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ABSTRACT. - It is shown that as time approaches infinity, the solution
of the initial value problem for a regularized one-dimensional scalar
conservation law converges along rays to the solution of a certain Riemann
problem for the hyperbolic conservation law, even when this conservation
law is not genuinely nonlinear.
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RESUME. - On démontre que quand le temps devient très grand, la
solution du problème de Cauchy pour une loi de conservation scalaire
régularisée a une dimension converge le long des rayons vers la solution
d’un problème de Riemann pour la loi de conservation hyperbolique,
meme quand cette loi n’est pas veritablement non linéaire.
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1. INTRODUCTION

The scalar equation

has been studied for a long time. Among other things, it serves as a model
of the regularizing effect of a small viscosity on a hyperbolic conservation
law.

The equation (1.1) with (p(M)= -M~ was introduced as an approxima-
tion to the equations of fluid flow by H. Bateman [1] and by J. M. Burgers
([5], [6]). E. Hopf [9] and J. D. Cole [7] independently showed that the
solution of the initial value problem for this particular equation can be
reduced to the well-known solution of the initial value problem for the
heat equation.

In an important series of papers O. A. Oleinik and her students ([10],
[ 11 ], [12], [16], [17], [18], [20]) showed the well-posedness of the initial
value problem for the equation ( 1.1 ), as well as the continuity in s at
s = 0 of the solution.
When the function is convex, A. M. Il’in and O. A. Oleinik ([10],

[11]) obtained farreaching results about the large-time behavior of the
solution. They showed that if the initial values

have the limits u_ at - ~ and u+ at + ~, if u_ > u+, and if uo - u_ and
Uo - u+ are integrable near - 00 and near +00, respectively, then the
solution converges uniformly to a travelling wave solution as t

goes to infinity. They also showed that if u_ > u+, then the solution

converges uniformly to a simple wave of the form H (x/t). The condition
that is the condition that, in the terminology of Lax ([13], [14]),
the equation obtained by setting E = 0 in (1 . 1) is genuinely nonlinear.

In this work we study an equation of the form

with a (u) strictly positive and cp (u) not necessarily convex.
The equation (1.2) with s=0 and cp not convex was introduced by

S. E. Buckley and M. C. Leverett [4] as a model for the one-dimensional
convection-dominated displacement of oil by water in a porous medium.
The equation 1.2) arises in this problem when the capillary terms are
retained, and there has been a great deal of interest in its numerical
treatment. (See, e. g., [21].) The equation (1. 2) also arises as a model for
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a stable monotone finite difference approximation to the equation with
E = o. (See [8].)

In this work we shall obtain some results about the large-time behavior
of the solution of the initial value problem for ( 1. 2) when cp" is continuous
and has only isolated zeros. We shall show that several of the important
features of the Il’in-Oleinik results can be extended to this case, although
some are, of course, lost.

In Section 2 we show that as t approaches infinity, the solution is

essentially bounded by the limits superior and inferior at infinity of the
initial data, so that all initial values outside these limits are diffused away.
The main result of this work is proved in Section 3. We show that if

the initial function uo (x) has limits and if u is the solution of

( 1. 2) with u (x, 0) = uo (x), then for all but finitely many values of ç the
function u (t, ç t) approaches V (~), where V (x/t) is that solution of a
certain Riemann problem which satisfies the Condition E of Oleinik [19].
This Riemann problem is obtained by setting E equal to zero and taking
for initial values the constants u _ = uo ( - oo ) for x  0 and u + = uo ( + oo )
for x > o. The function V is monotone and piecewise continuous, and
Theorem 3 . 3 states that the convergence is uniform in ç and s when ç is
restricted to any closed interval where V is continuous, and E remains
bounded. Theorem 3 .1 states that, while the function u (t, ç t) need not
converge at a point of discontinuity of V (~), it is essentially bounded by
the right and left limits of V at this point when t is large.
Our results are proved by applying the comparison lemma for parabolic

equations to solutions of the equation ( 1. 2). We do not use the auxiliary
function introduced by Il’in and Oleinik, and consequently we do not
need to assume the integrability of the functions Uo-U- and Uo-U+. The
convergence along rays which we obtain is, of course, considerably weaker
than the uniform convergence obtained by Il’in and Oleinik. In fact, Il’in
and Oleinik gave an example which shows that one cannot expect uniform
convergence without their integrability condition, even when cp is convex.

