore

Since (x, y) E BE (xo) X B£ (yo), by the assumption of theorem,
Using that 0  O  1 we derive a

contradiction. D

The following theorem provides a stronger sufficient condition for local
invertibility but does not allow to estimate the Lipschitz constant.

THEOREM 6.7. - Assume that the norm of Y is Gâteaux differentiable
away from zero. Let yo E G (xo). Further assume that there exist E > 0, M > 0
and a compact Q c Y such that

Then the following statements are equivalent
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In particular if for some 6 > 0, yo is a boundary point of G (Bs (xo)), then
there exists a non zero p E Y* such that

Moreover if G is single valued, then M in (30), (31 ) and (i) may be taken
equal to + oo .
As a consequence we deduce a very useful criterion using interiority

properties in subspaces with finite codimension.

COROLLARY 6. 8. - Let yo E G (xo). Assume that Y is a Hilbert space
and that there exist a closed subs pace H~Y of finite codimension, p > 0,
M>O, z~Y such that for all (x, y) E Graph (G) near (xo, yo)

where BH denote the closed unit ball in H. Then the conclusions of Theorem
6.7 hold true.

Proof. - Let P denote the orthogonal projection onto Hand Q’ denote
the closed unit ball in the ortogonal space Then the set Q : = p Q’ is
compact and for all x E p B, where 
and Hence p B c p BH + p Q’ and

for all (x, y) E Graph (G) near (xo, yo). Therefore (30) is verified and the
result follows from Theorem 6. 7. D

Proof. - By Theorem 2.1, (ii) implies that for all (x, y) E Graph (G)
near (xo, yo) and all small h>O

and from Definition 5.1 we deduce that 1 B~G1(x0, y0) which implies

(i). To show that (i) ~ (ii), by Theorem 2 . 1, it is enough to prove that
for some p > 0 and all (x, y) E Graph (G) near (xo, yo) and all small h>O
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Assume for a moment that for some (ti, z~) -~ G (xo, 0 + there
exist

We shall derive a contradiction. Set We
apply the Ekeland variational principle ([12], [13]) to the continuous
functions i =1, 2, ... to prove the existence of

yi) E Graph (G) x Bhi/i x (zi) such that for all (x, y) E Ki

By differentiability of the norm and by (32), there exist 
such that for all h~ -~ 0 + , v~ -~ v, we have

where lim oi, " (h)/h = 0. Fix v e G~ 1 ~ (xi, y~) and let h~ -~ 0 + ,~. - v be such
h --~ 0 +

that Setting y = y~ + h~ v~ in (33) we obtain

Dividing by hj and taking the limit when j~ oo yields that for all

v E G( 1) (
x., , v >_ -1 1 + v and thereforev e G(1) (xi, yi),  pi, > _ 

. 
( l I I ] I I ) and therefore

By (30) there exist z e Y, p > 0 and 

w; e B such that (~,w,)~l- , z-pw~=~+~. From (35),
/

(~z-pw~-~)~-201420142014. Consider a subsequence ~. converging to
~ 

some Then for all larger

Let peY* be a weak- * cluster point Then from the last

inequality we deduce that p ~ 0. On the other hand (35) implies that
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Fix next v E G1 (xo, yo) and choose h~ -~ 0 + in such way that

Let be such that y~ + hi vi E G (xi)). Then from (34) there exist
E~ -~ 0 + such that

Since p is a weak-* cluster point of {pi}, we infer from the last

inequality that for all v E G1 (xo, yo), ~ p, v ~ >_ 0. This, (36) and (i) together
yield that p=0. The obtained contradiction proves (ii). When G is single-
valued, the Ekeland principle has to be applied in the same way as before
to the continuous functions G (x) - yl I ~ on the complete metric spaces

7. HIGH ORDER INVERSE MAPPING THEOREMS

We impose here on G, X the same assumptions than in Section 6. To
prove a high order inverse function theorem we need more smoothness
on the space Y. Namely we assume in this section that Y is uniformly
smooth (see Section 3). Observe that Theorems 3 .2 and 2.1 immediatly
yield.

THEOREM 7 . 1. - Let y0~G(x0) and assume that for some k~ l, p > 0,
M > 0 and all (x, y) E Graph (G) near (xo, yo) and all small h > 0

or equivalently

Then there exists L>O such that for all y1)~Graph (G) near (xo, yo)
and all y2 E Y near yo

THEOREM 7.2 (High Order Inverse Function Theorem). - Let

yo E G (xo) and assume that (30) holds true for some E > 0, M >-_ 0 and a
compact set Q c Y. If for some 0~Int co Gk (x0, yo), then there exists
L > 0 such that for all yl) E Graph (G) near (xo, yo) and for all y2 E Y
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near yo

Observe that if Y is finite dimensional then (30) is always verified with
M = 0, Q = B. From Theorem 5. 2 (vi) follows

COROLLARY 7. 3. - Assume that Y = Rn and that for some k __> 1 the
convex cone spanned by Gk (xo, yo) is equal to Y. Then the conclusions of
Theorem 7. 2 are valid.

