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ABSTRACT. - For the unit ball B1 in )R" and a Riemannian manifold
M we consider mappings class

which are stationary points of the p-energy functional
r

for some exponent p >__ 2. We shall prove that the point singularity at the
origin is removable provided the p-energy (u) is sufficiently small. There
are no a priori assumptions on the image of u in M.

Key words : p-harmonic maps, removable singularities, regularity theory, degenerate
functionals.

RESUME. - On considère la fonctionnelle d’énergie d’ordre p :

ou Bi 1 est la boule unite de M est une variete riemannienne, et
u : B 1- ~ 0 ~ -~ M est de classe C1 n H1, p avec p _>_ 2. On montre que si u
est un point critique de Ei, la singularité a l’origine disparait des que Ei (u)
est assez petit, sans qu’il soit besoin de faire d’hypothèse sur 1’image de u
dans M.

Classification A.M.S. : 49, 35 J, 58 E.
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1. INTRODUCTION AND STATEMENT OF THE RESULT

In our paper we investigate the regularity problem of p-harmonic maps
in higher dimensions. More precisely, we consider the following situation:
the parameter domain is the unit ball Bi 1 in n _>_ 2 (equipped with the
flat metric). As target manifold M we have a Riemannian manifold of
dimension m >__ 1 which is isometrically embedded in some Euclidian space

k >_ m. We are then interested in mappings u : B1  M of Sobolev class
being defined as the set of functions u from the linear

Sobolev space H’ p (B1, IRk) such that u (x) E M a. e. on B 1. The p-energy
of u E H1~ P (Bl, is defined as

and u is said to be weakly p-harmonic if u is a weak solution of the
Euler-Lagrange equations associated to the energy functional (1.1), i. e.
u satisfies for all cp E Co (B 1, 

where A (q) ( . , . ) is the second fundamental form of M at q. For exponents
p > 2 ( 1. 2) is a nonlinear system in the first derivatives and the modulus
of ellipticity degenerates at points where the first derivatives of u vanish.
If in addition u is also a critical point of ( 1.1 ) with respect to compactly
supported variations of the parameter domain we say that u is p-stationary.
The purpose of the present paper is to prove the following removable

singularity theorem for p-harmonic maps.

THEOREM. - Suppose is p-har-
monic and n >_ 3, 2 _ p _ n. If the p-energy ~1 (u) of u does not exceed a
certain constant E > 0 depending only on n, p, k and the geometry of M then
u belongs to C 1 ~ Y (B 1, M) for some y E ] 0, 1 [. The Holder exponent y
depends also on the absolute data n, k, p and M only and is independent
of u.

Remarks. - (i) For minimizers of the p-energy the above theorem is a
special case of a more general partial regularity result, see [F I], [F 2], [HL]
and [Lu].

(ii) If p = n, then the conformal invariance of the n-energy implies that

it suffices to assume E1(u)= JBi |Du|n dx~ to prove our removable

singularity theorem.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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(iii) The smallness assumption E1(u)~~ is necessary for 2 _ p  n.
Indeed, Coron and Gulliver [CGu] proved that the map u* : 
defined by u* (x) : = x ~ -1 x is p-energy minimizing in the class

Therefore, u* is a p-stationary map with finite p-energy and isolated

singularity at the origin.
(iv) In the quadratic case p = 2 of (stationary) harmonic mappings

several theorems on removable singularities have been proved by various
authors; we refer to [Gr], [Li 1 ], [Li 2], [Sa U], [Sch], [Ta 1], [Ta 2] for a
detailed discussion.

(v) The example described in (iii) shows that even for minimizers a
linear growth condition of the form

is not sufficient to deduce everywhere regularity. As an application of our
main theorem we prove in section 4, theorem 4 .1, that the origin x = 0
is not contained in the singular set of a p-harmonic mapping
u E C 1 (B 1- ~ 0 ~, M) provided u satisfies ( 1. 3) as well as the small range
condition Im (u) c IB for a regular geodesic ball IB c M. This result corre-
sponds to the everywhere regularity theorems obtained in [F 1], [F 3] and
[F 4] and is optimal as the example in section 4, remark (iii), shows.

