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ABSTRACT. - Consider the Cauchy problem

where uo (x) is continuous, nonnegative and bounded, and F (u) = uP with
p > i, or Assume that u blows up at x=O and t = T > a. In this

paper we shall describe the various possible asymptotic behaviours of
u (x, t) as (x, t) -~ (o, T). Moreover, we shall show that if uo (x) has a
single maximum at x = 0 and is symmetric, uo (x) = uo ( - x) for x > o, there
holds

1) then

uniformly on compact sets ~ ~ ~ __ R with R > 0,

uniformly on compact sets ( ~ I _ R with R>O.
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132 M. A. HERRERO AND J. J. L. VELAZQUEZ

RESUME. - On considere le probleme de Cauchy

ou uo (x) est une fonction continue, non negative et bornee, et F (u) = uP
avec p > 1 ou F (u) = eu. Nous supposons que u explose au point x=O en
temps T>0. Dans ce travail, nous obtenons tous les comportements
asymptotiques possibles de la solution u (x, t) quand (x, t) -~ (0, T).

1. INTRODUCTION AND DESCRIPTION OF RESULTS

This paper deals with the initial value problem

where uo (x) is continuous, nonnegative and bounded, and

Local (in time) existence of solutions of ( 1.1 ), (1.2), which are positive
for any t > o, follows at once from standard results. It is well known,
however, that with such a choice of F (u), solutions may develop singulari-
ties in finite time. For instance, if F (u) = uP with 1 /? ~ 3, for any nontrivial
solution of ( 1. 1 ), ( 1. 2) there exists a finite time T such that

We then say that u (x, t) blows-up in a finite time T, which is called the
blow-up time of u. When p >_ 3, this fact occurs if uo (x) is large enough,
but there also exist global nontrivial solutions, these last originating from
small enough initial values (cf [Fu], [AW] ... ).
For solutions exhibiting blow-up, a natural question is the manner in

which this phenomenon takes place. For instance, it is interesting to
determine the nature of the blow-up set (i. e., the set of points where
singularities appear). In particular, for Cauchy, Cauchy-Dirichlet or Cau-
chy-Neumann problems associated to (1.1), (1.3), several authors have
discussed conditions under which blow-up occurs at a single point (cf for
instance [W], [MW], [GP], [FM] ... ).
Another question which has deserved attention over the past years is

that of determining the asymptotic behaviour of solutions as the blow-up

Annales de l’Institut Henri Poincaré - Analyse non linéaire



133BLOW-UP OF SEMILINEAR PARABOLIC EQUATIONS

time is approached; cf. for instance [W], [GP], [GK1], [GK2], [GK3],
[FM], [BBE], [L]... Let us just mention here a few results which will be
used in the sequel. Assume that u (x, t) is a solution of (1.1), (1.2) which
blows-up at x=O and t = T . We then have

(i ) 

uniformly on compact sets with R>0 cf. [GP], [GKI], [GK2],
[GK3]),

uniformly on compact sets with R > 0. When (1 . 1) is considered

in bounded domains with homogeneous Dirichlet conditions, estimate
(1.4b) has been obtained in [BBE] under suitable assumptions on initial
values. Actually (1.4b) can be obtained in our case by adapting the
arguments in [Li]. To this end, two bounds are needed. The first one is

for any x~R and t  T, C being some positive constant. If uo (x) is, say,
monotone decreasing for x > o, symmetric with respect to the Qrigin and
with a single maximum at x=0, the above inequality can be obtained
arguing as in [GP], Thm. 4. 2. Furthermore, one also needs to show that

for any x~R and t  T, and some C > 0. This in turn can be obtained by
adapting the arguments in [GK1], Proposition 1. The reader will notice
that ( p -1 ) - ~ 1 ~~ p -1 » (T - t ) - ~ 1 ~~ p -1 » and ( - log (T - t )) are explicit
solutions of (1.1) with the previous choices of F (u).
A more precise information on the behaviour near the blow-up time

(including higher-order expansions for solutions) can be obtained in a
formal, non rigorous may, by means of singular perturbation techniques,
as for instance in [D], [GHV].

Recently, a further step has been obtained in [B]. In that paper, the
author considers (1.1) with in a bounded interval with zero side

conditions, and proves that there exist initial values uo (x) such that the
corresponding solutions behave near the blow-up time exactly as suggested
by formal perturbation methods. An interesting question left open in [B]
is how to know a priori whether a given initial value uo will actually
determine a solution belonging to the class obtained in that article.

In this work we consider some cases where the results suggested by
perturbation theory can be made rigorous. For instance, we show

Vol. 10, n° 2-1993.
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THEOREM 1. - Assume that the solution w (x, t) of (1.1), (1 .2) with
F(u)=uP, blows up in a finite time at the poin~t Then if
uo (x) is symmetric with respect to the o.rigin and has a single maximum at

there holds.

uniformly on compact sets I 03BE I ~ R with R > o.
We recall that sufficient conditions for blow-up at a point can be found

for instance in 

Concerning the exponential case, we have

THEOREM 2. - Assurne that the solution u (x, t) of ( 1. l )~, (1 . 2) with
F (u) = e" blow up in a finite time T > U,. at the point x = o. Then, if uo (x) is
symmetric with respect to the origin, and has a single maximum at x = 0,
there holds

uniformly on compact sets I ~ I C R with R > o.
Let us point out that (1.6), (1.7) were formally obtained in [GHV] by

means of the method of matched asymptotic expansions. Theorems 1 and
2 can be proved basically in the same way, so that from now on we shall
concentrate on the first result, to sketch then briefly the modifications
required to cover the situation where F (u) = eu. Our approach is deeply
influenced by dynamical systems theory, a viewpoint already used by
several authors to describe asymptotics of solutions near singular points
in a variety of problems (cf for instance Since the proof
under consideration is rather long and technical, we shall first sketch its
main points, and leave the details to the following Sections.
To begin with, we notice that the blow-up time T may be normalized

by setting T == 1 without loss of generality. This convention will be assumed
henceforth. We then perform the well known change of variables (cf. [GP],
[GK 1 ], ... )

In this way, cp satisfies
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135BLOW-UP OF SEMILINEAR PARABOLIC EQUATIONS

where

We now linearize about the stationary solution of (1.9) given by
~P f .Y~ _ ~P - ~ ) - ~ ~ ~c F~-1 » by setting

Then + ( y, r) solves

where

so that f (s) = 0 (s2) as s --~ 0. Here and henceforth, we shall freely use the
customary asymptotic notations 0 ( ), O ( ),  , ^_, , etc.
We now describe our functional framework. For 1 _ g  + oo, and any

integer k >_ 1, we define the spaces

It is readily seen that Lw (fF8) [resp. Lw (R), 1 ~q  ~, q~ 2] is a Hilbert

space (resp. a Banach space) when endo,wed with the norm

. Clearly, for k >__ 1, H~, (IR) can be given a structure of Hilbert space in a
straightforward way. Since the L;-norm will be repeatidly used in the
sequel, from now on we shall drop the subscripts (2, w) in (1.12) for the
sake of simplicity.

