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ABSTRACT. - We consider the second order Hamiltonian system:

where and is a

potential with a singularity, i. e., ( V (q) I ~ oo as q -~ e. We prove the
existence of a homoclinic orbit of (HS) under suitable assumptions. Our
main assumptions are the strong force condition of Gordon [8] and the
uniqueness of a global maximum of V.

RESUME. - On considère le système hamiltonien du second ordre

où et est un potentiel
singulier : | V(q)| ~ oo quand q ~ e. On montre alors 1’existence d’une
orbite homocline, sous Fhypothese dite de « strong farce » (Gordon [8])
et a condition que le maximum de V soit unique.
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0. INTRODUCTION

The purpose of this paper is to study the existence of homoclinic orbits
for a singular Hamiltonian system:

Here q2, ... , qN), N~3, and V is singular on S,
i. e., ( V (q) ~ ~ oo as q -~ S. We assume that S is a single point, i. e.,

S = ~ e ~ , e ~ 0. (Slight modifications of our method permit us to treat
more general compact sets S. See Remark 3.3). We also assume

V : RN B ~ e ~ --~ R has a unique global maximum 0 e RN, and we consider
the existence of a homo clinic orbit which begins and ends at 0, i. e., a

solution of (HS) which satisfies

More precisely, our assumptions on V are as follows:
(VI) There is an eERN, and R) ;
(V2) V (q) c 0 for all q E RN B ~ e ~ and V (q) = 0 if and only if q = 0,

and lim sup V (q) = V  0 ;

(V3) There is a constant 03B4~(0,1 2|e|) such that V(q)+1 2(V’(q),q)~0
for all q E Bs (0), where Bs (o) _ ~ x E R" ; x ~  b ~ ;

(V4) - V (q)  00 as q  e; i
(V5) There is a neighbourhood W of e in RN and a function

such that U(q)oo as q --~ e and

- V (q) % ~ U’ (q) ( 2 for q E W B ~ e ~ .
Now we can state our main result.

THEOREM 0 .1. - If V satisfies (V 1)-(V5), then (HS) possesses at least
one (nontrivial) homoclinic orbit which begins and ends at 0.

Remark 0.2. - The assumption (V5) is the so-called strong force
condition (cf. Gordon [8]) and it will be used to verify the Palais-Smale
compactness condition for the functional corresponding to the approxi-
mate problem (HS : T) (see Proposition 1.1). For example, (V5) is satis-
fied when V (q) _ - I q - e I ~ °‘ (a ~ 2) in a neighbourhood of e. The assump-
tion (V3) is a kind of concavity condition for V (q) near 0. In particular
(V3) holds for small b > 0 when V"(0) is negative definite.

This work is largely motivated by the work of Rabinowitz [12] and the
works [1-7]. [12] studied via a variational method the existence and the
multiplicity of heteroclinic orbits joining global maxima of V (q) for a
periodic Hamiltonian system. On the other hand [1-7] studied the existence
of time periodic solutions of prescribed period for the second order

singular Hamiltonian system (HS).
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The proof of Theorem 0.1 will be given in the following sections. We
consider the approximate problem:

Solutions of this approximate problem will be obtained as critical points
of the functional IT (q) (see Section 1). We show the existence of critical
points of IT (q) via a minimax argument, which is essentially due to Bahri
and Rabinowitz [4] (see also Lyusternik and Fet [10] cf. Klingenberg [9]).
We also get some estimates, which are uniform with respect to T ~ 1, for
minimax values and corresponding critical points q (t ; T). These uniform
estimates permit us to let T --~ oo ; for a suitable sequence 1 and a

subsequence Tk --~ ao, we see q (t + Tk) converges weakly to a homo clinic
orbit of (HS) as k -+ 00.

1. APPROXIMATE PROBLEM

In this section, we solve the approximate problem (HS : T) via a minimax
argument. Let Ho (0, T ; RN) denote the usual Sobolev space on (0, T) with

values in RN under the norm = I q|2 dt)1/2 . Let

Clearly AT is an open subset of (0, T ; RN). Consider

Then there is an one-to-one correspondence between critical points of
IT (q) and classical solutions of (HS : T).
To obtain a critical point of IT (q), we use a minimax argument. To do

so, IT (q) must satisfy the Palais-Smale compactness condition (P.S.) on AT.
(P.S.): if (qm)m~ ~ c AT is a sequence such that IT (qm) is bounded and

Ii (qm) -+ 0, then (qm) possesses a subsequence converging to some
q EAT,

PROPOSITION 1.1. - If V (q) satisfies (V l), (V2), (V4), (V5), then IT (q)
satisfies (P.S.).