A. S. Kalashnikov [12] proved under essentially the conditions on cp
which we use that as s decreases to zero, the solution of the initial
value problem for (1.1) approaches the weak solution which satisfies
Condition E of the corresponding problem with E = 0, uniformly on finite
t-intervals. Therefore, since our results are uniform in E, they also apply
to the solution of the latter problem. Our results for this case are, of
course, much weaker than the hyperbolic convergence results of Liu [15]
when uo has constant values outside a bounded interval.

As additional motivation for this work, we observe that a natural way
to study the behavior of the solution of an initial value problem for the
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multidimensional regularized scalar conservation law

is to look at a comparison solution v (e . x) which depends only on the
single variable ex with e a fixed unit vector. The function v must then
satisfy the equation ( 1. 2) with the function replaced by e - f (u) and
a (u) replaced by 03A3aij (u) ei ej. Even if all the components of the vector-
valued function f are convex, there will, in general, be vectors e for which
e . f is not convex, so that a knowledge of the behavior of solutions of
( 1.1 ) for nonconvex cp is useful in the treatment of the multidimensional
problem.

It is easily seen that a comparison principle applies to solutions of the
equation ( 1. 3), so that particular solutions of the form v (e . x) serve to
bound other solutions. In particular, our results show that if for some
unit vector e the function e . f" is continuous and has only isolated zeros,
and if the initial values u (x, 0) have limits u+ as e - x tends to ± oo, then
for all but finitely many values of ç the restriction of the solution u (x, t)
to the plane e - x = ~ t converges as to a constant V (~), where
V (e . x/t) is the solution of a one-dimensional Riemann problem which
satisfies Condition E. Bauman and Phillips [2] have given an example
which shows that one cannot hope to find uniform convergence in this
case, even when e . f is convex and u (x, 0) has constant values when e - x
lies outside a bounded interval.
Bauman and Phillips [3] have also obtained a convergence result anal-

ogous to that of Liu [15] for the equation ( 1. 3) with E = 0.
This work was performed during visits to the University of California,

Los Angeles, the University of California, Berkeley, the ETH, Zurich, and
the University of Oxford while the author was on sabbatical leave from
the University of Minnesota. The author is grateful to all these institutions.
The author is also grateful to the ONR, which provided partial support
through Grant N 00014-86-K 0691 during his visit to UCLA.

2. ASYMPTOTIC BOUNDS FOR THE SOLUTION

In this Section we shall show that if the function cp" is continuous and
has only isolated zeros, then for large t the solution of the initial-value
problem
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is essentially bounded by the limits inferior and superior at I x ~ = o0 of
the initial data. We assume throughout this work that cp (u) and a (u) are
twice continuously differentiable and that a (u) is strictly positive.
We shall prove this result by means of several lemmas. The first of

these is the well-known comparison principle, which will be a principal
tool throughout this paper.

LEMMA 2. 1 (comparison principle). - Suppose that cp" is continuous.
Let v (t, x) satisfy the differential inequality

and let

Then v (0, x) -_ w (0, x) implies that v (t, x)  w (t, x) fot t >- o.

Proof - We note that the difference w - v satisfies the equation

where q (x) depends upon cp", a’, and a" evaluated at points between w (x)
and v (x) and upon the x-derivatives of v and w. The generalized maximum
principle for parabolic equations [22], Chapter 3, Theorem 7, Remark (ii),
then yields the result.

Remark. - It is easily verified that the conclusion of the Lemma is still
true if the differential inequalities are valid except on finitely many arcs of
the form x = x (t), provided v and ware continuous, their second x-derivatives
remain bounded, and the quantity a (w - v)/ax has a nonnegative jump across
each of these arcs.