Proof. - By Theorem 2 .1 it is enough to show that for some p > 0
and all (x, y) E Graph (G) near (xo, yo) and all small h>O

If we assume the contrary, then, by the proof of Theorem 3 .2, there
exist Zi) ~G Yi) ~ G Yo)~ Y~ ~ Yo~ h~ ~ o + , hi ~ 0 + ,
pi E Y* and a function o : R + -> R + such that
Bhi (ti), y~, lim o (h)/h = 0 and’ ’ 

and

Fix v~Gk(x0, yo) and let vi - v be such Thus
we deduce from the last inequality

v

Let p be a weak cluster point (it exists because Y is reflexive).
Then taking the limit in the above inequality we obtain ( p, v ~ >_ 0 and
since v is arbitrary

We show next that p can not be equal to zero. Fix yi) and
let be such that Setting 
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in (37), dividing by hj and taking the limit yields

Hence for a sequence Ei  0 + we have

The end of the proof is similiar to that of Theorem 6.1. Let z, p, wi,

a;, qi be as in the proof of Theorem 6.1. Then

Consider such converges weakly to
p and qij~q~Q. Then the last inequality imphes that ( p, z- q ) >_ p
which yelds that p can not be equal to zero and completes the proof. D

COROLLARY 7 . 4. - Let yo E G (xo). Assume that Y is a Hilbert space
and that there exists a (closed) subs pace H c Y of finite co-dimension, z E H,
p > 0, M > 0 such that for all (x, y) E Graph (G) near (xo, yo) and all small
h>O

If for some k~1, 0~Int co Gk(x0, y0) then we have the same conclusions as
in Theorem 7.2.

The proof is similar to the proof of Corollary 6.8 and is thus omitted.

8. TAYLOR EXPANSION

AND THE INVERSE FUNCTION THEOREM

Consider a function f from a Banach space X to a uniformly smooth
space Y. Let x0~X and assume that for some integer at xo.
Then f can be approximated on a neighborhood of xo by its Taylor
expansion:

Let2014-.(x) denote the derivative of f at x. Then there exists a
~

function ~:R+ -~R+ such that =0 and for all x near xo and

all v~B
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THEOREM 8 . 1. - Assume that Y = R" and

Then there exists L > 0 such that for all x near xo and y near yo

The above is a consequence of Corollary 7 . 3 and the following.

LEMMA 8 . 2. - The k - th variation f (xo, f (xo)) is equal to

Proof. - For all x near xo, and all v E B and h > 0 we have
k _ _ _

where 
x 

lim 
o 

Hence the Hausdorff distance of

f 03A3 hi-k i! k 
v...v| ~v ~~ 1} smaller that s (h),h‘ , i k a‘ .f i (x) v ... v| ~ v I I _- 1 and .f (Bh (x)) k -f is smaller that E (h),l. ax 
v... v I II v II h 

h 
is smaller that E (h),

where lim E (h) = o. The result follows from the definition of the k - th

variation. D

Observe that Theorem 7.1 yields.

THEOREM 8. 3. - Assume that for some p > 0, M > 0 and for all x near
xo and all small h > 0

Then there exists L > 0 such that for all x near xo and y near yo

Remark. - In [17] we derived from the above theorem a second order
sufficient condition for the existence of local Holder inverse of f with the

Holder exponent equal (k = 2).
2
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9. AN IMPLICIT FUNCTION THEOREM

Consider Banach spaces X, P, Y and a continuous function

g : X x P -~ Y. Assume that for some (x, p) E X x P

is continuous on a neighborhood of (x,]i). We investigate
ax

here the sets

Since g is continuous, the (set-valued) map Z has a closed graph.
Moreover

The results of Section 6 yield the following implicit function theorem.

THEOREM 9 .1. - Assume that for some p > 0

and let 0  E  1 be given. Then for some b > 0 and all (x, p) E Bs (x) x Bs (p)
there exists z (p) E Z (i. e, g (z (p), p) = 0) such that

The above result extends [37], Theorem 2. 2. The Banach open mapping
theorem imply that (38) is verified (for some p > o) when the derivative

g (x, /?) is surjective.
ax

Proof. -_ Fix E’  E  1 and let ~’ > 0 be such that for all

Let 0  ~  b be so small that for all
4

For every p e Bs (p~ define the (single-valued map) G : X -~ Y by
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Then Gp satisfies assumptions of Theorem 6.1 with p replaced by
(l2014s’)p and 8=8’. Therefore for every satisfying
~Gp(x)~~03B4’ 4, ~y-Gp(x)~min{03B4’ 03B4, 03B403C1(1-~’) 4}

Applying the above with y = 0 we obtain

Since p E Bb (j) is arbitrary the proof is complete. D

Remark. - Theorem 9.1 can be proved for more general spaces P, Y
and for a less regular function g. We do not do it here in order to simplify
the presentation of the result. D

As an example of application consider a continuous function

f : Rn x R" --~ Rm and an implicit dynamical system.

