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ABSTRACT. - In this paper we prove the existence of a T-periodic
solution (for any given T) for a class of Hamiltonian systems which
includes the N-body one. We also prove that the solution we find is not a
simultaneous collision one.
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RESUME. - Dans l’article on démontre l’existence d’une solution
T-périodique (pour chaque T > 0) pour un ensemble de systèmes hamilto-
niens comprenant celui des N-corps. On démontre aussi que la solution
ainsi trouvée n’est pas une solution de collision totale.

Mots clés : Problème des N-corps, solutions periodiques.

INTRODUCTION

In the last few years a quite large amount of papers dealing with the
existence of periodic solutions for "singular" Hamiltonian systems using

Classification A.M.S. : 70 F 10, 34 C 25.
(*) Supported by MPI, Gruppo Nazionale "Calcolo delle Variazioni" (40%).
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variational methods has appeared in the literature. Such papers extend to

Hamiltonians of the form 1 2|p|2 + V (q), where V (q) behaves like 1 near
I q = 0, results on periodic solutions of Hamiltonian systems contained in
several papers (for example [9]).
We recall here [7], [1], [8], [6], [3], [2] for results on 2-body type problems.
As far as periodic solutions for N-body type problems are concerned,

variational methods have just started to be used. We recall here the

paper [5], where the variational structure of the problem is used to prove
the existence of periodic solutions of the N-body problem in the case one
mass is large and all the others very small (actually a bifurcation result),
and the paper [4] where the existence of generalized T-periodic solutions
("generalized" means - roughly - that collisions could - see paragraph 1
for a precise definition) for the 3-body problem is proved.

Motivated by the paper [4] we have studied the N-body type problem
and in this paper we prove the existence of periodic solutions of assigned
period T for the following system of ordinary differential equations

where xi E mi > 0 and

The N-body problem being our model problem, we assume

and

Under these assumptions we prove, in section 1, the following theorem

THEOREM A. - Suppose that V satisfies the above assumptions. Then
(P) has, b’ T > o, infinitely many generalized solutions. Moreover f Vij
satisfies, V i ~ j, the following Strong Force condition

then (1.1) has infinitely many non-collision solutions.
The other two sections of the paper are devoted to the study of

simultaneous collision solutions, i. e. of generalized solutions of (P) such
that all the bodies collide at some time t = t*. The method used to prove
existence, based on minimization of a suitable functional, permits us to
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prove that under the additional assumption

where 1 _ a __ , (here /l is a quantity that can be easily computed; it

depends on a and ml, ..., mN; it is > 1 in many cases, See remark 3 . 4)
the solution we find is not a simultaneous collision solution.
With respect to the existence results contained in [4] we point out that
(a) we require but we have no assumptions (besides

boundedness from above) on the behaviour of V at infinity;
(b) our method, based on minimization of a suitable functional, is

simpler than the one used in [4] and works for any N >_ 2;
(c) in the case the strong force condition is not satisfied the result of

Theorem A, as that of any theorem proving existence of periodic solution
for system like (P), can be obtained just minimizing f on the set of
simultaneous collisions (minimum which is achieved whenever it is finite
since the action functional is weakly lower semi continuous). To this

regard, Theorem 3 . 3 shows that, in some situations, the solution we find
is not a simultaneous collision solution;

(d) while in [4] it is proved the existence of infinitely many periodic
solutions also in the case in which the potential V depends on time i. e.

V = V (t, xl, ..., xN) we can only prove the existence of one solution
under the additional assumption

See Remark 1. 2.

1. EXISTENCE OF SOLUTIONS

Let us consider the following system of ordinary differential equations

where we assume
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N

We will also always assume ~>0, V and set M== ~ ~.
f=i i

We will say that a function X(~)=(~(~ ...~M)eC’([0, T]; 
is a non-collision solution of (1.1) if ~)~,(~ V~~ T] and if
X (t) solves (1.1).
We will say (following [3]) that X (t) = (~ (~ ... , ,~ (t)) e H~ (Sl; 

is a generalized solution of (1.1) if, denoting by G the set

we have that:

V t E [0, 
N

Then we prove

THEOREM 1 . 1. - Suppose that V satisfies (V 1-2-3-4). Then ( 1. 1 ) has,
V T > 0, infinitely many generalized solutions. Moreover if satisfies, V i ~ j,
the following Strong Force condition

then (1.1) has infinitely many non-collision solutions.

Proof. - We set

and define f : A ~ R as

It is easy to see that the critical points of f on A are non-collision
solutions of ( 1.1 ) . 

’
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Since Vij (x) = Vji (x), we have that

hence one can easily check that the critical points of f ~o are actually
critical points of f on A.
We now prove Theorem 1.1 in three steps.