It is then natural to consider ( ~ .1 ~ ) as a dynamical system in 
since it can be written in the form

Vol. 10,n’2-1993.



136 M. A. HERRERO AND J. J. L. VELAZQUEZ

where

is a self-adjoint operator in L) (f~), having eigenvalues ~,n =1- n ; n = 0, 1 ,
2

2, ... with eigenfunctions Hn (y) given by

To proceed further, we make use of previous results [cf. ( 1. 4 a)] to

notice that

B)/ is bounded for large r, and W (y, 1) -~ 0 as T -~ oo, 

Iuniformly on compact sets with R > 0. (1.16)
In particular, (., r) 0 as T -~ oo for any q E [1, oo )

We now write

where, in view of ( 1. 11 ), the Fourier coefficients { ak (i) ~ satisfy

The proof of Theorem 1 begins by analyzing the asymptotics of B)/ (y, T)
as i --~ 00. By analogy with classical ODE theory, we expect that one of
the modes will eventually dominate in ( 1.17), i. e.

Hj(Y) as T -~ oo , for some 7=0, 1, 2, ... (1.19)
A first major step consists in showing that, if lim ~03C8(., 03C4)~=0, the

index j in (1.19) must be larger or equal than two. Namely, we prove in
Section 4 below that

We then describe in Section 5 all the possible behaviours of 03C8 ( y, i) as
i --~ oo, which were previously conjected in [GHV]. Since this result is of
inedependent interest, we write it in detail here

THEOREM 3. - Assume that F (u) = uP with p> l, uo (x) is continuous

nonnegative and bounded, and the solution of ( 1.1 ), ( 1 . 2) blows up at x = 0,
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137BLOW-UP OF SEMI LINEAR PARABOLIC EQUATIONS

t =1. Then one of the following cases occurs

or

or

The fact that ( 1. 21 b) holds in our case is a consequence of our

assumptions on the initial value. Indeed, uo (x) has a single maximum at
x=0, and is symmetric with respect to the origin, whence so does u (x, t).
Therefore, m must be an even number m >_ 2, and for m >_ 4, Hm ( y) has

exactly (2014 ) maxima. Since the number of maxima cannot increase in
time, this rules out ( 1. 21 c).
As to ( 1. 21 a), this condition can be shown to imply

uo (x) _ ( p -1 ) - ~ 1 ~~ p -1 ». It is to be noticed, however, that flat profiles as
those in ( 1. 21 c) actually exist, and shall be discussed elsewhere,
(cf [HVl]). We have thus obtained

uniformly on compact sets with R > 0, and ( 1.19) holds in such a
way with j = 2. We remark that to derive ( 1. 21 b) or (1.22), we proceed
by integrating asymptotically (1.18) when k = 2, a rather delicate case.
Indeed, higher order terms are then to be taken into account, thus yielding

the factor (1 03C4) in (1 . 22).
The last crucial step in the proof of Theorem 1 consists in extending

the convergence result in (1.22) to larger regions of the form

I x ( _ C (1- t)1~2 ~ ln (1- t) I1~2 with C > o. This is done in Section 6, by
means of a further change of variables. Instead of dealing with B)/ ( y, r)
given in ( 1 . 8), (1 . 10), we now set

so that G solves

Vol. 10, n° 2-1993.
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We are now able to obtain a suitable bound for L (ç A, T) as T -~ oo
when ] § ( stays bounded (cf Lemma 6 . 2). This fact is instrumental in

showing that

uniformly when ( ~ ~  R with R>0. Taking into account (1.23), (1.10)
and (1.8), Theorem 1 follows now from (1.25).
At this time, the reader may wonder whether the new change of variables

( 1. 23) is actually necessary to obtain ( 1. 6). As a matter of fact, we do
not know how to derive such result from equations (1.9) or ( 1. 11 ) alone.
The reason is that the terms 11 (p), f are not of lower order than the
linear parts of their respective equations on sets

as can be seen by using the asymptotic formula ( 1 . b) on (1.9), ( 1 . 1 1 ).
On the other hand, the term L (y, t) in ( 1. 24) is indeed of lower order
than G2 and AG in such sets. Therefore, an asymptotic analysis of ( 1. 24)
can be performed by considering such equations as a small perturbation
of the linear equation G = AG, on the region under consideration.
We have briefly described the main results of this paper, which are

contained in Sections 4-6 below. The arguments in these Sections are easily
adapted to deal with the exponential case; a sketch of the modifications
required to this end is to be found in Section 7. In particular, Theorem 3
is to be replaced now by

THEOREM 4. - Assume that F (u) = eu, uo (x) is continuous nonnegative
and bounded, and the solution of ( 1 . 1 ), ( 1. 2) blows up at x = o, t =1. Let
~ ( y, i) -= ln ( 1- t) + u (x, t), where y, t are as in ( 1 . 8). Then one of the
following cases occurs

There exist m >_ 3 and C ~ 0 such that

where convergence takes place in Hw as well in for any k >_ 1 and

Finally, several auxiliary tools are used to obtain our asymptotic results.
From these, some are already well known and are recalled in the Appen-
dixes at the end of the paper for convenience. Some others, however, had
to be implemented to fulfill the previously described steps, and make the
content of Section 2 and 3 below.
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2. AN A PRIORI ESTIMATE FOR THE HEAT EQUATION

Let S (t) be the linear semigroup corresponding to the heat equation in
the strip S = [0, 1) x f~. Take now uo (x) E satisfying suitable growth
conditions as --~ oo, so that (S (t) Uo (x)) makes sense in S. Set

s + = max ~ s, 0 ~ . We then have

LEMMA 2. 1. - For any r, q with r > 1 and q > l, there exists C = C (r, q)

such that, +  t  1,

Proof. - By Poisson formula

where -+2014=!. Therefore
? ?’

where

Vol. 10, n° 2-1993.
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Since

There holds

for some constant C1 = C1 (q). Therefore

where C = C (r, q) > o. Plugging this last inequality into (2 . 2), the result
follows N

Remark. - We should point out that, while Lemma 2.1 might look at
first glance rather artificial, it is in fact sharp. To see this, consider the
function

If a q > 1, one readily sees that | uo (x)|q exp - - dx  oo. To discuss

the integrability of S (t) uo (x), we first write S (t) uo (x) = S (t) uo ( - x) in
the form

Setting ~=2o) 12014- ) 20142014~, we then obtain that for x>0,B 

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Standard methods yield then

for general values of a, that

When r _ q, this inequality is always satisfied. However, if r > q we need

. In this case we actually have to wait a bit to obtain the
V-1/+

desiredestimate .
Let us change now variables as follows [cf. ( 1. 8)]

Then ç (y, r) satisfies

Take now t* such that  t*  1, and define r* as i* _ - ln (1 - t*).