An absolutely continuous function x E W1, (0, T), T > 0 is called a trajec-
tory of (39) if for almost all t E [0, T], f (x (t), x’ (t)) = o. A direct way to
make the above system implicit is to replace (39) by the differential
inclusion

where the set-valued map F : Rn  R" is given by

An absolutely continuous function x E W 1 ~ 1 (0, T), T>0 is called a

trajectory of (40) if for almost all t E [0, T], x’ (t) E F (x (t)). It is clear that
solutions of the implicit system and of the corresponding differential

inclusion do coincide. Since f is continuous, F has a closed graph. If

moreover for all x E Rn there exists E > 0 such that

then F has compact images and is upper semicontinuous. When F is

locally Lipschitz in the Hausdorff metric, then it inherits many properties
of ODE. For instance, solution sets of the differential inclusion depend in
a Lipschitz way on initial conditions [2] and the variational equation of
ODE may be extended to differential inclusion ([20], [21]). The result
below provides a sufficient condition for the local Lipschitz continuity of
F (in the Hausdorff metric).
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THEOREM 9 . 2. - Assume that f e C1 and that (41) holds true for all
x e If ie Rn is such that F (I) # §§ and for all v e F ( D the derivative

ðf( - )... h F. I II L. h. 
-~f(x, v) is surjective, then F is locally Lipschitz at x.

lv

Proof - Fix M as above. By (41), F (M) is a compact set. Hence the

surjectivity of derivative yields that for some p > 0 and all v e F (M)
, ,

Since fEC1, by (41), there exist L >_o, ~ > 0 such that for all
is L-Lipschitz on Applying Theorem 9 .1 to

the function g (x, p) : = f (p, x) and using compactness of F (x) we prove
that for some K>O, 0  ~  ~ and all x, (~ F (x)
there exists vy E F (y) satisfying

On the other hand the upper semicontinuity of F yields that for some
0  ~’  ~ and all we have F (x) c Therefore for all x,

and all vxEF(x) there exists vyEF(y) satisfying (42). This is

equivalent to the local Lipschitz continuity of F at x.

10. LIPSCHITZ BEHAVIOR OF CONTROLS

Let U be a separable metric space, E be a Banach space and

continuous, differentiable in the first variable function.
We assume that

(a) f is locally Lipschitz in the first variable uniformly on U, i. e. for

every xEE there exist L > 0 and E > 0 such that for all u E U, f ( . , u) is

L-Lipschitz on BE (x) : i. e.

(b) For every u E U the derivative ‘~’~ ( . , u) is continuous.
ax

(c) For every x E E the set f (x, U) is bounded.
For all T > 0 a (Lebesgue) measurable function u : [0, T] -~ U is called

an admissible control. Let ~T denote the set of all admissible controls
defined on the time interval [0, T]. Define a metric on by setting

where ~ states for the Lebesgue measure. The space (~T, dT) is

complete [13].
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10.1. Finite dimensional control system

Let E = Rn, xoEE and f, U be as above. Consider the control system

An absolutely continuous function x E W 1 ~ 1 (o, T) (the Sobolev space)
is called trajectory of the control system (43) if and there exists

such that x’ (t) = f (x (t), u (t)) a. e. in [0, T].
For all T > 0 the reachable set of the system (43) at time T is given by

R (T) _ ~ x (T) I x E W 1 ~ 1 (o, T) is a trajectory of (43)}.
Let T) be a given trajectory and u~uT be a corresponding

control. We provide here a sufficient condition for

and for regularity of the "inverse".
Consider the linear control system

a~

and detine the corresponding reachable set

RL (T) _ ~ w (T) ~ w E W 1 ~ 1 (o, T) is a trajectory of (44) ) .
For all T], let Su ( . ; s) denote the solution matrix of the system

where 1 states tor the identity. Then
/ AT

every u~uT we denote by Xu the solution of (43) (when it is defined
on the whole time interval [0, T]) corresponding to the control u.
THEOREM 10.1. - Assume that

Then z (T) E Int R (T) and there exist ~ > 0, L, > 0 such that for every control
u~uT satisfying dT(u, u)~~ and every bEB£(z(T)) we can find a control
~uT with

..~... ~ . , r _ _ __ , I _ ..
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In particular for all b E BE (z (T)) there exists a control u E such that

Remark. - The fact that from (45) follows z (T) E Int R (T) is well
known. The second part of Theorem 10.1 providing an estimation of
controls is a new results. We also observe that E and L in the above claim
can be estimated from the data of the problem. D