Since any constant is a solution of the equation, the comparison prin-
ciple implies that

In particular, it follows that the solution u is not affected if the function
cp is altered outside this interval.
An important class of comparison functions is the set of travelling wave

solutions. These are solutions of the form v (t, x) = u (x - ct), where ù is a
function of one variable y, and c is a constant. If we substitute this
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function in the differential equation, we find that

Therefore

where K is a constant of integration. This first-order equation has the
implicit solution

Once the parameters c and K are chosen, one chooses some interval over
which the function cp (v) - cv - K does not vanish and fixes a point b in
this interval. Changing b within the interval is equivalent to changing the
parameter yo, so that the set of solutions is essentially parameterized by
c, K, and yo, while the choice of b can be thought of as a choice of one
of a discrete set of intervals.
We note in particular that if the line through two points (r, cp (r)) and

(s, cp (s)) of the graph of cp lies below this graph in the interval (r, s), and
if we choose

and

then the function cp (v) - cv - K is positive in the interval (r, s) and vanishes
at least linearly at its endpoints. Therefore, if b is chosen to lie in this

interval, then the travelling wave function u defined by the integral (2. 3)
increases from the value r at - oo to s at + ~. Similarly, if the graph of
cp lies below the secant line in (r, s), one obtains a travelling wave which
decreases from s to r as y goes from - oo to 00 .

LEMMA 2.2. - If cp" is continuous and if the initial function uo is

bounded, then for each fixed t the solution u (t, x) of the problem (2. 1 ) has
the properties
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and

uniformly in 0  E __ Eo..

Proof - Suppose that uo has the limit superior u _ as x -~ - oo, and

that Choose any M) and M’>M. Next choose c so
small that

We let and define a travelling wave solution u(x-ct) by
means of (2 . 3) with b = M. In order to ensure that u (y) is defined for all
y, we modify the function cp above M’ if necessary, so that cp (v) - cv - K
becomes zero at some point vo above M’. we can choose
the parameter yo so small that uo for xYo. Then for we have

u (x) >_ ~. >_ uo (x), while for u (x) >_ M >_ uo (x). Thus u (x) >_- uo (x), so
that the comparison principle yields the inequality

Since the right-hand side has the limit Jl as x goes to - oo, we see that

Since Jl can be chosen arbitrarily close to u _ , it follows that

The other parts of the Lemma can be obtained by observing that
the functions - u (t, x), u (t, - x), and - u (t, - x) all satisfy differential
equations of the same form, and hence satisfy the same inequality.

LEMMA 2 . 3. - Suppose that that

and that cp" is continuous and does not vanish in the interval (p, M). Then

uniformly in E for 0  E  Eo.

Proof. - We observe that the function u (t, - x) satisfies a partial
differential equation of the form (2.1) but with cp replaced 
Therefore, we shall assume without loss of generality that cp" (u)  0 in the
interval (Jl, M). By the mean value theorem there is a point M~ in the
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interval (Jl, M) such that cp’ (M~) is equal to the slope of the line segment
from (Jl, cp (~,)) to (M, cp (M)). We then define the sequence Mg by saying
that cp’ (Mi+ 1) is equal to the slope of the line segment from (p, cp (~.)) to
(M~, cp (M~)). Since cp"  0, this sequence is easily seen to decrease to ~,.
We now pick a fixed number ~ in the interval (Jl, M). Then there is an

integer k such that M~~. We now choose a finite sequence M 1,
M2, ..., Mk such that

and

We observe that since cp"  o, cp’ (M 1) is less than the slope of the line
segment from (y, cp (~,)) to (M, (p(M)). Choose ~ E (~,, Mk) and close to ~,
and M > M and close to M so that the line segment L from (~, cp (~)) to
(M, (p(M)) lies below the graph of cp between these points and that its