When written in the new variables, Lemma 2.1 states that there exists

C = C (r, q, T*) such that

Moreover, since (2 . 3 a) is invariant under translations in this new time
variable i, we obtain

COROLLARY 2 . 2. - Let ~ ( y, i) be the solution of (2 . 3), where uo is as
before. Then for any r > 1, q > 1 and L > 0, there exist io = io (q, r) > 0 and
C = C (r, q, L»O such that

We now go back to equation ( 1 . 1 ) with F(u)=uP, p > 1. After performing
the change ( 1. 8), we obtain that solves (1. 9 a), which can be

Vol. 10, n° 2-1993.
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viewed as a perturbed version of ~2.3) above. Setting
~P ~.Y~ ’~j = ~ - ~ ) - ~ 1 ~~ p -1 » + ~ ~.Y~ i) then yields ~~ ~ . ~ 1 ) . We next extend our
previous estimates as follows.

LEMMA 2 . 3 . - Assume that 03C8 (y, zj solves (1.11) and |03C8|_ M  oo for
some constant l~. Then for any r> ~, q> 1 and L > o, there exist

~’) and C = ~C (r, q, L) > o such that

for any T ~0 and any T* e T~ + L].
Proof - We multiply both sides in (1.11 a) by (sgn B)/), and take advan-

tage of Kato’s inequality

to obtain

for some C>O. Denoting by So the semigroup corresponding to (2 . 3), we
then have by comparison

for any ~.~ ~ ~, i > 0. Take now ’to = i*, where i* is as in Corrollary 2 . 2.
We then have

3. HARNACK AND NONDEGENERACY ESTIMATES

Thoroughout this Section, we will assume that r) is a bounded
solution of (1.11), and shall write it in the form

.~~ . ~ 7~~. Our first result is the following Harnack-type inequality which
will be needed in Section 5 ~cf. Lemma 5 . 6 and Proposition 5 . 7 there)

LEMMA 3 .1. - Let i~ be as above, and let i 1 > ~, A>O be fixed.
Assume that for some 03B2 >.0

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Then there ~) ~> :~ such that

Proof - We substitute (1.17) in (111), make the scalar product of
both sides with H~(~), and then multiply them by (sgn ~2~))- Since ~ is
bounded, for some C>O, and we get

On the other hand, by assumption

whence

Integrating this inequality between Ti and 03C41 +A, we obtain

and the result follows .
Our next goal consists in deriving a basic nondegeneracy result, namely

Lemma 3.5 below, which roughly states that (., r) (,~ decays in time
faster than any exponential, then +=0. To show this, we shall introduce
some notation. Let A be the modified Hermite operator in (1.15). Let X
b.e any real number, and for any L~, (R), let ~~ v be the projection of v
onto the subspace of spanned by those eigenvectors of A whose
eigenfunctions are not less than Set also We then have

LEMMA 3 . 2. - Assume that there exist a real, i 1 _> (~ and B > ~ such that

Then there exists ~ 1 ~ ~~ such that

Proof - By direct computation, we obtain

On the other hand, by assumption,

~° .2-1’~~3.
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and since I f (B)/) I  C I ~r ~ for some C > 0, we arrive at

Integrating this inequality between T1 and T1 + B, the conclusion
follows..
We shall also need a technical Lemma which estimates the speed at which
the L;-norm of 03C8 moves towards the high frequencies in the spectrum of
A. More precisely, by slightly adapting the arguments in Cohen and Lees
([CL], Lemmata 1 and 2), we obtain

LEMMA 3. 3. - a) Assume that, for some i >_ 0 and some real ~,

then there exists 6 > 0 independent of 03BB and 03C4 such that

b) Let i, ~, be as in part a), and assume that (3 . 3) holds. Then there
exists 6 > 0 such that

where X - cr .
We shall also require the following nondegeneracy result which is due

to P. D. Lax (cf. [L], Theorem 1 ).

LEMMA 3 . 4. - Let A be the self-adjoint operator in given in

(1.14). Let u (i) be a function of i mapping 0  i  oo into Lw ((~), whose
values lie in the domain of A. Assume that Au is a continuous function of i,
and that u has a continuous strong derivative with respect to ’to Suppose that
u (i) satisfies the differential inequality

The there exists a positive constant 8o such that, if the following
result holds: If for any M > 0 there is C = C (M) such that

then u (i) --_ 0 for i >- o.
We are now in a position to show.

LEMMA 3. 5. - Assume that ( y, i) I is bounded, and suppose that for
any M > 0 there exists C = C (M) such that

then t~r ( y, i) --_ 0.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Proof. - Let ~,o be such that

We now define the sequences

where 0, cr are as in Lemma 3 . 3. Using part b) in that result, we get

whence, by part a) there

Define now for in + 1 ) ~ For such r, we have n _ ~,
S

so that

and (3 . 5) can be recast as follows

Let us denote by C 1 a positive generic constant, depending only on the
bound for ~. We now consider (1.13), and notice that f _ C (2.
Moreover, by standard theory the regularity assumptions on A ~r
required in Lemma 3.4 follow from the results recalled in an Appendix
at the end of the paper. On the other hand, by Lemma 2. 3 and (3.4),
there exists i* > 0 such that, for any M > o.

if T is large enough, where C is now a generic constant depending on M
and the bound for B)/ . On the other hand, since A (r) is nonincreasing in
T, and r)~ ~ we deduce from (3.6) that

Then, by Lemma 3 . 2

Vol. 10, n° 2-1993.
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and substituting this into (3 . 7) yields

we may select M such that

for some E > 0 and any large enough. Taking now

9 as in Lemma 3.4}, it follows r)=0 for
Since the number of maxima cannot increase in time (cf for

instance [A], [AF]) this implies that B)/ ( y, r) = 0 for any r M

4. ESTIMATING |a0 (03C4)| AND |a1 (03C4)| AS r ~ oo

Our aim in this Section consists in proving the following result

PROPOSITION 4.1. - Let T) be given in (1 8), (1 . 10), and assume
(., 03C4)| is bounded and lim ~03C8 (., = 0. Then, if