Proof. - Replacing t by t T we may assume that T = 1. Set u = u1. From
the Gronwall inequality follows that for some b > 0, the map 
from B~ (u) to C (0,1; E) is single-valued and Lipschitz continuous. For
all and s E [0, 1] let Su ( . ; s) denote the solution matrix of the
linear system

Fix v~U and let 0  to  1 be such that 
u (to)). (The set of such points to is of full measure in [0, 1].) For all small
h > 0 consider controls

and let xh denote the solution of (43) corresponding to uh. Controls (46)
are needle perturbations of u and it is well known that

Set Vu (t) = f (x" (t), U) - f (xu (t), u (t)) and define the Lipschitz continu-
ous map G : Bs (u) -~ E

Then, by (47), for every arbitrary but fixed u E (u), for almost all
1 ] and all v E Vu (to), Su ( 1; xu ( 1 )). Let M be the Lip-

schitz constant of G. Hence G~ 1 ~ (u, xu ( 1 )) c MB and we proved that for
almost every to E [0, 1], and every

From the mean value theorem follows that for all measurable selection
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By (45) there exists p > 0 such that

On the other hand Gronwall’s inequality and the assumptions (a), (b)
imply that { Su ( 1; . ) ~ converges uniformly to Sj(l; .) when u -~ u and
from (a), (c) and continuity of f we deduce that

where ~ states for the Hausdorff distance. Since the right-hand side of

(48) is convex, this yields that for some 0  ~  1 b and all u E B- u) ~ Y 
2 

s~ )

Theorem 6. 5 then and (50), (48) end the proof.

10.2. Infinite dimensional control system

We assume here that E is a Banach space the norm of which is Gateaux
differentiable away from zero. Let { be a strongly continuous
semigroup of linear operators from E to E and A be its infinitesimal

generator, xo E E. Consider the control system

Recall that a continuous function x : [0, TJ -~ E is called a mild trajectory
of (51) corresponding to the control u~uT if for all 

As before we define the reachable set of (51) at time T > 0 by
R (T) = { x (T) x E C (0, T ; E) is a mild trajectory of (S 1) }.

Let (z, M) be a trajectory-control pair of (51) on [0, T]. We study the
same question as in the previous section, i. e. sufficient condition for

z (T) E Int R (T)
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and for regularity of the "inverse". Consider the linear control system

Let Su(t; s) denote the solution operator of the equation

That is the only strongly continuous solution of the operator equation

where 0  s _ t __ 1. Then the reachable set RL (T) of (52) by the mild
trajectories at time T is given by

For every u~uT denote by xu the mild solution of (51) (when it is

defined on the whole time interval [0, T]) corresponding to the control u.

THEOREM 10 . 2. - Assume that 0 E Int RL (T). Then z (T) E Int R (T) and
there exist E > 0, L > 0 such that for every control u~uT satisfying
dT (u, u) -- E and all b E BE (z (T)) there exists u E with

.

Proof. - The proof is analogous to the proof of Theorem 10.1 so we
only sketch it. We may assume again that T =1 and applying the Gronwall
inequality, we can find b > 0 such that the map Bs (u) -~ C(0, 1 ; E)
associating with every the mild solution xu of (51) is Lipschitz
continuous. For all let Su (t ; s) denote the solution operator of
the equation

Define the continuous map G : ~ E by G (u) = xu ( 1 ) and consider
again the needle perturbations of controls (46) and the corresponding
trajectories xh of (51). Then we obtain (47) for all fixed u near u and all
to from the set of Lebesgue points of f (xu (.), u ( . )) of full measure (see
for example [14]). Let Vu (t) be defined as in the proof of Theorem 10 .1.
By the same arguments for all u near u and every measurable selection
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y (t) E co Vu (t) the inclusion (48) holds true. The assumptions of theorem
yield (49) for some p > 0. The Gronwall inequality imply that (50) holds
true for all u near U by the same reasons as in the proof of theorem 10.1.
Theorem 6. 5 ends the proof.

11. A MULTIPLIER RULE
FOR INFINITE DIMENSIONAL PROBLEMS

We study here necessary conditions satisfied by optimal solutions to the
abstract optimization problem

where
is a complete metric space

J, is a locally Lipschitz function from u to R
G, is a locally Lipschitz function from u to a Banach space
X

K, is a closed subset of X.
We denote the norm of X.
Recall that the contingent cone to K at x E K is defined by

and Clarke’s tangent cone to K at x e K by

where -~ denotes the convergence in K.
The normal cone to K at x is the negative polar of CK (x) :

The cone CK (x) is convex and is contained in TK (x) ([9], [3]).

DEFINITION 11. 1. - We say that the set K is sleek near xo E K f there
exists a neighborhood ~V’ of xo in K such that for every x E ~V’

In this case for every TK (x) = CK (x) [3].
In particular K is sleek when it is convex or when it is a C1-manifold.