(vi) With some minor modifications our main theorem extends to the
general Riemannian case of p-harmonic mappings

where Q denotes an open region contained in some n-dimensional Rieman-
nian manifold and xo is a given point in Q. If

holds for a sequence of geodesic balls in Q shrinking to xo,
then xo is a regular point of u..

In this paper we assume that M is a closed (complete) m-dimensional
submanifold of IRk of class C3. Since we do not assume that M is compact
we additionally require a bound K on the extrinsic curvature of M which
can be expressed in the form

where 03A0q~Hom (Rk, IRk) denotes the orthogonal projection onto the nor-
mal space (Tanq M)1. Condition ( 1. 4) implies that the norm of the second
fundamental form A of M in IRk is bounded by K and that M has a tubular

Vol. 7, n° 5-1990.
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neighborhood of distance in The nearest point projection x

onto M is defined on M 1 /x and has Lipschitz constant 1 1-03B4 on for

003B4 1. Moreover, we need a bound K‘ on the covariant derivative of A,
namely

For a detailled discussion of the conditions ( 1. 4} and ( 1. ~) we refer to
[DS], paragraph 1 .

2. A POINTWISE ESTIMATE OF THE GRADIENT

In this section we want to prove the following result:

2 .1. THEOREM. - There exist constants E i > 0 and Co depending only on
n, p and the curvature bounds K, K’ such that for any p-harmonic map
u~C1 (Br, M) satisfying the smallness assumption 1 we have

As a first step in the proof of theorem 2.1 we have the following estimate
valid for weakly p-harmonic maps of class C ~ which are defined on an
open domain S2 in 

2 . 2. LEMMA. - Suppose u~C1 (Q, M) is a weakly p-harmonic map.
Then V ~Du] : _ ~ Du ~~p-2»2 Du has weak derivatives which lie in

(Q, and for all B2 r ~~03A9 we have

Let A~ ~ M (x): == - [M (~ + /~) 2014 M (x)] the difference quotient’ 

/!
in the ith direction. Then, for a given with 03C6~0, (p= 1 on

Annales de l’Institut Henri Poincaré - Analyse non tineaire
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$r and O _ 4 we have
r

where

Similary to [U], lemma 3 .1, we further derive

where we have abbreviated ;u. Here we denote by C1,
C~, ... constants which depend only on n, p, K and K’. To treat I we
observe that for all we have

...... , . , _ . ,

Therefore, choosing 0h~ [2 03BA~ Du ~L~]-1 we obtain for all 0~ 03BB~ 1 :

(2. 5) dist (x), ~I~ = dist (( 1- ~,~ u (x~ + ~, u (x + M)

Thus, r) c M~~~2 ,~~ and we may use the nearest point projection
1t: -+ M to define the mappings xx : _ ~ Q ux : 8~~2 r -+ M satisfying

(x) and jr~ (x) = u for any x ~ 83~~ r. Next, we compute:
0394h,i(|Du|p-2 A (u) (D03B1 u, D03B1 u))

Vol. 7, n° 5-1990.
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Now, from Lip (03C0)~2 on M1/2 k and  K |03BE |.|~| [ for y~M and
~, rl E Tany M we infer IIn~) ~ ~  2 K u I ~ ~ ~ ( . Using also (  K

on M 1 ~2 x, ~ ~ ~ _ K’ and Young’s inequality we derive the estimate

Inserting (2. 6) into (2. 4) and recalling V (p I __ 4 we get
r

Finally, we estimate the left hand side of (2.7) from below. For this we
observe that

~2 ri

hence

Passing to the limit, i. e. h ,[ 0, we obtain the desired estimate (2.2). N
As the second step in the proof of theorem 2 .1 we derive for weakly p-

harmonic maps of class C~ an equivalent for the Bochner-Weitzenbock
formula for smooth 2-harmonic maps (see [EL] for a derivation in the
case p = 2).