slope is greater than cp’ (M1). By continuity there is an

such that

We now define the travelling wave solution u(x-ct) by (2 . 3) with c
given by (2. 5), b = M, K determined so that the denominator in the

integrand vanishes at v =  and v = M, and with yo chosen so that

Since the line segment L lies below the graph, the integrand in (2.3) is

positive. As in the proof of the preceding Lemma, the above inequality
implies that u (x) >_ uo (x), so that Lemma 2 . 1 shows that

for t>__O.
We also define a travelling wave solution u* t) by the

formula (2. 3) with c = cp’ (m 1), K = K* chosen so that the denominator in
the integrand vanishes (to second order) at ml, and b = M. The parameter

is now chosen so that u0~m1 1 for x >_ yo . In order to be sure that
the function u* is defined for all y, we modify the function cp (v) for v > M,
if necessary, in such a way that the denominator in the integral becomes
zero at some vo > M. Since the line segment lies above the graph, the
function u* (y) decreases from to as y increases from - 00

to 00 . As before, our the choice y0=y*0 implies that u* (x) >_ uo (x), and
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hence that

We observe that by construction u ( - oo ) while ù* ( oo ) = Because

both of these numbers are below M1, because of the inequality (2 . 5) on
the speeds of the two waves, and because ù is increasing and ù* is

decreasing, we see that there is a T 1 >_ 0 such that the inequality

is satisfied, and that, together with (2. 6) and (2. 7), this inequality implies
that

Moreover, a fixed T1 makes this inequality valid for all s on any bounded
interval.
We see from Lemma 2. 2 that

Thus if we think of u (T1, x) as the initial values for a new problem
starting at these values satisfy the conditions of the Lemma, but
with M replaced by the smaller value We repeat this argument k
times to find a Tk which is independent of s such that

Since Mk  ~,, we see from Lemma 2 . 1 that u (t, x)  ~ for t >_ Tk. Because
~, can be chosen arbitrarily close to p and because the maximum principle
shows that sup u (t, x) is nonincreasing, the Lemma is established.

x

A slight modification of the proof leads to a somewhat stronger result.

LEMMA 2 . 4. - Suppose that uo (x) __ M, that

and that

(a) the line segment L from (p, cp (~,)) to (M, cp (M)) does not intersect
the graph of cp at an interior point and is not tangent to this graph at the
right end point;

(b) There is an ml e (p, M) such that on the interval (p, ml] and,
if c denotes the slope of L,
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Then

Proof - Choose ~, E (p, ml). We again assume without loss of generality
that cp" (m 1 )  o. By continuity there is an 1 such that cp"  0 on
the interval (~, M 1), and we can find a  E (, u) and an M > M such that
the slope of the line segment from (, cp (~,)) to (M, cp (M) is still greater
than cp’ (ml). We can carry out the first step of the proof of Lemma 2 . 3
to find a T1 independent of 8 such that u (Ti , x) _ M 1. By Lemma 2 . 2,

Since cp"  0 on the interval M 1], Lemma 2. 3 shows that there is a
Tk undependent of E such that u _ ~, for t >_ Tk. Since ~, is arbitrarily close
to ~,, this proves the Lemma.
We are now ready to prove the principal result of this Section.

THEOREM 2. l. - Suppose that the function cp" is continuous and that its
zeros are isolated. If u is a bounded solution of the initial value

problem (2 .1 ), then

and

uniformly in E on any bounded interval (0, Eo].

If cp" does not vanish in the interval (~., M), the result follows immediately
from Lemma 2 . 3. If there is a single zero of cp" in this interval, say at 
then Lemma 2 . 3 shows that for any there is a T 1 such that

1 for t>T1. A simple continuity argument shows that if Mi 1 is

sufficiently close to then the hypotheses of Lemma 2 . 4 with M replaced
by M are satisfied and the result follows.