T -~ oo

we have that

To show (4.1), we shall argue by contradiction. Suppose that there exists
a sequence {r~} with lim and a constant 8>0 such that

We then proceed in several steps. To begin with, we set

where for any such j, solves

For let us write z = ~e then have

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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LEMMA 4 . 2. - For any a E (0, 1), there exist constants C1, C2 depending
on oc, such that

where

Proof - We substitute in equation ( 1. 9 a).
Dropping the subscript j for convenience, we readily check that co satisfies

Since B)/ is bounded by assumption, it follows that I F 1 (c~) ~ __ Co for some
Co> O. As to F2, we have that

Let us take ae(0, 1) fixed, and denote henceforth by C a generic constant
depending on a and the bound for Then whence

We now multiply both sides in (4 . 6) by and use there Kato’s

inequality as well as the previous bounds for F1 and F2 to obtain (4. 5) .

Since Lj)=O, it follows from (4 . 5) that

where So is the semigroup associated to the operator Ao given by

with Fix now R>O, and let 

otherwise. We then write

To proceed further, a suitable bound i~ ~ ~ will be required. In
view of (4.7) and the general results recalled in (A 3) in the Appendix,

Vol. 10, n° 2-1993.
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one has

where C~ depends on the time span i - i~ ~, remaining bounded whenever
( i - ( is bounded. We now have

LEMMA 4. 3. - For any fixed R > 0, L > 0 and E E (0, L), there exist C > 0
independent of E, R and a function A (E), independent of R, such that
lim A (E) = 0 and
g o

Proof - By (4 . 4 a), it follows that

for some measure o such that ~ (!?)== 1. Then, by Jensen’s inequality

A quick computation reveals now that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Therefore, recalling the definition of 03B4j in (4 . 8), we get

For any E E (0, 1 ),

where C is a positive constant independent of j and E. (4 .11 )

On the other hand, by Holder’s inequality

Since

it follows that

whence, for some C > 0

Vol. 10, n° 2-1993.
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For any E > 0,

We are now ready to derive t4 . 9). We just split the integral there into
two, performed over intervals (~~, ~~ + E) and (~~ + E, i~ + L) respectively,
and divide it by b~ . Taking into .account {4 .11 ) and (4.12), the result
follows
We next show

LEMMA 4 . 4. - For any fixed L > ~ there exists C > 0 such
that

Proof - Fix R>O. By our choice we have

Using Holder’s inequality, we get that for some C > 0

As to 12, we notice that

Annales .de l’Institut Henri Poincaré - Analyse non linéaire
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We now remark that

whenever I x I _ R and I ?~ I >__ 1.0 R
We then arrive at

Putting together the bounds obtained for I1 and 12, it follows that

whence

and (4.13) follows.
Summing up our previous estimates, we obtain

Proof - We set in (4 . 5 ~), and use then (4.8) with g (s) = C s
4

when [resp. when Taking into account (4 . 9)
and (4 .13), the result follows by letting first j -+ oo, then R -~ oo and
finally ~-~0 N
Our next result is

LEMMA 4 . 6. - Assume that ~4 . ~) holds. Then for any fixed there
exists K=K(L) such that

Vol. 10, n° 2-~~93.
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it follows from (4. 4) that

In particular

so that, using (4. 2) and (4.14)

On the other hand, multiplying both sides in (1.11) by ~r e -’’2~4 and
integrating yields

whence

Putting together (4.16) and (4.17), the proof is concluded.
We shall also need the following result.

LEMMA 4. 7. - Assume that there exist a > 0 and L > 0 such that

then there exists M = M (a, L) such that

Set now S (’t) = ao (~)2 + al (t)2. Taking into account (4 .18), we compute

where C 1 depends on o. Integrating the inequality just obtained yields

whence the result N

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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We now extend (4.15) (or rather a variant of it) for arbitrarily large
~>o.

LEMMA 4 . 8. - Assume that (4 . 2) holds. Then there exists A>O such
that, for large enough i > 0

Proof. - Consider the function

where ~ > 0 will be selected presently. A straightforward computation
yields

Using Lemma 2. 3, we now estimate the last term in the above inequality.

Since  ak f (03C8), Hk>= R(03C8- ak Hk f e-y2/4 dy, we have that

where C is a positive constant, which possibly changes from line to line,
and i* > o. We now set L = i*, and select cr [which depends on E, L;
cf (4.15)] such that (4.18) holds; finally, we One then has that

for i~ + L]. On the other hand, using (4.19) and (4.18) we

Vol. 10, n° 2-1993.
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obtain at L,

for some Ci > 0, where g (s) --~ 0 as s --~ oo . The third term in the right of
(4 . 21 ) can be estimated in a similar way, and we finally deduce that, ar

where /! (s) ~ 0 as s ~ oo . Therefore, taking j large enough, we obtain that

~ i . + L >_ o. The E stays nonnegative for any i >_ i . + L, and this yields
di 

( ~ )_ Y g Y _ , Y

N

End o~ the proof o. f ’ Proposition 4 . 1. - We consider the
function S (i) = ao (i)2 + al (~)2, already used in the proof of Lemma 4 . 7,
and notice that, by our previous results

for some M > o. But then this inequality implies that S (i) >__ a > 0 for some
a and any T large enough, and this contradicts the fact that )) Bj; (., ~) ~ ~ -~ 0
as 03C4 ~ ~ .

5. A BASIC ASYMPTOTIC ESTIMATE

This Section is devoted to conclude the Proof of Theorem 3. Namely,
we show that i) ~ 0 either,
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(cf Propositions 5.7 and 5.8 below). We then show in Proposition 5.9
that, under the assumptions of Theorem 1, (5 . 1 a) must necessarily hold.
We also remark at the end of the Section that convergence in H~ implies
convergence in for any k >__ 1 and ae(0, 1).

Let us describe briefly the way in which (5 . 1 ) is obtained. Consider the
semilinear equation satisfied by Bj/ [cf ( 1.11 )]. By assumption,
I I ~r ( . , i) ~ ~ ~ o as T - oo . If, moreover

we will use variation of constants formula in ( 1.11 ) to show that either
(5 .1 b) holds or I I ~ ( . , i) I ~ = O (e - s~) for any b > 0 as In this last

case, ~r ( . , i) - 0 by the nondegeneracy results in Section 3; cf.
Proposition 5.8 below.