THEOREM 11.2. - Assume that uo solves the problem (55) and that K is
sleek near G (uo). Further assume that for some compact Q c X, p > 0, E > 0
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and closed convex sets C (u) c (J, G)~1~ (u, J (u), G (u)) containing zero we
have

where ~ denotes the canonical projection of R x X onto X. Then there exist

such that

Remark.

(a) Observe that when X is a finite dimensional space, then the condition
(56) is always satisfied with Q equal to the unit ball and p== 1.

(b) It is possible to prove a similar theorem without assuming that K is
sleek, by using closed convex subcones of TK (x) and their lower limits.
This will lead however to somewhat "heavy" formulas. The sleekness
hypothezis allows to avoid such misbehavior of nonsmooth sets of

constraints. 0

Proof. - Consider the set-valued map P : ~ -~ R x X defined by

We first verify that Graph (P) is closed. Indeed let (un, qn) E Graph (P)
be a sequence converging to some (u, q). Then for some kn E K,
qn = (J + rn, G (un) - kn). Since J, G are continuous (rn, - kn) ~ q - (J (u),
G (u)) and thus { and { are converging to some (r, k)ER+ x K.
From now on we write (J, G)~ 1 ~ (u) for (J, G)~ 1 ~ (u, J (u), G (u)). It is not

difficult to show that for all k E K

Hence for all k E K

Since J is locally Lipschitz there exists M > 0 such that for all near

uo and for every (v, we This and the

assumption (56) yields that for all u~u near uo and all k E K near G (uo)

The sets A (u, k) being convex closed, we may use Theorem 6 . 4 with G
equal to P. Since uo is an optimal solution (J (uo), 0) is a boundary point
of Im P (image of P). Therefore the second statement of Theorem 6.4
holds true. Thus for some X E R, p E X* not both equal to zero
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Using that K is sleek we deduce that

Setting (j, g) = 0 we obtain (57) and setting r = o, v = 0 we get (58). C~

When the norm of X is differentiable, then the sleekness hypothezis on
K may be omitted and a stronger result can be proved:

THEOREM 11. 3. - Assume that the norm of X is Gâteaux differentiable
away from zero and let uo E Gll be an optimal solution of (55). Further assume
that for some compact set Q c X, p > 0, y > 0, E > 0

Then there exist (X, p) as in (57) such that

Observe that if Q c X is compact, so is co Q. Therefore we may always
assume in Theorem 11.3 that Q is convex. This and the separation
theorem immediatly yield

THEOREM I 1 . 4. - Let X, uo be as in Theorem 11. 3 . Further assumethat there exist subsets A (u) c co (u, G (u)), such that the map u - A (u)
is continuous at uo. If for some compact set Q c X, p > 0, y > 0 and all
x E K near G (uo)

then the same assertions as in Theorem 11. 3 are valid.

COROLLARY 11. 5. - In Theorem 11. 4 assume that J = cp ° G, where
X --~ R is C1 at G (uo). Then there exist ~,, p as in (57) such that

Proof. - Let (J, G)~ 1 ~ (u) and the set-valued map P be defined as in the
proof of Theorem 11.2. We already know that Graph (P) is closed and

that (59) holds true for all k E K. It is also not difficult to

check that

Since J and G are locally Lipschitz, there exists M > 0 such that for all
u near uo, (J, G)~ 1 ~ (u) c MB. On the other hand for every G (u))
there exists v E R such that (v, w) E (J, G)~ 1 ~ (u). Indeed let hi - 0 +, w~ -~ w,
uiEBhi(u) be such that Since J is Lipschitz at uo the
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sequence {J(ui)-J(u) hi} is bounded. Hence taking a subsequence and

keeping the same notations we may assume that for some v~R

Thus G (u) + hi wi) e (J, G) (Bhi (u)) and therefore

(v, w) E (J, ~)~ 1 ~ (u). This and the assumption of theorem yield that for all
u~u near uo, for all r~0 and all k E K near G (uo)

Since uo is an optimal solution (J (uo), 0) is a boundary point of Im P.
Hence by Theorem 6.7 there exist not both equal to zero
such that

Then from (61) we deduce (57). On the other hand from (59)

lim inf co (J, G)f 1 ) (u) c lim inf co (P~ 1 ) (u, t, z) U ,~M ~+ y~ + 1 B)
(u, r~ Z) -’ F (uo, J (uo), 0)

and we get (60). D

We apply the above results to derive necessary conditions for optimality
for two infinite dimensional control problems:

11.1. A Semilinear control problem
with end point constraints

Let E be a Banach space whose norm is Gateaux differentiable away
from zero. Consider a C1-function 03C6:E E~R, T>0 and closed subsets

Ko, KT c E. We study the optimal control problem
minimize cp (x (0), x (T)) (62)

over solutions of the system

where A, f, ~T have the same meaning as in the Section 10 and satisfy
the same assumptions. Let Su ( . ; . ) be the solution operator of (53).
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THEOREM 11.6. - Let (z, u) be an optimal trajectory-control pair of the
problem (62)-(63) and let RL (T) denotes the reachable set of the linearized
system (52) at time T. Assume that for some p > 0, y > 0, E > 0 and a

compact set Q c X

Then there exist ~, >_ 0, not vanishing simulta-
neously such that the function

satisfies the maximum principle

and the transversality condition

Proof. - .It is not restrictive to assume that T = 1. We

apply results of Section 10. Define the locally Lipschitz
map 

where xu denotes the solution of (51) corresponding to the control u.