Finally, if there are several zeros 1.11 > ~,2 > ... the interval (a, M),
we use Lemma 2 . 3 to reduce the bound on u to a number M 1 so close to

that Lemma 2 . 4 can be applied to the interval M1). This Lemma
then reduces u below a number M2 so close to that Lemma 2.4 can

be applied again. After r applications of Lemma 2.4 one reaches a bound
~ which is arbitrarily close to ~,, which proves the first inequality of the
Lemma.
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The second inequality is proved by applying the first one to the function
- ~c ( t, x) .

3. LONG-TIME BEHAVIOR OF THE SOLUTION

In this Section we shall be concerned with the behavior of the solution
of the initial value problem (2 .1 ) for large values of t. We shall assume
that the initial function uo has limits at both plus and minus infinity:

By Lemma 2. 2 the solution u (t, x) has the same limits for each value
of t.
Theorem 2 .1 shows that if u + = u _ , then u converges uniformly to this

constant. Therefore, we only need to investigate the case in which u + ~ u _ .
Because replacing the variable x by - x gives a partial differential equation
of the same form, we may assume without loss of generality that

We shall show that for large values of t, the solution u (t, x) is close to
that weak solution of the Riemann problem

which satisfies the entropy condition E of Oleinik [19]. This problem is
obtained by setting E = 0 in (2.1) and by using only the limits at ± 00 of
the initial function uo. It was shown by Oleinik that there is exactly one
such solution of this problem.

In order construct a solution of this problem, we let

be the lower boundary of the convex hull of the set

If cp satisfies the conditions of Theorem 2.1, then 03C8 is continuously differ-
entiable, is nondecreasing, and there are points
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such that and cp’ is strictly increasing in each interval [Vj, w~], and W
is linear and bounded above by cp outside these intervals.
We define the function V (ç) by the formula

That is, V is the inverse function of the nondecreasing function with
constant extensions outside its interval of definition. Note that when ç is
equal to the slope of one of the linear segments of V takes on all values
on the interval Vj+ 1] which is the projection of the segment. We shall
think of V as a piecewise continuous function with jumps at these slopes.

It is easily seen that the function v (t, x) = V (x/t) is a weak solution of
the Riemann problem (3 .1 ). That is, v satisfies the differential equation
at those points of continuity where 03C8’~ 0, and also satisfies the Rankine-
Hugoniot relations

along each line where v is discontinuous. Because the lines in the (v, z)-
plane which correspond to these jumps lie below the graph of (p, a remark
of Keyfitz [23] shows that this solution satisfies the entropy condition E
of O. A. Oleinik [19]. As Oleinik proved, it is the only weak solution
which satisfies this condition.
We begin with a partial convergence result.

THEOREM 3.1. - Let the conditions of Theorem 2.1 be satisfied. Then
for every real number ç

uniformly in ~ for 0  E _- Eo.
Proof. - If ~ >_ ~r’ (u + ), the first line follows from Theorem 2 . 1.
If u _ _ ~  ~r’ (u + ), then V (~ + o) is the left endpoint of an interval on

which ~ = cp and cp" > o. For any vl in this interval choose c E (~, cp’ (vl)).
Then the line of slope c through the point cp (vi)) lies below the graph
of tp for 

If ~  ~r’ (u _ ), choose ~r’ (u _ )) and any (~ + o) so close
to u _ that the line of slope c through the point (v 1, cp (v 1 )) lies below the
graph of cp for v 1  v  u + .

In either of these cases, then, we can construct a travelling wave u
" 

(x - ct) with the value v 1 at - oo and a value M larger than u + at +00.
By Theorem 2.1 there is a T such that u (T, x)  M. As before, we can
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find a translation yo such that u (x - c T) > u (T, x) and hence u

(x - ct) >_ u (t, x) for t >_ T . Thus

and since ~  c, the right-hand side approaches VI as t goes to infinity.
Since VI is arbitrarily close to V (~ + o), we obtain the first line of (3 . 2).
The second line is proved in the same manner.
We note that this theorem implies that if ç is a point of continuity of

V, then u (t, ç t) converges to V (~). We shall strengthen this result.
By combining Theorem 3.1 with Theorem 2.1, we obtain the following

result, which gives limits on the asymptotic speeds with which changes
can reach infinity.