If we do not assume an exponential decay of ( t~r ( . , a more subtle

approach is required. Basically, we then try to estimate the ratio

as T -~ oo . Formally, r ( y, r) satisfies

Since all we know on ~Bfill is that lim ~03C8 (., = 0, we lack information
T -~ 00

on the coefficients of the above equation to describe the behaviour of
r (., r) as T -~ oo . We then replace ( ( ~r (., i) I in the definition of r by Jl (r)
[cf (5 . 4) below]. where Jl (r) is a function related to )) B)/ (., but whose

asymptotic properties as T -~ oo can be accurately described. The fact that
such a function exists follows from results due to Chen, Matano and
Veron [CMV], and the relevant details are recalled in Lemma 5.1 below.
We are then able to obtain asymptotic estimates on the new normalized
variable (cf Lemma 5 . 4). This is not enough to derive (5 . 1 a) yet; a
suitable continuation argument on cones has to be implemented (cf
Lemma 5. 5), and a careful asymptotic integration of the second Fourier
coefficient in (1 . 18) needs to be done in proposition 5 . 7 to achieve our
goal.
We now proceed to detail the arguments above. To start with, we recall

the following result (cf [CMV])

LEMMA 5 . 1. - Let p (’t) be a nonnegative function such that

p E C ([0, oo)], lim p (r) = 0 and lim sup e~03C4 p (r) = + oo for any E > 0 [resp.
T -~ oo T -~ o0

lim sup ip {i) _ +00]. Then there exists a function ~ (03C4)~ C°° ([0, oo)) such

that
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We shall also need the following consequence of Lemma 5 .1

LEMMA 5 . 2. - Let r~ (i) be the function obtained in the previous Lemma,
and let a > 0 be fixed. Then there exists C = C (a) such that, for any i > 0

Proof. - It consists in a contradiction argument. Suppose that there
exists a sequence {03C4j} such that lim and

Since ~~C1, there exists such that

Further, since r~’  0,

which contradicts (v) in Lemma 5 . 1 if j >_ 2 .
Define now

Then one of the following cases must necessarily hold

There exist ~o > 0 and 81 > 0 such that
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when T > 0 is large enough.
We shall initially restrict our attention to cases a), b) and c) above. Let

us define functions ~ (i), x ( y, i) as follows

where, as before, 03C8 is given by (1.8), (1.14). We then have

LEMMA 5. 3. - For any o.

Proof. - By Lemma 5 .1, (ii ), there exists M > 0 such that

On the other hand, by ( 1.13)-( 1.14), x satisfies

where f is given in (1 . 11 b). By our choice of  and Lemma 5. 1, (v), I ’ I
is bounded. Since _ C I x I and I I ~-1 f CM, we then
may consider (5. 7) as a linear nonhomogeneous equation

where A is the linear operator given in (1.12), and

In particular, (A 3) in the Appendix holds in this case. Let us multiply
both sides in (5 . 7) by e -’’2~4 X-r, and integrate first in space over f~ and
then in time from To to where 0  io  il  + oo, Using (5 . 6) and (A 3),
we obtain
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for some finite constant N. Clearly

and the right-hand side above is bounded by (5 . 6) and Lemma 5.1,
parts (iv) and (v). To estimate Az in (5.8), we proceed as follows. Consider
the identity

Therefore

Let us denote by C a generic constant, possibly changing from line to
line, depending on and the bound for ~r ~ . Recalling that ~r, we
see that IF (y, r) __ C ~ ~ ~ 2, and the first two terms in the right hand side
above are bounded. As to the third one, we notice that, by Taylor’s

Theorem E (y, i) I _ - Therefore, using Lemma 2 . 3 we get
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so that, by (5.6) and Lemma 5 . 2

Taking into account that -~ 0 as T -~ oo , we have obtained a bound
for the term on the left in (5 . 8) which is independent of This concludes
the proof.
Lemma 5.3 will be instrumental in proving our next result

LEMMA 5. 4. - There holds

Proof. - Let us write where bk (i) _ _-,
and the ak’s are the Fourier coefficients in (1.17). Fix now R>0, and
consider equation (5 . 7) with initial value

Denote by SA (t) the semigroup generated by operator A in (5 . 7). We
then have

and therefore
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Since ~bk Hk~== |ak| ~03C8 II .03C1 , 
it follows from Lemma 5 . 1 and Proposition 4.1

that

On the other hand, we certainly have

so that

whence, by Lemma 5. 3

Consider now function h ( y, r) in S4. By (5 . 7), it follows that

for some constants C , C . Therefore since 3(= 2014, taking into account
Lemmata 2 . 3, 5 . 1 and 5 . 2, we deduce that lim ~h ( . , i) ( I = o. We now

set H (y, i) = SA (i - s) /! ( . , s) ds, and notice that H (y, i) solves
Jr-R

(5 . 7 b) with initial value H (y, i - R) = o. We then may use (A 3) (with
~o = o) to get

Only the term S3 in (5.10) remains to be estimated. To do it, we notice
that
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Putting together all these estimates and recalling (5 . 6), we obtain

We now let R -~ oo to conclude M

Lemma 5 . 4 is a first step towards obtaining (5.1). To proceed further,
however, some technical results are required. The first one is

LEMMA 5.5. - a) For any given L > o, there exist Eo > 0 and a sequence
~ i~ ~ with lim ’tj= + oo, such that

b) For any E>0 and L>0 there exists a sequence {03C4j} with
lim + w such that
_;- 

~) Recalling our choice of p(r) in (5.2), we see that by
Lemma 5.1, (ii) there exist a sequence {r~} with lim and a

J~ oo

constant K>0 such that ~03C8(., 03C4j)~~1 K (03C4j), or in another words

!! X (., i,)!! ~ __. By (5.9), 
we must then have (., 03C4j)|~ -L for large

enough. Using (5.11), we then deduce that, for r~+L],

where A L) - 0 as j -~ oo for fixed L, whence
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b) By lemma 5.4, L bk (i)2 -~ 0 as T --~ oo, and by part a) above (5.12)
k=l=2

holds. Therefore, for any b > 0

if ’tj+ L] t{ as in part a)], and j is large enough..
We next improve (5.13) as follows

Assume that the result is false. Then, by (4.1) there exist
a > 0 and a sequence such that lim ~=00 and