2. 3. LEMMA. - There exists a constant K  oo depending only on p and
the curvature bounds K and K’ such that for any weakly p-harmonic map
UEC1 (Q, M) we have
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for all with cp >_ 0. Here we use the abbreviations

Proof. - For v E C°° (03A9, Rk) and 03B6 E Co (SZ) with 03B6 >_ 0 we readily verify

Since a. e. on the domain of integ-
ration in (2 . 9) may be restricted To estimate the

right hand side of (2.9) from below, we use

and

on to infer for with § % 0

Now, since Du is continuous on Q we get from lemma 2. 2

for any tEIR. In view of

this and lemma 2. 2 immediately imply that DZ u E (Q +).
Now, let be a fixed test function with cp >_ o. To prove our

lemma we approximate u by a sequence of smooth maps ui E C°° (Q, (~k)
such that Du locally uniformly on Q and D2 ui -~ D2 u in (Q+).

Vol. 7, n° 5-1990.
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Then, for arbitrary t ~ R we find

and

and from the locally uniform convergence Du on Q we also see
that

r, ~ , 

on Q+ = Du (x) > 0 ~. By (2.10) we have for each ui the inequality

From (2 .11 )-(2 .13) we see that (2.14) and the Euler-equation for u imply

Here, b > 0 can be chosen suitable to give for any cp E Co (Q +) with cp >_ 0

2 . 4. LEMMA. - Inequality (2. 8) extends to tp E Co (SZ) with cp >_ 0.

Proof - We first observed that is in the space (S2) (~ 
Hence (2 . 8) holds for cp E Ho~ 2 (0+) with compact support in Q and (p ~ 0.
In fact we can find a sequence (Q+), cpi ? 0, such that cp~ --~ cp in

HI° 2 (S~) with the additional property that the supports of the cpi are

contained in an uniform compact subset of Q. Passing to the limit i - 00
we arrive at (2. 8) for functions cp as above.
Now, if cp is as in the statement of lemma 2 . 4 we define for E > 0
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with

and use c~£ as an admissible test function in (2. 8). Letting E ---~ 0 the proof
is completed. D

As a third step in the proof of theorem 2.1 we show that weakly
p-harmonic maps of class C1 are also p-stationary.

2. 5. LEMMA. - Assume that u ~ G~ (Q, M) is weakly p-harmonic. Then

holds f or all X e Co (Q, Rn).
Proof. - Since u is of class C2 on ~ 0 ~ it is

easy to check that (2 .15) is true for X with compact support in Q+. For
general X we proceed as follows: We choose a 

such that By (2 .15) we have

Here we make use of the facts (compare lemma 2 . 2) that

and that the derivatives of these two functions vanish on Q - Q+..

2.6. COROLLARY (Monotonicity formula, see [F3], [HL], [P]). - Let
M) denote an arbitrary p-stationary map, 2  p _ n. For x~B1

and 0«7p~l2014~~ we have

where ~u/~r denotes the radial derivative of u with respect to the center x. 1
Here and in the sequel we abbreviate

Vol. 7, n° 5-1990.
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and if x is the origin of Rn we write Ep instead of rEx, p.

Remark. - Corollary 2 . 6 easily extend to the case of p-harmonic maps
of class C 1 (B 1- ~ 0 ~ , Rk) with an isolated singularity at
the origin.
We now come to the proof of Theorem 2 . 1 in which we make use of

ideas due to R. Schoen [Sch]: We define

and choose Xo E Br/2 such that F (xo) >__ F (x) for all x in Br~2. In case

= r/2 the statement of our theorem is obvious. Therefore we may
assume

This gives

We now distinguish two cases.