THEOREM 3. 2. - Let the conditions of Theorem 2.1 be satisfied, and
define the constants

Then

and

uniformly in E for 0  ~  Eo.

LEMMA 3 . .1. - Let the hypotheses of Theorem 2 .1 be satisfied. Suppose
that the closed interval [r, s] with u_ V (r) --V (s)  u+ does not contain
any point of discontinuity of V (~), and that cp" is continuously differentiable
and positive on an open interval which contains [V (r), V (s)]. Then

as t goes to infinity.

Proof. - By hypothesis, there are A and B such that

and cp" is positive and continuously differentiable on the interval [A, B].
Therefore we can define the inverse function H (ç) of cp’ on this interval:

Since V (s)  u + and V is continuous at s, there is a B 1 e(V (s), B) such
that the tangent line to the graph of cp at v = B1 lies strictly below the
graph of cp in the interval (B1, u + ] . As above, we modify cp strictly to the
right of some v > u + so that this tangent line intersects the new graph at
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a point above v. We define the corresponding travelling wave u (x - ct)
by (2 . 3) with ya == o, (B ~ ), and b = u + .
We suppose for the moment that

so that the tangent line to the graph of p at A intersects this graph at a
point of the open interval (u_, A). Then by continuity there are numbers

A) and Al E (A, V (r)) such that the interior of the line segment
from (Jl, (p (Jl)) to (At, cp (A~ 1 )) lies below the graph of (p, while it is
tangent to this graph at the right end point. We choose ce (A), cp‘ (A1)).
Then the line of slope c through (~,, cp (~,)) lies below the graph of cp in
the interval (~., u + ]. We can therefore define another travelling wave M
(x - ct) by the formula (2. 3) with c replaced by ~, b = A, and This
wave increases from y to a value above v ~ u ~..
We shall patch together the simple wave H and the travelling waves fi

and M to obtain an upper bound for the solution u of (2 .1 ). We begin by
determining functions o (t) and x (t) with the property that when t is

sufficiently large, the functions H (x t-03C3 (t) and û (x-ct) and their

x-derivatives coincide at (t). That is,

and

We differentiate the first relation with respect to t and use the second
relation to find that

In order to estimate the quantity on the right, we use the relations (3. 3)
and (3 . 5) to find that

Thus we need to evaluate U. We differentiate the formulas (2 . 3) and (3 . 3)
and use (3.6) to find the condition
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When t is large, the right-hand side of this expression is near zero.

Moreover, U must lie in the intersection of the ranges of û and H, which
is the interval (B 1, B]. The left-hand side of (3 . 9) is positive in this interval
but vanishes at B1. By expanding the left-hand side around this value, we
see that

We substitute this expression into (3 . 8) and recall that cp’ (B1) = c to see
that

Thus (3 . 7) becomes

By integrating this expression, we find that

and

We now notice that when x = t [cp’ (A) + a (t)], H(x t-03C3) =A, while,

since c > cp’ (A), u (x - ct) approaches   A as t goes to infinity. Similarly
we see that because c  cp’ (A 1 ), when x = t [cp’ (A 1 ) + a (t)], for

large values of t. Moreover, the x-derivative of M is 1 /E times a fixed
function of u, while that of the function H is of order 1 /t. We conclude
that for large t there is a unique function x (t) such that

Moreover, the representation (2. 3) of M shows that

The implicit function theorem shows that x (t) is smooth.
We now define the patched function
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This function is defined for all x when t is sufficiently large.
An easy computation shows that the function h (t, x) = H 

satisfies the equation

We differentiate the relation (3.3) twice to see that H’ and H"/H’ are
bounded. Thus we see from (3 .11 ) that there is a To such that when
t >__ To and x (t)  x  x (t),