By the Gronwall inequality G is locally Lipschitz. Set

u (t) =f (xu(t) , U) -f (xu ~t)~ u (t)) and

JO J

where Sxo ;u ( . ; . ) denotes the solution operator of (54). From Section 10 . 2
we known that for all u~u near uo

Differentiating with respect to the initial condition, we obtain easily
that for all weE, 

Therefore for all near uo
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On the other hand, by Gronwall’s lemma and assumptions (a)-(c) from
Section 10, the map (xo, u) -~ A (xo, u) is continuous in the Hausdorff

metric. Let b > 0 be so small that for Thus,

from the assumption (64), for all (jB), y1)~K0 x K 1 near (z (0), z(I))

Hence, applying Corollary 11.5 we deduce that for some ~, >_ 0,
1 (z (o), z ( 1 )) = NKO (z (0)) X (z ( 1 )) not all equal to zero

Define p by (65) with T =1. Setting r = 0 in the above we get

and therefore p (0) = ~, 
a~ 

( z (0), z ( 1 )) + ~o~ Setting w = 0 in (68) yields that
axl

for every measurable selection v (t) E co f (z (t), U) - f (z (t), u (t)),

and the maximum principle (66) follows. From the definition of p we get
the transversality condition (67). D

11.2 Optimal control
of a problem with state constraints

Let Q be an open bounded subset of Rn, (n __ 3) with C2 boundary r, X
be a Banach space and be a C1-mapping. Set

Y = H2 (SZ) n Ho (SZ) and consider sleek closed sets K c L2 (SZ), D c X and
a continuously differentiable function J : Co (Q) x L2 (SZ) ~ R. We study the
problem

minimize J (y, u)
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over the pair @, u) e Y x K satisfying
.. , , . .

where

and

A similar problem was considered in [7] with convex sets K, D 
and an

arbitrary C1-function cp.

THEOREM 11. 7. - Let u) be an optimal solution of the above problem
and Bx denote the closed unit ball in X. Further assume that for 

some p > 0

and a compact Q c X, we have

Then there exist X > 0, [ not all equal~ n - I

to zero, such that

~’roof. - Replacing Q by co Q we may assume that Q is 
convex. Define

A 1: Y -~ L 2 (SZ), J 1 : Y --~ R, by
_ _ . /............... "" !w !__B A !_.1B

and set 3i = D x K. Then, K and U bemg sieeK,
w i 1 1 B _ T . ~ T~ T ~ ..,~ ~W - T ~~BY’’ r

and our problem reduces to

A direct computation yields tnat tor all y~ r aim a.m w c 

~ 1 CY ) C~’~ A w + cp’ {y) w), L’ ~Y) ~’~ A w + cp’ (y) (J, ~)~1~ (~’, J (y)~ G tJ’))- °
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Moreover, since p is nondecreasing, V x E Q, c~’ (y (x)) >_ o. Hence
from [35] follows that for some E > 0

This and the assumption (69) imply that for some p > 0 and all (d, 
near (L (y)., A 1 

is continuous in the Hausdorff metric, using the separation theorem, (72)
and convexity of tangent cones T’D (a~, TK (k), we prove that for all 
near (L (y), A~ (y)) and all y E Y near y

Applying Theorem 11. 2 we deduce that for some ~, >_ o, ~, E No (L (y)),
P E NK (A1 (y)) not all equal to zero and all w E By

Hence

Setting - ~, aJ we obtain (70), (71). From (70) follows that
ou 

{J’~ ) P { )~( ) { )

and, consequently, that for all 0  s  
n-1

12. SMALL TIME LOCAL CONTROLLABILITY

Let U be a complete metric space and f : Rn x U -~ R" be a continuous
function, 
We assume here that:

(a) f is locally Lipschitz in the first variable, uniformly on U (see
Section 10);

(b) For some uEU,f(xo, M)=0, i. e. xo is an equilibrium;
(c) For all x near xo, f (x, U) is a convex, compact subset of RR.
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Consider the control system (43). It is called small time locally control-
lable (s. t. l. c.) if

where R (T) is the reachable set of (43) at time T >_ o.