STEP 1. - > 0 we modify in Bs (0) in such a way that the modified
potential Vs satisfies (SF).

This can be done, for example, setting

where [R+), (pg(~)=0,V~-~8, Then,

so that (SF) holds with 

Setting V ... , 
= 1 ~ V~, (~, - we define
2l~~~N

Clearly, no modification is necessary if Vij already satisfies a (SF) condi-
tion.

STEP 2. - Existence of a minimum for fs.
Let

Consider a minimizing sequence (X~n~) E Ao such that fs (X~n~) - cs. Then,
for N large,

Since ..., xN ~)  0, we deduce that

Vol. 7, n° 5-1990.
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Since xi(t+T 2)=-xi(t), we have that

hence

and we deduce, for the minimizing sequence x(n) = ..., 

This implies the existence of ... , N) with 
such that

and

It is well known that from (SF) it follows that f (X~n~) ~ + oo for every
sequence (X~n~) such that x(n) ~ X weakly in H~ 1 and strongly in C° if

X E aA (see [7], [1]). This proves that Since f is weakly lower
semicontinuous, it immediately follows that Xs E A° is a minimum for fs
on Ao. Such a minimum is then a non-collision solution of ( 1.1 ) (with Vs
replacing V). In particular we have proved that (1.1) has at least one
non-collision solution if (SF) is satisfied (in such a case VO = V).

STEP 3. - ~ -~ o.

Clearly cs  C, ‘d ~ > o. This implies

Then, as before, x~ -~ x~ weakly in H~ and strongly in C°. We will show

that X = (xl, ..., xN) is a generalized solution of (1. 1).
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In fact, set, ‘d i ~ j, ~i~ _ ~ t E [o, T] such that x~ (t) = x~ (t) ~ . Then each ~~~
is a closed set and

Then, if meas C(j ij > 0

and we reach a contradiction which proves meas ~1~ = o, 
Let W = U ~~~. Then Take ‘d n >_ 1 Kn c [o, Kn

compact, U Kn = [o, T]EW, Let Kn = { X (t) such that 
n>_1

Then, is compact and Take a neighborhood Un of Kn
such that the closure of Un is compact in Q. Then, V8 sufficiently small
we have that Vs -~ V in 

_ 

C 1 (Un; f~). Therefore

~x~ Vs (xi (t), ..., N (t)) ~ ~xi V (xl (t), ..., xN (t)) uniformly on Kn. Since

we deduce that

and hence X (t) = (Mi (t), ..., XN (t)) solves

Since U Kn=[0, T]BG we have that X satisfies (a) and (b) of the defini-

tion of generalized solutions. (c) follows noticing that

is a constant of the motion. Moreover, from

T

it follows, since fs = cs and 
Jo 

~ x~~ (t) ~ 2 dt are bounded, that Es is

bounded in f~. We can then assume Es -~ E. It follows that,
s-o
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V tl, t2 E ~U, 

and this proves X is a generalized. T-periodic solution of ( 1. 1 ). We deduce
that, ‘d T > o, ( 1.1 ) has at least one generalized solution XT.
To prove the existence of infinitely many T-periodic solutions we simply

remark that XT cannot be a constant solution of ( 1.1 ). Otherwise the

symmetry property would imply that X - 0 in con-

tradiction with the fact XT is a generalized solution. Then XT is a T-

periodic, non costant function. Let T , be its minimal period.k 
- p

Applying what proved above for T = T we find a solution 

which is a T k+1-periodic solution of (1.1). Since the problem is auton-
omous, such a solution is also a T-periodic solution. Iterating such a
procedure the theorem follows. D

Remark 1.2. - If V depends on time in a T-periodic fashion, satisfies
(Vl-4) and

then the same proof of Theorem 1 .1 shows that one T-periodic solution
exists also for the non-autonomous system. D

2. ESTIMATES ON SIMULTANEOUS COLLISIONS

In this section we want to estimate the infimum of our functional on
the generalized solutions of ( 1.1 ) which are simultaneous collisions, where
by simultaneous collision solution we mean a generalized solution such
that it exists a t* E [0, T] such that
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Such an estimate will be deduced from an estimate on simultaneous

collisions for a potential V of the form

We start by proving the following

LEMMA 2 . 1. - Let X = (xl, ..., ... 
x Then

Proof.

and the lemma follows. D

Let us introduce the following notation: we set, for X==(xi, ..., E A

and, for R E H 1 ( p T ~ +o

We also set

is a simultaneous collision

Vol. 7, n° 5-1990.
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Then the following lemma holds

LEMMA 2.2:

Proof - Suppose X(~)=(~i, ..., a simultaneous collision.