Proof - Let (qm) c AT be a sequence such that IT (qm) is bounded and
IT (qm) -+ 0. Then by (V2) and the definition of IT (q), (qm) is bounded in
HQ (0, T ; RN). Hence we can extract a subsequence of (qm) - still we denote
by (qm) - such that qm converges to q E AT weakly in H( (0, T ; RN). On
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the other hand, by Greco ([6], Lemma 2 .1 ), if then
T

- i. e., Hence Therefore the form

of IT (q) shows qm ~ q strongly in Ho (0, T ; RN). []
Now we introduce a minimax procedure for IT (q). Let

for all and 

For y E rT we observe y (x) (t) = 0 for all

Since DN - 2 X [o, T]/a (DN - 2 X [o, T]) ^_~ SN -1, we can associate for each

03B3~0393T a map 03B3:SN-1 ~ SN-1 defined by

We denote by deg y the Brouwer degree of a map y : -~ SN - ~ . Let

It is clear that rT ~ Q,~. We define a minimax value of IT (q) by

Then we have

PROPOSITION 1. 2. - c (T) > 0 is a critical value of IT (q).
Proof - We will see later that c (T) > 0 in Proposition 1 . 4. Here we

assume it and prove that c (T) is a critical value of IT (q). Since IT (q)
satisfies (P.S.), we have the following deformation theorem (cf.
Rabinowitz [ 11 ]).

LEMMA 1. 3. - Suppose that c is not a critical value of IT (q). Then for
all 1 > 0 there are an ~ E (0, E) and ~ E C ([0, 1] ] X AT, AT) such that

1° 

2° IT (11 (T, q)) c IT (q) for all (T, q) E [0, 1 X AT;
3° ~ (l, c where we use the notation :

Arguing indirectly, we suppose c (T) > 0 is not a critical value. Applying
Lemma 1 . 3 to c = c (T) > 0 and s = c/2, we have a deformation flow 11 (r, q)
with the properties 1 °-3°. Moreover, we have

In fact, since r~ ( 1, 0) = 0 (by 1 °), we for On
the other hand, we have by 2°
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Hence 11 (r, y (x)) (t) ~ e for all (x, t) E DN - 2 x [o, T] and i E [o,1 ] . Thus we
have

Therefore 11 for that is, we have ( 1.1 ).
Choose 03B3~0393*T such that max and consider

x e DN - 2
Then by 3 °, we have

This contradicts with c = c (T). Therefore c (T) > 0 is a critical value of

IT (R’) ~ .

PROPOSITION 1. 4. - There is a constant co > 0 which is independent of
T > 1 such that

Proof. - For any given we define 1) by

Then we can easily see the following
1 ° deg yT = deg 0, that is, yT E I-’T for all y E I-’ 1 ;
2° IT (yT (x)) = I1 (y (x)) for all x E DN- 2 and 03B3~0393*1.
Therefore we get

Next we prove the existence of a constant co > 0 such that c (T) _>_ co for
all T >_ 1. For any given we have

Otherwise, we can easily see that deg y = 0. Hence there is
(xo, to) E DN - 2 x [0, T] such that

Since y (xo) (0) = 0, there is an so E (0, to) such that

Vol. 7, n° 5-1990.
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By the Schwarz inequality, we have for q (t) = y (xo) (t)

where

Thus we have

.

a. e.,

By ( 1. 2) and ( 1. 4) we obtain the desired result..
From Proposition 1. 2 and 1.4, we deduce the following.

PROPOSITION 1. 5. - For the problem (HS : T) has a solution

q (t ; T) such that

where co, c 1 > 0 are independent of T >_ 1 ..

2. SOME ESTIMATES FOR SOLUTIONS q (t ; T)

Clearly from the definition of IT (q) and Proposition 1. 5, we have

LEMMA 2. 1. - There is a constant C > 0 which is independent of T >_ 1
such that

v v

In what follows, we denote by C, C’, ..., various constants which are
independent of T >_ 1.
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PROPOSITION 2.2. - 
Proof. - Suppose that q (t ; T)ft Bs (0) for some t E (o, T). We can find

an interval (s, t) c (0, t) such that q (s ; T) E aBg (0) and q (i ; Bs (0) for
all t). Then

On the other hand,

where ms > 0 is a constant defined in (1.3).
Combining the above two inequalities, we get

Thus we have

Therefore we conclude

Since q (t ; T) is a classical solution of (HS : T), we can see

is constant in time t E [0, T]. Moreover we have

LEMMA 2 . 3. - ET  0 as T -~ oo . In particular,

Proof. - Integrate (2.1) over (0, T), we have by Lemma 2.1

Hence we get ET  0 as T -~ oo . Since q (0 ; T) = q (T ; T) = 0, we have

Vol. 7, n° 5-1990.
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The following proposition gives us an L oo-bound from below for q (t ; T).
This is an only place that the condition (V3) plays an role.