Case 1. - ~ Du (xo) I  a -1. Then according to lemma 2 . 4 we have for
all cp E Co (Ba (xo)), cp >_ 0, that

where we have abbreviated w: = Applying [GT], Theorem 8.17,
and [Gia], p. 95, we get
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with a constant Cy depending only on n, p, and K. This implies

Case 2. - I Du (xo) >__ ~ -1. Let 6 : = Du (xo) ( -1  6. This implies
I __ 2/~ on the ball c Applying again [GT],

Theorem 8 .17, and [Gia], p. 95, on the ball we find

hence (by the mono tonicity formula)

So if we impose the smallness condition

case 2 can not occur and we have proved (2 .1 ) with a suitable constant
Co..
A simple application of theorem 2.1 and the monotonicity formula is

the following

2 . 7. COROLLARY. - There exist constants E2 > 0 and C9 depending only
on n, p and the curvature bounds K, K’ such that any p-harmonic map

u~C1 ( B - 1 {0}, M) with E1 ( u )-  E 2 satisfies for all 0  x -  2 1.

Vol. 7, n° 5-1990.
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Proof. - Using the monotonicity formula we get for I x I _ 1:
2

Thus, if we 1 where E 1 denotes the constant from
theorem 2 . I we may apply theorem 2 .1 on the ball (x) and obtain

3. THE REGULARITY THEOREM

In this section we give the proof of our removable singularity theorem.
To show that a p-harmonic map with

sufficiently small total energy ~ ~ (u) is Holder continuous on B~ it suffices

to prove that there exists a radius r with 0  r _ ~ 2 and ae]0, 1[ such that
for any x~Br and 003C1~1 2r we have

where we have defined

First we state a discrete version of (3 1).

3 . .1. PROPOSITION. - There exist constants Eo = ~o (n, p, M) > 0 and

6 = c~ (n, p, M) E ]0, 1 [ such that for any p-harmonic map

with fEl (u) __ Eo we have

Proof. - We proceed as in [Li2] and prove our proposition by contradic-
tion. For this we assume that the conclusion is false. Then, we may
find a sequence of p-harmonic maps u~ E C1 (Bl - ~ o ~, M) which satisfy
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and

for any 03C3~ ]0, 1 [. The associated normalized sequence

where ui, 1 denotes the mean value of Ui over B1, i. e.

satisfies

where we have used Poincaré’s inequality. By co, cl, ... we denote in

this section constants which depend only on n, k and p. Then, the weak
compactness implies that there
exists a subsequence (again denoted by v~) such that vi weakly in

IRk). On B 1 we have for all 

In view of

we find for all cp E Co (~k)

To prove that ~ is weakly p-harmonic on B~ we argue as follows. By
the monotonicity lemma we get for any 0  ~ ~ - and 0  ~ -
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Thus, we find io e N such that

for all i~i0, 0  j a j ~1 2 and 0  r ~1 2 where 61 denotes the constant from
theorem 2. t. Using again theorem 2.1 and the monotonicity formula we
get

In this chapter Co, C~, ... denote constants depending only 
and M. Thus, for any a with 0r~|a|~1 2 we have

Hence, we can pass to a subsequence of vi (again denoted by v~) which
converges uniformly on B1/2 - Br to VOO. Using (3 . 2) for vi and Vj we find

Choosing cp = ~p (vi - Vj) with ~ E Co (B1/2- Br, R) we get using the uniform
convergence I vj ~~ ~ 0 as i, j ~ oo and E1(ui) ~ 0 as i ~ o0

r

and with [FF], lemma 3 . 2, we estimate the integral from below and obtain

Obviously, (3 . 5) implies the strong convergence in
H1’ p (81~2 - Br, To show the strong convergence on 81~2 we considerfirst the case p  n. The monotonicity lemma yields for all 0  r  1
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which is equivalent to

Now, let c~ E Co (B1, (~k). Applying (3 . 6) we find for any fixed 6 > 0 a
radius p : = p (S) such that for any 0  r _ p we have