DEFINITION 12 .1. - A vector u~Rn is called a variation of R ( .) (of
order k >_ 1 ) if for all t >_ 0

In other words v is a variation of order k if and only f

or equivalently if there exists a selection r (t) E R (t) (in general discontinuous)
such that

THEOREM 12 . 2. - Assume that for some variations vl, ..., vp of order
k

Then (43) is s. t. l. c. and there exist L>O, E>O such that for all small t > 0,
all y 1 near xo and all y E R (t) there exists t 1 such that

Proof - Define the set-valued map G : R --~ Rn by

There exists T > 0 such that the map G restricted to [0, T] has a closed
graph (see for example [2]). It was shown in [19] that ..., vp E Gk (0, xo).
Theorem 7. 2 ends the proof. D

In [19] and [23] we illustrated how the above theorem can be applied to
study small time local controllability of the implicit dynamical system (39)
and the differential inclusion (40).

13. APPLICATIONS TO NONSMOOTH ANALYSIS

The main aim of this section is to show how stability of the uniform
open mapping principle can be exploited when one deals with nonsmooth
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problems. Consider a locally Lipschitz map f : R" -~ Rm. Its generalized
Jacobian at a point xo is defined by

where limits are taken over all sequences {xi} converging to xo such that
the derivative does exist is a converging sequence [9].
In [42] the following approximation of f was considered: Let R" -~ [0, 1] ]
be a C°°-function having its support in the unit ball. For all integer 

by

Then hE ,f ~ f uniformly on compact sets and

such that

(see [42]).
The result below extends the inverse function theorem from [9], p. 253.

THEOREM 13 .1. - Assume that every A E af (xo) is surjective, then for
some L>O and for all (x, y) near (xo, f (xo))

Remark. - If p > 0 is such that for every A e lf (xo), pBcA(B) then

the constant L in the above theorem can be taken equal to 3. This is an
P ’

easy consequence of the proof given below. D

Proof - Pick A e lf (xo). It is surjective and therefore for some p’ > 0,
p’ Be A (B). Then there exists a neighborhood / of A such that for every

A’~N, 03C1’ B CA’ (B). Since lf(xo) is compact for some p >0, E>0 and
2

all A e lf (xo) + E B, we have p Be A (B). Consider fi defined as above and
let 6 > 0 be such that for all large I

fJ (x) c lf (xo) + E B .
Since fJ (x) B (x, £ (x)) , for all large I and all we have

p Be (x, £ (x)). On the other hand, using that fi are equilipschitzian
on we prove that for some 066 and for all 

~fi(x)-fi(x0)~~03B4 4. From Theorem 6 . I we deduce that for some E >0
Vol. 7, n° 3-1990.
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and for all large i

This and Theorem 4.1 imply that the above holds true as well with h
replaced by f for all x near xo and for all small h > 0. Theorem 2 . 2 ends
the proof. D

Remark. - In this paper we did not address the question of univocity
of the inverse. When m = n then, using the mean value theorem, it is

possible to check that is actually single valued on a neighborhood of
xo. (see [9]). D

THEOREM 13.2 (Implicit function theorem). - Consider a function
g : Rn x RP - Rk and let (Jc, p) E Rn x RP be such that g (x, p) = 0. Let 1t denote
the projection of Rn x RP X Rk on Rn x Rk. Assume that every A ~03C0 ag (x, p)
is surjective. Then there exists L > 0 such that for every (x, p) near (x, p)
satisfying g (x, p) = 0 and every p’ near p there exists x’ with

To prove the above it is enough to apply Theorem 13.1 to the function
f (x, p) - ~~ g (x, p))~

Remark. - The last theorem allows to obtain results analogous to those
of Section 9, concerning Lipschitz realisation of the implicit dynamical
system (39) with the function f merely locally Lipschitz. D

We study next a nonsmooth control problem:
Consider a separable metric space U and a continuous function

f : R" x U ~ Rn. We associate with it the control system

where u denotes the set of all measurable selections u : [0, 1] ] ~ U. We
consider ~ with the metric from Section 10.

Let g: Rn  Rk be a locally Lipschitz function and Ko, be

given closed sets. We study properties of the above control system under
additional constraints

and the following assumptions on datas:
(a) U) is bounded;
(b) V xERn there exists a neighborhood ~V’ and L > 0 such that for every

u E U, f ( . , u) is L-Lipschitz on ~.