We now take up an approach already used in Lemma 4 . 8. We fix E > 0

with E  ~ , and consider the function
2

By part ~) in Lemma 5.5 ( with s replaced by - ), we have that for any
fixed L>0 and some sequence {r~} such that lim T~= oo.

j -~ oo

On the other hand, a routine computation yields

By (5.15), whereas by (5.17), for j = 1, 2, ...
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Let us denote a sequence of exit times from the cones where

0, i. e. let us define

Obviously, and, 

We next set out to estimate the right-hand side of (5 . 18) at i = 9~. By
continuity, E£ = o. Taking into account (4 . 1 ), we obtain

The third term on the right in (5 .18) is dealt with as follows

We now use Lemma 2. 3 and set L = r* to obtain

Recalling (5.19), it follows from (4.1) that

for j large enough. We then take advantage of Lemma 3.1 to get

In a similar way, by the usual quadratic bound 

where here and henceforth C denotes a generic positive constant.
Substituting (5 .20)-(5 . 22) into (5.18), we obtain
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Since we may assume without loss of generality o J) I ~ > o for
large j, we would then have for o~ + b] and some b > o,
which contradicts the definition of 8~. Taking again into account (4 .1 ),
the result follows N
We next show

PROPOSITION 5.7. - The following alternative holds. Either

Proof. - Statement (5 . 24) follows if (5 . 3 d) holds. If otherwise one of
the assumptions (5 . 3 a)-(5 . 3 c) is fulfilled, our previous results in this
Section apply. We then write

Write now

where I g (B(/) I  3. Then a3 (t) satisfies

We now examine the first term on the right in (5.25). Set

It has been shown in that

In this case, we have
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A derivation of (5 . 26) is recalled in Appendix B at the end of this paper
for the reader’s convenience.

It then follows that

We want to show now that the last three terms on the right in (5.25)
are negligible with respect to the first one there. To begin with, we have
that

where use has been made of Lemmata 2.3 and 3.1 (this last can be

applied since Lemma 5 . 6 holds). Furthermore, we readily check that

i

We now claim that

To keep the flow of the main arguments here, we assume (5.27) for
the moment and continue. Substituting our previous estimates in (5.25)
yields

where c is given in (5 . 23) and E (t) -~ 0 as T -~ oo. We now integrate this
last equation to get

whence

If either (5 . 3 a) or (5 . 3 c) holds, this would give a contradiction. Hence
(5 . 3 b) must be satisfied, and then the result follows from Lemma 5 . 4.
To conclude the proof, it remains to show (5.27). To this end, we

notice that 8 solves

Fix now R>0. Using once more variation of constants formula, and
keeping to the notations in Lemma 5 . 4, we may represent e (y, t) in the
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form

Denoting by C a generic constant independent of 03C8, we have by
Lemmata 5.. 6 and 3.1 that

On the other hand, a straightforward adaptation of
the arguments leading to Lemma 2.1 and Corollary 2. 2 yields

for any L~(tR~), t ~~ oc. Taking R > 0 sufficiently large, we have
that

Therefore

We next examine the second term on the right of E5..28~. Since

if follows from (5.29) that

Putting together (5 . 3U) and (5 . 31 ), (5.27) follows N

We next examine the case where (5.24) holds

PROPOSITION 5. 8. - Assume that

Then the following alternative holds. Either there exists r~ >__ 3 and C ~ 0
such that

or
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Proof. - As we have repeatidly done so far, we represent ~ (y, r) in
the form

Suppose now that ~(., for some M>O and e>0, where

2~~l 2 -1 for any integer I (this last condition can always be satisfied by
replacing, if necessary E by some e’e). Take now an integer such

that

Since

and

we have

We now proceed to estimate the H~-norm of the various terms in the
right hand side in (5.33). Note first that
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Clearly

constant C. Setting 1= ko + 1, we then obtain

For some C = C (I) and i >_ 1. By our choice of ko, this gives

for some constant C > 0 and i >_ 1.
As a next step, we estimate the L;-norm of T~ in (5. 33) as follows

Notice that

Since for some C>O, we then and

We then observe that T4 = T4 (y, r) solves
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where (~ 6 (., T) ~I _ II f I I c C for some C > 0. By variation of
constants formula, for any R E (0, i),

Taking into account (5. 35) and (A3), we then obtain

Finally, for 0 __ k _ ko

where

Assume now that ko >__ 3. Substituting (5 . 34)-(5 . 37) into (5 . 33), we obtain

By our previous bounds for T2 and T4, the fact that 
and our choice of ko, it follow that

where for Since we are assuming that

(., == O (e E ~), we necessarily have

Then two possibilities arise. There may be an integer m E [3, ko] such that
but for k  m.

In this case, we would have
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On the other hand, if am + ~m = 0 for any m E [3, ko], then we would
obtain

Iterating our previous argument, we would arrive at (5.32) in a finite
number of steps. Otherwise (3 . 4) would hold, and therefore 0/ == 0. Finally,
if ko = 2, we get (5 . 39), and we may start our procedure again, this time
with 3. This concludes the proof .
We now summarize, by Proposition 5.7 and 5.8, if ~r ~ 0, either

where

or

In particular, convergence takes place in H’ for any ball with radius
R > 0, whence also in for some C’tE(O, 1). Convergence in 
with k _> 1 and ae(0, 1) follows then by considering the equation satisfied
by Q (y, R (y, ij] and using standard Schauder estimates in
bounded regions. This concludes the proof of Theorem 3.
Our last result in this Section is

PROPOSITION 5.9. - Under the assumptions of Theorem 1, (5.40) holds.
Furthermore, for any k >__ 1 and a E (0 . .1 ), convergences takes also place in

there.

It suffices to show that (5 . 41 ) is to be discarded in this case,
and this follows at once by contradiction. Indeed, if (5 . 41 ) holds, by

symmetry m must be an even number, and then Hm has ( ; ) maxima.