PROPOSITION 2 . 4. - I) q ( . ; T) I IL~ ~o, T~ > ~ f~r a~l T >_ 1.
Proof - Using (2 . 1 ), we get

We observe ET = T) I2 > 0. Otherwise q(0; T) = 0 and then we
2

have q (t ; T) m0 by the uniqueness of the solution of the initial value
problem:

But this contradicts with IT (q ( . ; T)) = c (T) > o. Therefore by (V3), we
have

Suppose that q (t ; T) I" takes its maximum at T). From the above
inequality we deduce q (to ; Bs (0). Thus we have

By the above Proposition 2 . 4, we can find two numbers 0  iT _ iT  T
such that q (iT ; T), q (iT ; T) E aB~ (0) and q (t ; T) E Bs (0) for all
t E [0, U [~T, T].
Then we have

LEMMA 2 . 5. - asToo.

Proof - Let qa (t) be a solution of the following initial value problem:

t~y tne continuous dependence of qa (t) on the initial data a, for any l > 0
there is an s > 0 such that

Thus by (2. 2), for any l > 0 we can find 1 such that

i. e., for T >_ Tl. Therefore we have 03C41T ~ oo as T ~ ~. Similarly we
have oo as T --~ 00..
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3. LIMIT PROCESS AND PROOF OF THEOREM 0.1

In this section, we construct a homoclinic orbit of (HS) as a limit of
q (t ; T) as T -~ oo and we complete the proof of Theorem 0.1. An argu-
ment similar to the following is used by Rabinowitz [12] to show the

existence of heteroclinic orbits joining global maxima via a variational
argument.
For each T >_ 1, we define q(t; T) E H 1 (R, RN) by

Then it clearly follows from Lemma 2.1 and Proposition 2.2 that
1° q (t ; T) is a solution of (HS) in ( - iT, T - iT) ;
2° q (0 ; T) E (0) for all T >_ 1 ;

uniformly bounded in T >_ 1. 
By 3°, we can extract a subsequence Tk  oo such that q (t ; Tk) converges

to some y (t) E C (R, RN) n L°° (R, RN) with y (t) E L2 (R, RN) in the follow-
ing sense:

Moreover we have

Similarly as in [6], Lemma 2 .1, we also have

PROPOSITION 3 .1. - y (t) a nontrivial solution of (HS) on R.
Proof. - Noting (3 . 4), it is suffices to prove for any cp E ~o (R, RN)

By Lemma 2. 5, we can choose ko E N such that supp ~p c ( - iTk, Tk - 
for all k >_ ko. By the property 1 ° of q (t; T), we have for k >_ ko

By (3 . 1 ) and (3. 2), we can pass to the limit and we get (3. 5).
Nontriviality of y (t) clearly follows from the fact y (0) E aBs (0), that is a
consequence of the property 2° of q {t ; T) and (3.1). N

Vol. 7, n° 5-1990.



436 K. TANAKA

As a last step of the proof of Theorem 0.1, we prove

PROPOSITION 3 . 2. - y (t), y (t) --~ ~ G!S t - + 00.
Proof. - First we prove y(t) ~ 0 as t ~ ~. Arguing indirectly, we

assume y (t) +- 0. Then for some sequence tk --~ oo and for some E > 0, we
have

On the other hand, by (V2) and (3. 3),

Hence there is a sequence tk ~ oo such that y (tk) E (0). Thus the curve
y (t) must intersect and ~B~/2 (0) infinitely often as t ~ ~. But this
contradicts RN) and (3. 3). In fact, suppose (a, b) c R is
an interval such that

Then we have

By Schwarz inequality, we have

If y (t) intersects and (0) infinitely often as t --~ oo, we can find
infinitely many disjoint interval (ai’ b~) with the property (3.6). Thus we
find

This contradicts with ~ (t) e L~ (R, and (3.3). Thus we obtain ~) -~ 0
as 

, ~

Since satisfies the equation (HS), is
bounded on each compact interval by 3° and (3.4). Thus ~(~; converges
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in (R, RN) to y (t). Hence

Since y (t) -~ 0 as t - oo, we have

In a similar way, we 0 as t -~ 2014 oo. N

Proof of Theorem 0.1.2014 Obviously by Propositions 3.1 and 3.2,~ (t)
is a homoclinic orbit for (HS). N
Remark 3.3.2014 Slight modifications of our argument permit us to treat

more general compact sets S. More precisely, we assume
(VO) S c= RN is a compact subset such that 0~S and 0 belongs to an

unbounded component 
We also assume the following instead of (V1)-(V5).
(VF) 
(V2’) for and if and only if and

lim 

(V3’) There is a constant 8e( such that

(V4’) - V (q) -~ oo as q -~ S ;
(V5’) There is a neighbourhood W of S in RN and a function

U ~C1 (W B S, R) such that U (q) ~ oo as q ~ S and

Then we have the following theorem.

THEOREM 3 . 4. - If V satisfies (VO) and (V 1’)-(VS’), then (HS) possesses
at least one (nontrivialJ homoclinic orbit which begins and ends at 0. .
Remark 3 . 5. - After completing this work, the author learned from

Professor Rabinowitz that Benci and Giannoni [13] and Coti-Zelati and
Ekeland [14] have also recently obtained results on homoclinic orbits of
Hamiltonian systems.
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