Moreover, by the strong convergence in H 1 ~ p (B 1 ~2 - Br, IRk) we
find it depending only on b such that

for any i >_ ii (8). Combining (3 . 7), (3 . 8) and (3 . 4) we get

If p = n, we find (v ~ ) _ 1 and Holder’s inequality

which obviously implies (3. 7) and we proceed as in the case p  n to
deduce (3 .9).
Now, since v~ is weakly p-harmonic on B1/2 we can use the "Uhlenbeck-

estimate" [U], theorem 3 . 2, to infer for all balls Br (x) c B1/2

For 0  r _ ~ we easily conclude from (3 . 10) for all 6 E 10, ~ r 12 J J

Let ae 0,- L a>0 and ~~. Applying (3.6) again we find a radius
such for any we have
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To show (3.12) in the case p = n we argue as follows: On account of
the weak convergence in Ln the limit
lim exists for any set C ci B1. Moreover the total variation
i - 00

of )L" L wi is finite. Thus, by the Vitali-Hahn-Saks theorem {Ln L 
forms a sequence of uniforinly absolutely continuous measures, that is,
for any s > 0 there exists ~ > 0 such that L wi) (A)  ~ for all i E ~!

provided [In (A)  b. This obviously proves (3 .12) in the case p = n.
From the strong convergence vi --~ V 00 in H 1 ~ p (B ~ ~2 - By, (f~~) we conclude

that there exists i2 = i2 such that for all i >_ i2

Combining (3.12) and (3.13) we see that

Recalling E1 (vi) == 1 and " E03C3(vi) ~1 2 we immediately obtain

Taking (3 .11 ) into account this implies

and if we impose we get a contradiction..

Now, we prove our main result. For this suppose that

Rk) isp-harmonic and satisfies E1(u)~~0.
Then, by proposition 3.1 we find 03C3~]0, 1[ such that

Since the rescaled function = u (a x) also satisfies the hypothesis of
proposition 3 . 1 we can iterate (3 . 14) to obtain

This implies for 0  p  1 (choosing so that c~~ + 1 _ p _ c~‘)

where p is defined by
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Together with corollary 2. 7 we get for 0  ~ ~ -

This implies that for some exponent q > n. Therefore by the
Sobolev imbedding theorem we get u E C° ° 1- n/q (B 1) which proves

3 . 2. THEOREM. - There exist constants E = E (n, k, p, M) > 0,
C = C (n, k, p, M)  oo and 03B2=03B2 (n, k, p, M) E ]0, 1 [ such that each p-har-
monic map u E C 1 (B 1- { 0}, M) with E1 (u) _ E satisfies a Hölder condition

Using the continuity of u we can localize the regularity problem in the
target manifold M and we can proceed as in [Fl], theorem 7 . 2, and [F2],
theorem 3 . 2, to get C1 Y-regularity for some ye]0, 1 [.

4. APPLICATIONS : GEOMETRIC CONDITIONS
FOR REMOVABLE SINGULARITIES

In this section we consider p-harmonic maps u : B1-{0} ~ Br (q) c M
of class C 1 (B 1- ~ 0 }, M) which have an isolated singularity at the origin.
Here, Br (q) : ={q’ e M: distM (q’, q)~r} denotes a regular geodesic ball in
M of radius r and center q (see [H], p. 3, for the definition). With this
notation we state the following result:

4.1. THEOREM. - Suppose u~C1 (B 1- {0}, M) is p-harmonic, 2  p  n,
and satisfies the smallness condition

for some regular geodesic ball Br (q) in M as well as
. _ _. , _ _ . , , , , __ _ __ -

for some constant K E ]0, oo [. Then the isolated singularity at the origin is
removable.

Remarks. - (i) From [F 1 ], theorem 7 . 1, and [F 2], theorem D, we
know that for local minimizers in low dimensions n -1 _ p  n the singular
set is discrete and that the behaviour of the derivative near a singular
point xo is characterised by the linear growth condition

so that linear growth is a rather natural hypothesis.