Therefore, taking R > 0 large enough, our solution have at least ( 2014 )
maxima for large enough T, and this is impossible, since by the results in
[A], [AF], the number of maxima cannot increase in time.
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6. EXTENDING CONVERGENCE TO LARGE SETS

In this Section we shall show that (5.40) actually holds not only on
bounded sets y ( _- C ~ + oo, but also in the larger region described in the
statement of Theorem 1. To begin with, we obtain

LEMMA 6.1. - Under the assumptions of Theorem 1, we have

uniformly on sets ~ ~ ~ ~ R with R > o.
Proof. - Let s be a real parameter, 0  s  1, and consider the auxillary

functions

We readily see that, for any fixed s, vs solves ( 1.1 ).
Moroever, by our choice and (5.40), we have that if c is given in

(5 . 23)

in H~ [as well as in C:: for some ae(0, 1) and any k ? 1].
Consider now the function

Obviously, zs (x, 0) = Vs (x, 0), and a routine computation reveals that

We then deduce that, for fixed s

Set now is = - ln ( 1- s). By the results in Section 5 and well known

representation formulas for caloric functions (cf. for instance [Wi],
Chapter 10) we haBc
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We now intend to get rid of the third term on the right in (6.4). To this
end, we proceed as follows. First, (6. 2) can be written in the form

where r=xJ1-s, To get (6.1), we need a lower bound
on u (r, t~ along sets where r = ~ ( 1- t~ 1 ~2 I ln ( 1- ~ ( 1 ~2 . In terms of x and
t, this means x = ~ ( 1- t) 1 ~2 ~ ln ( 1- t) ( 1- s) ( 1 ~2 . We then have

We now select t = t (s) as follows

Then S can be recast in the form

whence S solves the heat equation with datum

as s i 1. Using Poisson formula for S, we readily see that

for any R > o. On the other hand, since S(0, 1) = 0 application of Taylor’s
expansion yields S (~, ~,) = S~ (0, 1 ) ~ + S~, (0, 1 ) ~, + ... We thus obtain that,
if ~ ~ I __ Rand À is close enough to one,
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Recalling (6.4) and (6. 5), we get

obtain

Since 1- t = ( 1- t) ( 1- s), (6.1) follows (with t replaced by 7). This conclu-
des the proof .
We now turn to the task of obtaining an upper bound complementing

(6 .1 ). To this end, several technical steps are to be taken. Let cp be the
auxiliary function introduced in ( 1. 8). We begin by showing

LEMMA 6.2. - Assume that uo satisfies the hypotheses in Theorem l.

Then for any R > 0, there exists C = C (p, R) such that

uniformly _ R and large enough i > o.

Proof. - We differentiate with respect to y in the equation satisfied by
cp [see (1 . 8)], multiply both sides by (sgn and use Kato’s inequality to
get the following inequality for z = ~ I

By assumption, the solution of ( 1.1 ), (1.2) is symmetric, and the same
happens for cp. By Proposition 5.9, we then have
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for some C >0 (the same symbol will denote a generic constant henceforth),
and for large enough 03C4>0. We now use variation of constants formula in
(6 . 7) starting from i = to get

For any given 0, we take 03C4 such that

Notice that then as To -~ oo, and there exist
constants C1, C2 such that We now proceed to estimate
z along with ç bounded. Using (6.8) and the fact that

as i -~ oo [cf. (5.40)], we obtain

and since lim 1, the result follows.
.s -* oo

To proceed further, we set

so that W solves

We next show

LEMMA 6.3. - There exists such that
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Proof. - Let S be a positive number to be selected presently.. Then

On the other hand, estimate (6.1) can be written as follows

for some constant provided that )j’)~8/T. In particular,
p(y, T)~a>0 for large T and y as before, and there exists C=C(m)>0
such that )t)’’’’"-(~-!))~C~!)-(~-l)’~~’’~], whence, recalling
(5.40)

Estimating this integral when ]~)>8/T requires of a different approach.
To begin with, we notice that the solution of (1.1) is a supercaloric
function. Therefore, for te(to, 1) and large enough x, there exist constants
C and 9 such that

(cf. for instance [W~ In terms of the variable p, this reads

o (x, 
we obtain .

In particular, if T is large enough

Taking now 8>4, the result follows from (6.13)
Let us write now

Taking into account (6.11), we now obtain
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Set

Then for i >_ o > 0, G (y, r) can be written in the form

We next extimate J2 as T -~ 00

LEMMA 6.4. - There holds

umformly on sets |03B6| ~ C with C > U.

Proof. - We fix R > 0 and split the integral in J 1 into two, i and
JR, 2, to be performed in the regions ~, ~ _- R and ~, ~ > R respectively.
Clearly

Settint y = ~ , Ji, relating t and to as in (6. 9), and using (6 .12) we get

and the integral above converges to zero as R -~ oo, uniformly on sets
|03BE (  K. Recalling that as 03C40 ~ oo, we have thus shown that

I J?, 2 (y, i) ( __ B (R), uniformly on i, where lim B (R) = 0 (6.18)’ ~ 

R-oo

Consider now J, 1. By Proposition 5.9, we have that, for any R > 0
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where

uniformly on sets I y ( __ R. Setting and relating T and io as in
(6.9), we then have

and we readily see that

We let first T -~ oo and then R -~ oo . Since

we finally obtain (6 . 1 7) .
Our last result in this Section is

LEMMA 6.5. - Let J2 ( y, i) be given in (6 . 16). Then

uniformly on sets ( ~ I  C with C > o.
Proof. - To get (6.21), we shall split J2 into several terms. Namely,

we take A > 0 such that io + A  i, R > 0 arbitrary and 03B4>0 to be selected
later. We then write
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We now estimate J 2, l’ ..., J2, ~ as follows. By (6. 6) and the lower bound
in (6.1)

As to J2, l, we notice that ye-«~-S»~~ _ ~ efs-~Q~~2, so that if s  io + A and
To is large enough, we have I ye-«2-S»2~ ~  ~ ~ Since i - s >__ b > 0 for
some b, whenever s __ To + A, we then have

1 8~ 3~
where ~=~c(~)>0. Using the 2014, we obtain

~ 
~ 

~ 2~

Consider now J~ 2. 1~ the region ~~R, we can use. Proposition 5.9 to
C

get L (~, r) ~ 2014 as T -~ oo. Therefore
T"

for some constant C depending on A. It only remains to estimate J2, 4.
The main problem now is to derive a suitable bound for L (y, r) given in
(6 .15) in the region where This is done as follows. By defini-
tion

where, as usual, y= x , T = - In (I - t). As remarked in the proof of
J l - t

Lemma 6.3, u (x, t) is supercaloric and therefore for any 6 e (0, 1),
u (x, t) > C whenever x e R and t e (6, 1 ), (6 . 26)

for some constants C, 0 depending on 6. On the other hand, since

u(x, t)  C ( I - t)-(1/(p-1)) for any x e R, t  I and some C > 0 (cf.
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Theorem 4.2 in [GP]), we may use Proposition 1 in to get

~ ux (x, t) (  C ( 1- t) - ~ ~ ~~ p - ~ » - ~ 1 ~2~ for any x E f~ and t  1 (6 . 27)