THEOREM 13.3. - Let (z, u) be a trajectory-control pair of (75) defined
on the time interval [0, 1] and satisfying the end point constraints z (0) E Ko,
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z (1) E K1. Then at least one of the following two statements holds true:
(i) There exist ~, E Rk and an absolutely continuous function p: [0, 1] --~ R"

not both equal to zero, satisfying the adjoint inclusion

where ax f (x, u) denotes the generalized Jacobian of f ( . , u) at x, the

maximum principle

and the transversality condition

(ii) There exist L > 0, E > 0 such that for all (a, b, c, xo, u)
E Rk x R" x R" x Rn satisfying

there exists a trajectory-control pair {xu, u) E W 1 ~ ~ (0, 1 ) x ~ll of (75) with

and if x~ denotes the trajectory of (75) then

In particular this yields that for every a E Rk with II a - g (z (1)) ~) __ E and every
trajectory-control pair (xu, u) of (75) satisfying the end point constraints (76)
with ~ xu (0) - z (0) ~ + ({ t E [0, lj I u (t) ~ u (t)})~ E there exists a control u

and an initial condition xo E Ko such that

and the corresponding trajectory g (xu ( 1 )) = a. Consequently if
g (z (I)) is a boundary point of the set

then the statement (i) holds true.
A statement concerning boundary points was proved in [9], p. 200 under

somewhat different constraints. The above result shows that the maximum

principle (77)-(79) is verified for every trajectory-control pair (z, u) where
the system is not controllable in the sense of (ii).

Proof - Denote by x (. ; u, xo) the solution of (75) corresponding
to the control u and the initial condition xo. We define the single-
valued R" --~ R x Rn x Rn and the set-valued map G :
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By Gronwall’s inequality, ~ is locally Lipschitz and therefore Graph (G)
is closed. We shall use the result from Section 4. Let B)/: R" --~ [0, 1] be
a C’-function having its support in the unit ball. Define

.f by

and denote u, xo) the solution of (75) with f replaced by h
corresponding to the control u ( . ). Define the single-valued maps
~i : Rn -~ R x R" x Rn and the set-valued maps Gi : Rn -~ R x Rn x Rn

by

For the same reasons as before Graph (GJ are closed sets. Since for

every u E U, ~ f (., u) ~, ~ gi } converge uniformly on compact sets to f (., u)
and g respectively, we deduce from Gronwall’s inequality that for every
~ > 0 and all ~, > 0, there exists I >_ 1 such that

V xo E Bs (z (0)), ~u~ Bs (u), Gi (xo, u) c G (xo, u) + 03BB B. (80)
If there exist E > 0, I >_ 1 such that for some p > 0, M > 0 and all we

have

Then, by Theorem 6. 5 and (81) for some 6 > 0 and for all large i

and by Theorem 4.1 the above holds true with Gi replaced by G and 6

replaced by 03B4 4. Hence from Theorem 2 I and definition of G we deduce
that statement (it) is verified.

Let us assume next that there exists no E, p, M > 0 satisfying (81 ). Then,
by the separation theorem, we can find yi --~ z (0), u~ ~ fi, a~ Ko z (0),
bi 1 z ( 1 ), ji ~ ~, N; - oo such that for some (03BBi, ~i, qi) E R’‘ X Rn x Rn
of I (~,i, q;) I ~ =1 and ~,~ -~ 0 + we have
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From now on the proof reminds in many aspects those from [41] ] and
[22]. So we shall omit many details. Let S; ( . ; s) denote the fundamental
solution of the linear system

Define absolutely continuous functions p; : [0, 1] ] ~ Rn by

Then p; is the solution of the adjoint system

Taking subsequences and keeping the same notations, we may assume
that

and that {pi} converges weakly in W1, ~ to some p. Observe that from
the Gronwall inequality and the assumptions (a), (b) follows that

Thus from the definition of gi we get 03C9 E ag (z ( 1 )) * . It is clear that for
all i

Hence from (82) we deduce that

On the other hand from [3], Chapter 4

Thus, by (86), ~ E NKO (z (o)) and q E NK1 (z (1)). From (83) follows that
-p(1)=~~,+qEag(z(1))*~,+NK1(z(1)).
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Differentiating with respect to the initial condition we also prove that
for every of ] 1, the solution w of the system

verifies

Since it is given by w (t) = Si (t; 0)wo, we deduce from (82) that for every
wo of ]] Wo ( _ 1 and all large i

Taking the limit we obtain that for every such that I I wo ( ~ _ I ,
 -pCa)+~~ wQ>>-_o.

Therefore p (0) = r~ E NKO (z (0)) and we proved (79). Let M be the Lip-
schitz constant and on a neighborhood of (z (0), M) (it exists
because of the Gronwall inequality and the definition of h, g;). Set

From Section 10.1 we deduce that every solution w of the linear control
system

verifies

and from (82) we deduce that for all large i and for every measurable
selection v (t) E V~ (t)

Since f ( . , u) -~ f ( . , u) uniformly on compact sets, using (85), we obtain
from the last inequality that for every measurable selection

_ 

i

v (t) E co f (z (t), U) - f (z (t), u (t)), ~o ~ - p (t), v (t) ~ dt >_ 0. Hence p sati-
sfies the maximum principle (78). Finally from (85), (84) and Mazur’s
lemma we deduce that p is a solution of the adjoint equation (77). D
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