Vol. 7, n° 5-1990.
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(ii) Using a slightly stronger definition of regular geodesic balls Br (q)
[requirering the condition r  ~t/(4 K), K >_ 0 denoting an upper bound for
the sectional curvature of M on Br (q)] it is possible to show everywhere
regularity of weakly p-stationary mappings M) with range in

without imposing any growth condition of the form (4.3): the

argument uses a partial regularity theorem from [F 3], Theorem 1 . 1, for
weakly p-harmonic mappings v : B1  M saying that under the condition
1m (v) c Br (q) a point x E B1 1 is a regular point if and only if the scaled
p-energy of v calculated on small balls centered at x is small enough. If in
addition v is also p-stayionary, the nonexistence of nontrivial homogeneous
tangent maps shows that the partial regularity criterion holds for all x E B 1.
For the details we refer to [F 3], Theorem 1. 2.

(iii) The . equator map w* : B 1- { 0 ~ ~ Sn defined by
w* (x) : = (u* (x), 0) is p-stationary for n >-_ 3 and 2 _ p  n. By direct calcula-
tion we also see that Dw* (x) I . ( x ~ = for all ;c ~ 0. Thus, the equator
map shows that even in the class of p-stationary mappings with isolated
singularities of linear growth the small range condition (4 .1 ) is necessary
and sufficient to prove removability of singular points. We conjecture that
Theorem 4. 1 remains valid without assumption (4. 2). Moreover, one
should try to calculate an optimal Ko such that Du (x) ~ . ~ x ~ _ K, 
for K  Ko implies 0 E Reg (u) without imposing further smallness condi-
tions on the range of u..

Proof. - According to our main theorem we only have to show that

To prove (4 . 4) we fix a sequence Ài ~, 0 of positive numbers and consider
the scaled maps Ui (x) : = u (~,~ x). Then, from (4 . 2) we get

where co depends only on n and p as the constants ci, c2, ... below.

Passing to a subsequence we may assume that ui converges weakly in
H 1 p (B1, IRk) to a map u0~H1,p (B1, and from (4 . 5) we infer for all
jc~O

Hence, we can pass again to a subsequence Ui which converges locally
uniformly on B 1- ~ 0 ~ to uo. Now, for any fixed b > 0 let r > 0 be a radius
such that rn - p  ~. Then, we obtain
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Since u is weakly p-harmonic on B 1 the scaled maps ui are also weakly p-
harmonic on Bi, i. e. we have for all n L°° (B 1, 

IR) with 0 _ ~r _ l, on B1-Br, we

decompose

into a sum of four integrals

Using Holder’s inequality we obtain the estimate

With the help of (4 . 6) and the curvature bound for the second fundamental
form A of M we further derive

From (4 . 9), (4.10), the definition of B)/, the LP-convergence the
uniform convergence on compact subsets of B 1- ~ 0 ~ and [FF],
lemma 3 . 2, we see that (4. 8) implies

Combining this result with (4. 6) we obtain

and since b > 0 was arbitrary we get the convergence ui ~ uo in the H 1 p-
norm on B1. Thus, uo is also p-stationary on B 1 and satisfies 0,
which can easily be seen by the use of the monotonicity formula for uo.
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Now, let Uo be a representation of uo with respect to normal coordinates
on centered at q. By virtue of [F 1 ], [F 4] we have for all

with a (Uo, DUo) : _ (gik (Uo) Da Uo D« Uo)p~2 1. Here g~k denotes the fun-
damental tensor on B~ (q) and r~k are the Christoffel symbols of second
kind. We now choose cp (x) : = cp (see [F 1], [F 4]) and obtain

and since uo takes its values in the regular geodesic ball B~ (q) the quantity
I (Uo) Da U-o Da Uo Uo is bounded below by a constant times

Thus, for we obtain

and hence Duo = 0 on Bi. Since strongly on B 1 we conclude that
Ep (u~) -~ 0 as i ~ oo for any 0  p ~ 1 which immediatly implies
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