Putting together (6. 26) and (6. 27), we obtain

We shall use this estimate to bound J~4. Notice that, when r) with
To, T related to (6.9) and To is large enough, it follows that ~2 To, so

that and ~’~~’’o=T~2To.BB P-I/ / BB ~-1/ /
We then have

Assume now that ) § ) 5 K, K > 0, and take 8 >_ 2 K. We then claim that

Let us assume for the moment that (6.30) holds and continue. We use
this inequality to bound the argument of the exponential in the second
integral in (6.29), and then make the change of variables

Z - ( 1 _ e - c~ - S~) -1 ~2 (~-~-~)~ to get

where

Since lye-«t-S)/2) I ~ I ç I 03C4~( I + 1 ° I ç I )’to for large ’t, we readily see

that 03A3 c { z e R : ) z ] ~03B4 303C40 } provided that 6 is large enough. We then
use the fact that 100 e-s2/8 ds~4xe-x2/8 as x - ~, to arrive at
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for some constant a > o. Redefining b if necessary, we may take it large
enough so that

uniformly for ~ ~ ~ _ K. Taking into account (6. 22)-(6. 25) and (6 . 31 ), the
conclusion follows by taking to --+ oo, R --~ oo and A --~ oo, in this order.
We conclude by showing (6 . 30). As 

~ ~, ( >_ 2 K Jio, it suffices to obtain that

i. e.

which is indeed satisfied if io is large enough

7. THE EXPONENTIAL CASE

In this Section we shall sketch those variants of the previous arguments
which are required to prove Theorems 2 and 4. We normalize again the
blow-up time by setting T == 1, and define ç as follows

so that ç satisfies

where A is the operator defined in (1 . 14), and

By ( 1. 5), ~ is bounded above. Then, by (7 . 3), there exists C > 0 such that

~ f (~) ~ _ C I ~ ~ } . as uniformly on
compact sets of y [c, f : (1. 4 b)], and ( ~y ( . , i) ~ ] is bounded [by (1. 5 b)], we
get for some C>O. Therefore 
We now repeat our previous approach with B)/ replaced by ç, B)/ ( y, r) being
the function give in (1.10). In particular, we set
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and note that results in Section 2 and 3 remain true when we substitute

there B)/ by ç. A minor modification of the arguments in Section 5 [in
particular, a change in the constant in the first term in the right in (5 . 25)]
eventually yields that, if ~ ~ 0.

or

in and also in for some a E (o, 1) and any and
Theorem 4 follows. A few details are then to be changed in Section 6,
more precisely in Lemma 6.1 there. To begin with, we replace the family
of auxiliary functions given in (6. 2) by

Clearly, for any such fixed s, vs solves (1.1) with F (u) = e", and moreover,

Instead of zs (x, t) in (6 . 3), we now take

and it is readily seen that t - zs, ezs ~ ~~

Repeating the steps in Lemma 6 .1, we obtain, for 03BE = y ,
~i

which eventually leads to

whence the lower bound

uniformly for I ~ ~ _ R with R > 0. Introducing now a new variable

Vol. 10, n° 2-1993.



182 M. A. HERRERO AND J. J. L. VELAZQUEZ

leads to the equation

Note that now ~ -~ ~ as ç --~ 0. Using (7.5) we obtain, instead of (6.12),

We finally set

replace t6 . ~ 4) by

and repeat the arguments in Lemmata 6.4 and 6.5 to get

uniformly on sets ~ ~ ~  ~ with In view of (7 .6)-(7 . 8), we finally
obtain equality of both sides in (7.5), and the proof of Theorem 2 is
concluded

APPENDIX A

During the proof of Theorem 1, we have used some a priori estimates
on solutions of linear evolution problems associated to operator A given
in (1.14). Such results are rather classical, but we shall state them here
for the readers convenience. Let m be a fixed nonnegative integer, and
consider the linear operator in LW {~) given by

Then A,~ is in L~, ~((~), and has eigenvalues ~," = m - n ; 2 m = 0,

1 , 2, ... with corresponding eigenfunctions given in (1 . 1 5).
Consider now the initial-value problem
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where (.~~ E ~~ and g !C~, i) = g {~, .Y~ t~~~ ~ ~~ ~~ ~~)~: Existence
of solutions of (A 1 ~, ~A ~~ follows from standard semigroup theory..
Moreover, we have the following estimates

PROPOSITION 1~ 1. - There exîstsa positive constant C, such that for any
T > 0, there holds

Then

and

We then have

From now on, we shall denote by C a generic constant depending only
on m which may change from line to line. Clearly
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Noting that we also have

In particular, we obtain

We have thus shown the corresponding bounds for C (., t) and 03A6y (., t).
To estimate the remaining derivatives, it is more convenient to start from
the ODE’s satisfied for the Fourier coefficients ak

We multiply in (A 5) by add all the terms from k = 0 to 00 and
integrate over (0, T) to get

Using Cauchy-Schwartz inequality in the last term above, we obtain

Taking into account (A 4), the bound for ~T ( . , r) is obtained, and the
corresponding estimate for (., r) follows now at once from (A 1) .
We finally show
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PROPOSITION A 2. - Assume that ~ solves ( 1.11 ) and [ is bounded.

Then, for some a E (0, 1 )

Proof. - By hypothesis

Using the boundedness (., i) we have

where we have used (A 3). Then

Arguing as in Proposition A 1 we easily get ~ L~ (fR)) and
~T

([To, oo); L~(!R)), an argument similar to the used in [H],
Lemma 3.5.1 yields L~(!R)) for some cx.>O. This gives

Jr

the result for 2014, and the assertion for follows from (A 6).
~T

APPENDIX B

We compute here the terms An, m, i defined in (5.26). To this end we
first consider the integrals

where, changing slightly our previous notation, Hn (x) represents now the
n-th Hermite polynomial. By a well known generation formula
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We now recall Cauchy integral formula in polydiscs for functions f (z)
analytical in ~N .

where

D (w~, rk) being a disc in C centered at w~ with radius rk. Set now

We now multiply in (B 1) by exp ( - x2) and integrate over (~.

From (B 2) and (B 3) we deduce that for some p > 0

Notice that, since

we have that

whence
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Moreover, setting a = 2 (s + r~, we obtain

Therefore

Assume for instance that m >_ n. Then arguing as in (B 4)

so that

and since

we arrive at

Therefore In, m, l~ 0 if m +n- / is an even integern 0~m+n-l~2n, whence

m+n+l has to be even and l~m+n, m~l+n. Then k=m+n-l 2, and
(B 5) gives
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having obtained (B 6), we turn our attention to the integral

where the result.
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