Because M and û are solution of the partial differential equation in (2 .1 ),
this inequality is also verified for x  x (t) and (t).
Thus the function W is defined and satisfies the inequality (3.15) for

t >_ To except on the curves x = x (t) and x = x (t). It is continuous and its
x-derivative has a negative jump across the first curve, while by
construction W is continuously differentiable across the second curve.
We now choose a time T>To which is so large that u (T, x) _ v, and

recall that the limit of W at x = oo is greater than v. Since the limit of u
at x = - oo is u _  ~., there is a translation b so that

We see that the functions and satisfy the

conditions in the Remark after Lemma 2.1, and we conclude that

Since the forms (3.10), (3.12), and (3.13)
show that when t is sufficiently large, x (t)  rt  st  x (t). Moreover, it is
clear from the definitions (3.2) and (3. 3) that on the interval [r, s] we
have H (ç) = V (2,). Thus the upper bound immediately yields the inequality

We have derived the upper bound under the additional hypothesis that
the tangent line to the graph of cp at v = A intersects this graph at a point
between u _ and A. If this is not the case, we introduce a modified three

times continuously differentiable function (p with the properties that

that there exists a C E (u _ , V (r)) such that
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and that

That is, (p" is made so large over most of the interval (u _, V (r)) that the
inequality (3 .18) is valid, but a little "hook" is put on near v = u _ . Then
there are numbers in the interval (u _ , V (r + o)) such that
cp" > 0 on the interval [~, B] and the line segment from (p, cp (~,)) to

cp (Aj) lies below the graph of cp in its interior and is tangent to
this graph at its right end point. We now construct the travelling wave M
as before, but we define the travelling wave M corresponding to the line
segment from ~ to ~1 with cp replaced by (p. We also define H as the
inverse function on the interval [~, B]. We patch these three functions
together in the same way as before to define the function W.
As above we find that W satisfies the differential inequality (3.15), but

with cp replaced cp. Since W is increasing and cp’ >_ cp’, the differential

inequality (3.15) for cp follows immediately. Thus we again obtain the
upper bound (3.16).

Since cp coincides with cp for v >_ V (r), we again see that H = V on the
interval [r, s], and the upper bound (3.17) follows as before.
We now apply the same reasoning to the function - u (t, - x) to obtain

a lower bound of the same form. We combine these two bounds to find

the statement of the Lemma.

Remark. - We note that a time interval To must elapse to bring the
solution down to a neighborhood of the interval [u_, u+]. Thus, while

Theorem 3. 2 gives the right order of convergence uniformly in E for E > 0,
one must be careful if one wishes to fix t and let E approach zero.
We can combine the above theorems to obtain the following result.

THEOREM 3 . 3. - Let cp" be continuously differentiable and let its zeros
be isolated. If the closed interval [r, s] with r >_ - oo and s _ oo contains no
point of discontinuity of V, then

uniformly in E for 

Proof. - Surround each of the finite set of points of the interval

[v (r), V (s)] where either cp" = 0 or v = u + by an open interval (Sj, r~)
which is so short that

On each of the intermediate intervals [rj, Sj+ 1] the function cp" is positive.
By continuity, the same is true on a larger interval [A~, Bj] where

We now choose a new function cp which is three times
continuously differentiable in the interval [A~, B~] and which has the
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properties

and

Moreover, we choose cp so that

The proof of Lemma 3 .1 now shows that

where H is the inverse function of cp’. Since V is the inverse function of
cp’ on the interval [r, s], an obvious estimate and (3 . 20) yield the inequality

Thus

By applying this argument to the function - u (t, - x) we obtain an
analogous lower bound. It follows from these two bounds that if T is

sufficiently large, then

for all the intermediate intervals.
On the other hand, the inequalities (3.19) together with Theorem 3.1

show that if T is sufficiently large, the above inequalities are also valid
on the intervals If the interval (r, s) contains one of the end
points u:t, Theorem 3 . 2 gives the same result for the balance of the

interval. Since ~ > 0 is arbitrary, we have proved the statement of the
Theorem.
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