Then, without loss of generality, we can assume that the simultaneous
collision occurs at t=0, i.e. that xi(0)=xj(0) ~i, j. Set ~=(0). Then,

since X e Ao, we have that xi(T 2) =-~.
On the other hand

is constant along solutions; this implies that

(which is a continuous function V t) has the form Z (t) _ ~ t + ~o. Since Z (t)
is T-periodic we must have § = 0. Then

and

which implies ~o = M r~ = 0.
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Using Lemma 2. 1 and the symmetry property X we

have that, ~ X~039B0

N

Setting now MR (t)~ = £ m; ] x; (t) ]~ we have, since X is a simultaneous
;= 1 

collision, that R e H© ([0,T 2]; R + and that MR’ (t)2  £ m; ) x? (t)|2 from
which the lemma follows. D

Using the methods of [6] it is possible to give a more explicit estimate
of

In fact if follows from [6], section 2, that

where

hence

where
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Remark 2. 3. - In the paper [6] it is also proved that

is a lower semicontinuous function with values in [1, + 00] such that

2. 1 cp(a) +00, ‘doc> 1;
3. (p(a)= +00, 
To sumarize the results of this section, we can state the following

PROPOSITION 2.4. - ,Suppose

Then

Inf ~, f’ (X) such that X is a simultaneous collision}
> 2 60 (a, b) >_ 2 91 (a, b).

3. EXISTENCE OF SOLUTIONS WHICH ARE NOT
SIMULTANEOUS COLLISIONS

In this section we will prove that, under suitable assumptions of V,

inf ~ f (X) I X E Ao }  inf { f (X ) I X is a simultaneous collision solution}
and from this it will follow that the generalized solution found via

Theorem 2.1 is not a simultaneous collision.

Let us first of all estimate the infirmum of f on Ao.

LEMMA 3. 1. - Suppose

Then, denoting by Xo one of the solution found via Theorem 1. 1, we have
that

where
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and

Proof- Take ç, IRk such ~ ~ ~ ~ 2 = 1, (~, r~ ) = 0 and define

where Re R is to be determined. Then

while

This implies

We deduce that, VR>O

Minimizing the right hand side, we find

Vol. 7, n° 5-1990.
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where

Now, let Xo be the (generalized) solution of equation ( 1.1 ) which we
have denoted XT in the proof of Theorem 1.1. Then Xo = lim Xs. Since

s-~o

we have that

Since V§=V outside a 8-neighborhood of the singularity set, we have that

On the other hand it follows from the lower semi-continuity of f that

and the lemma follows. 0

Setting

we can now prove

THEOREM 3 . 3 . - Suppose that (V 1-6) hold and that

Then, if

(1 . .1 ) has, for every T > o, at least one T-periodic solution which is not a

simultaneous collision solution.

Proof. - Take Xo to be one of the solutions of ( 1.1 ) for which

Lemma 3 . .1 hold. Suppose that Xo is a simultaneous collision solution.
Then from Proposition 2.4 it follows that

On the other hand from Lemma 3 .1 we deduce that
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where R2 is given by (3 . 2). This implies

i. e.

which reduces to

contradiction which proves the theorem. D

Remark 3 . 4. - Theorem 3 . 3 states that among the functions satisfying

the symmetry property X t + T - X - ( t), the total collisions solutions
of ( 1.1 ) have action (i. e. value of the functional), greater than the one of
a particular planar and uniformly rotating function, provided V satisfies
condition (3 . 7). We remark that our condition (3 . 7) is not, in general,
optimal. In fact we know that it exists a planar and uniformly rotating
solution of ( 1.1 ), with Vij (03BE) = 

I for which the value of Oi is smaller

or equal than the one of our test funtion X (coinciding with it when all
the masses are equal). Moreover we do not know if our estimate on the
minimum of f on Ao could be improved considering particular non-planar
solutions. Such a problem seems interesting since it could indicate the
existence of periodic, non-planar solutions. Another remark concerns the
estimates on simultaneous collisions. While such an estimate proves to be

optimal (in the sense that we can construct solutions whose action is equal
to the estimated ones) for N = 3 and k >- 2, it becomes less and less precise
for k fixed as N increases.
One can check that condition (3. 6) holds for a large class of choices of

masses and a (even if not for all). For example, if mi=mj Vi,j, we have
that > 1 for all values of N _ 68. Moreover, y increases the more different
the masses are. For example, for N =16, we have that, if m~ =1, then
J.l 1.39, while, if mi = i, then J.l 1.43 and, if mi = ei, then ~, ,: 1.64. D
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